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Bound-state properties of four-body muonic quasiatoms
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Total energies and various bound-state properties are determined for the ground states in all six four-body
muonic a+b+μ−e− quasiatoms. These quasiatoms contain two nuclei of the hydrogen isotopes p+,d+,t+,
one negatively charged muon μ−, and one electron e−. In general, each of the four-body muonic a+b+μ−e−

quasiatoms, where (a,b) = (p,d,t), can be considered as the regular one-electron (hydrogen) atom with the
complex nucleus a+b+μ− that has a finite number of bound states. Furthermore, all properties of such quasinuclei
a+b+μ− are determined from highly accurate computations performed for the three-body muonic ions a+b+μ−

with the use of pure Coulomb interaction potentials between particles. It is shown that the bound-state spectra
of such quasiatoms are similar to the spectrum of the regular hydrogen atom, but there are a few important
differences. Such differences can be used in future experiments to improve the overall accuracy of current
evaluations of various properties of hydrogenlike systems, including the lowest-order relativistic and quantum
electrodynamics corrections to the total energies.
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I. INTRODUCTION

Recently, by performing variational calculations of the
bound states in three-body muonic molecular ions [1], we
have rediscovered a class of four-body systems that are of
interest in some applications. The existence of these neutral
four-body atomic systems follows from the analysis of actual
experimental conditions that can be found in liquid hydrogen
or deuterium. Indeed, in actual experiments with muons it
is hard to imagine a positively charged muonic molecular
ion, e.g., the (pdμ)+ ion, which moves as a separate and
stable system in liquid hydrogen or deuterium with density
ρ ≈ 0.213 g cm−3. It is clear that such a system will take an
additional electron e− from surrounding atoms or molecules
and form the neutral muonic quasiatom pdμe. Later such
a four-body quasiatom pdμe will react with a protium or
deuterium molecule and form a stable six-body quasimolecule
(pdμ)pe2 or (pdμ)de2. All transformations of muonic four-
body quasiatoms and six-body quasimolecules occur on a
time scale of τ ≈ 1 × 10−10 s, which is significantly shorter
than the muon lifetime τμ ≈ 2 × 10−6 s and/or the reaction
time for the nuclear (p,d) reaction. This means that the
muonic quasiatoms pdμe, pdμe, dtμe, etc., and muonic
quasimolecules (pdμ)pe2 and (pdμ)de2 can be observed in
actual experiments, and it is therefore interesting to investigate
the properties of such systems. In this study, we determine the
bound-state properties of the four-body abμe quasiatoms, and
we discuss some interesting experiments for these systems.

For conciseness of presentation, we confine our attention
to the pdμe quasiatom; extension to the other five hydrogen
isotopes is straightforward. In atomic units h̄ = 1,me = 1,e =
1, the Hamiltonian of the four-body pdμe quasiatom is

H = − 1
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where the notation 1 designates the protium nucleus (p or
1H), the notation 2 (or +) means the deuterium (d) nucleus,
while 3 and 4 stand for the negatively charged muon μ−
and electron e−, respectively. This system of notation will
be used everywhere below in this study. Note that the three
heavy particles p+,d+, and μ− in this system have very large
masses in comparison with the electron mass me (in atomic
units me = 1) and opposite electric charges. Therefore, we can
expect that inside of the pdμe quasiatom, these three heavy
particles (p+,d+, and μ−) will form a separate three-body
cluster pdμ that is spatially compact and has a positive
electric charge +1. The fourth particle (electron e−) moves
at very large distances from this central, heavy cluster. If a0

is the Bohr radius, then the radius of the electron orbit in
the pdμe quasiatom is Re ≈ a0 while the spatial radius of
the central heavy cluster is Rμ ≈ ( me

mμ
)a0 ≈ ( 1

206.768262 )a0 �
a0. Analogous relations between radii of the electron and
muonic orbits can be found in other four-body quasiatoms
abμe. In fact, all bound-state properties in this family of
quasiatoms abμe can be separated into two different groups:
electronic properties and muonic properties. Sometimes it is
convenient to split the muonic properties into two additional
subgroups: muonic and nuclear properties. The reason for
such a separation is obvious, since each of the nuclear masses
Mp,Md,Mt is substantially larger than the muon mass mμ =
206.768 262me.

II. TOTAL ENERGIES

Based on the cluster structure of the four-body quasiatom
pdμe, we can predict that this quasiatom is a bound four-
body system that is very similar to the regular hydrogen atom.
Moreover, its binding energy must be very close to the total
energy of the one-electron hydrogen atom. For instance, the
binding energy of the ground 1S(L = 0) state in the pdμe

atom must be close to −0.5 a.u., while the analogous energy
of the 2S(L = 0) state (electron state) in the pdμe quasiatom
must be close to −0.125 a.u., etc. In general, the total energy
of the bound state with the principal quantum number n in the
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pdμe quasiatom is approximately equal to

E ≈ E(pdμ) + E(H) ≈ −106.012 527 069 515 844

− 1

2n2
a.u., (2)

where the value −106.012 527 069 515 844 a.u. is the best-to
date energy of the ground state in the pdμ ion [1]. Thus, the
ground state (n = 1) in this four-body quasiatom pdμe has
the total energy E ≈ −106.512 527 069 515 844(2) a.u. [1].
Analogous relations can be found for other abμe quasiatoms.
The formula, Eq. (2), is valid in those cases in which we
can neglect all electron-muon, electron-deuteron and electron-
proton correlations. In reality, such correlations contribute to
the total energy, and the value of E given by Eq. (2) must be
corrected.

It is clear that the total energy E depends on particle masses.
In this study, we shall assume that mp = 1836.152 701me,
md = 3670.483 014me, mt = 5496.921 58me, and mμ =
206.768 262me. These masses are often used in accurate
computations of the muonic molecular ions. With these
masses, the total energy of the four-body quasiatom pdμe in
its ground state is E ≈ −106.512 439 401 a.u., i.e., it is slightly
above the value −106.512 527 069 52 a.u. mentioned above. It
is clear that the nonrelativistic energy E from Eq. (2) is only an
approximation to the exact total energy of the pdμe quasiatom,
since this value of E does not include all contributions from the
lowest-order relativistic and quantum electrodynamics (QED)
corrections. A large number of other corrections, e.g., the
finite-size corrections, corrections on nuclear interactions, etc.,
to the total energy have been ignored as well.

The total energy E given by Eq. (2) corresponds to the case
in which the central quasinucleus (or heavy three-body cluster)
pdμ is in its ground S(L = 0) state. However, this three-body
quasinucleus pdμ can also be detected in its bound P (L =
1) state with the total energy −101.453 777 548 914 a.u.
[1]. In this case, the total energy of the pdμe quasiatom
with the central nucleus in its bound P (L = 1) state is
≈ −101.953 777 548 914 a.u., i.e., it is substantially different
from the value E ≈ −106.512 439 401 a.u. mentioned above
for the ground state, and the main difference arises from the
energy of the central quasinucleus pdμ.

As is well known, the six muonic molecular ions
ppμ,pdμ,ptμ,ddμ,dtμ, and t tμ have 22 bound states
(see, e.g., [1] and references therein). These are the S(L =
0), P (L = 1),D(L = 2), and F (L = 3) states, where the
notation L designates the total angular momentum of this
three-body ion abμ, where (a,b) = (p,d,t). There are nine
(bound) S(L = 0) states, nine P (L = 1) states, three D(L =
2) states, and one F (L = 3) state. The four-body muonic
quasiatoms, which contain two nuclei of hydrogen isotopes,
can be considered as a family of similar one-electron (or
hydrogenlike) atoms. One of the six muonic molecular ions
ppμ,pdμ, ptμ, ddμ, dtμ, and t tμ plays the role of the
nucleus in each of these atoms. In general, such a nucleus
can be either in the ground S(L = 0) state or in one of its
“rotationally” and/or “vibrationally” excited states. Here, to
designate the excited states in the abμ ion, we use the (L,ν)
notation, where L denotes the rotational state while ν stands
for the vibrational state.

All bound-states properties, including the lowest-order
relativistic and QED corrections, determined for such hy-
drogenlike quasiatoms depend substantially on the hydrogen-
isotope composition and excitation of the central three-body
“nucleus” abμ. The spectrum of the excited states is very
well known for each of the six muonic molecular ions abμ.
Therefore, the abμe quasiatoms with different hydrogen
isotopes a = (p,d,t) and b = (p,d,t) can be considered as
model hydrogenlike atoms. The “nuclear” spectra in such
atoms are known to very high accuracy. This allows one to
consider possible interactions between “atomic” and “nuclear”
bound states in the abμe quasiatoms. Note again that all
“nuclear” properties of the abμ quasinucleus can be obtained
from highly accurate Coulomb calculations performed for
three-body systems.

In general, the electron motion in the abμe quasiatom is
well separated from the motion of the three heavy particles
a+b+μ−. For instance, the expectation values of the kinetic
energies of the electron and muon in the abμe quasiatom
differ by a factor of 50–100. However, as is well known
(see, e.g., [2,3] and references therein), the “vibrationally”
excited P (L = 1) states [or (1,1) states] in the ddμ and dtμ

three-body ions are very weakly bound. The binding energies
of the three-body ions ddμ and dtμ in their excited (1,1) states
are ≈ −1.974 988 1 and ≈ −0.660 338 7 eV, respectively [1].
These “nuclear” binding energies are comparable with the
corresponding atomic energies. In such cases, one can certainly
observe a strong interference between the “nuclear” and
“atomic” bound states. In reality, for bound states with very
weakly bound nuclei (or quasinuclei), we cannot discuss their
nuclear and electron spectra separately. The analysis of atomic
systems with weakly bound nuclei is very complex, but its
results are of great interest in a number of applications.

III. VARIATIONAL WAVE FUNCTIONS

To determine the total energies and bound-state properties,
one needs to construct approximate wave functions for the
four-body quasiatoms. In this study, these wave functions are
approximated by the variational expansion written in the basis
of the six-dimensional (or four-body) gaussoids of relative (or
interparticle) scalar coordinates rij . This variational expansion
was originally proposed 30 years ago in [4] for accurate
variational calculations of few-nucleon nuclei and � nuclei.
For the bound S(L = 0) states, the variational ansatz of fully
correlated six-dimensional (or four-body) gaussoids is written
in the form [4]

�L=0 = (1 + δabεabPab)
N∑

k=1

Ckexp
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, (3)

where Ck are the linear coefficients (or linear variational
parameters), while α

(k)
ij are the optimized nonlinear parameters.

The notation εabPab means the appropriate symmetrizer (or
antisymmetrizer), i.e., a projection operator that produces the
wave function with the correct permutation symmetry in those
cases in which a = b. This case is designated in Eq. (3) with the
use of the δ function. The operator Pab is the pair-permutation
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operator for all coordinates, i.e., for the spatial, spin, isospin,
etc., coordinates.

By using some effective strategies for optimization of the
nonlinear parameters α

(k)
ij in Eq. (3), one can obtain very

accurate variational wave functions with a relatively small
number of terms N ≈ 400–600 in Eq. (3). The generalization
of the variational expansion, Eq. (3), to the bound states L � 1
is straightforward. It is clear that for the quasiatoms abμe

with the “rotationally” excited “nuclei” abμ, the minimal
number of terms in Eq. (3) must be larger to achieve better
overall accuracy. However, in this study we shall not discuss
numerical computations of bound states with L � 1, and we
restrict ourselves to the analysis of the bound S(L = 0) states.

IV. BINDING ENERGIES AND OTHER BOUND-STATE
PROPERTIES

As we have shown above, the total energy of the pdμe atom
is approximately equal to the sum of the total energies of the
hydrogen atom and the pdμ ion, i.e., E(pdμe) ≈ E(pdμ) +
E(H; n�), where n and � are the principal and angular
quantum numbers of the hydrogen atom. The corresponding
binding energy is the difference between this value and the
total energy of the three-body pdμ ion. This means that the
binding energy of the ground state of the four-body atom
pdμe is approximately equal to the total energy of the ground
state of the hydrogen atom, which equals −0.5 a.u. In other
words, the total energy of the ground state in the four-body
pdμe system is approximately equal to the sum of the total
energies of the three-body muonic molecular ion pdμ and the
ground-state energy of the hydrogen atom with the infinitely
heavy nucleus, i.e., −0.5 a.u. The use of the finite masses
for different hydrogen isotopes p,d,t and muon μ slightly
decreases the absolute value of the total energy of the pdμe

system. The corresponding binding energies of all six abμe

quasiatoms in their ground states εH can be found in Table I.
These values have been determined with the use of our data
from Table I [1] and the following formula:

εH = E(abμe) − E(abμ). (4)

As follows from Table I, these (electron) binding energies are
very close to the expected value −0.5 a.u. A very accurate
evaluation of εH is given by the formula

εH ≈ εA = − 0.5

1 + 1
ma+mb+mμ

. (5)

The values of εH and εA can also be found in Table I. They
correspond to the total energies obtained with the use of N =
600 basis wave functions in Eq. (3).

By using our total energies computed with the use of N =
400 and 600 basis functions, we can extrapolate our results
to the infinite number of basis functions. The corresponding
energy E(N = ∞) must be closer to the actual total energy
than each of the E(N = 400) and E(N = 600) energies. In
general, the following extrapolation formula is often used for
this purpose:

E(Ni) = E(N = ∞) + A

N
γ

i

. (6)

From a series of calculations performed for four-body muonic
quasiatoms, we have found that for such systems, the parameter
γ in Eq. (6) varies between 3.5 and 4. Below, we shall assume
that γ = 3.5 in Eq. (6). Now the formula, Eq. (6), can be
applied to all four-body muonic quasiatoms mentioned in Table
I. It should be mentioned, however, that this extrapolation
formula can be applied only in those cases in which the
internal (or nonlinear) parameters of this method are not
changed (or not varied). In variational expansion, Eq. (3),
the nonlinear parameters are always varied to produce the
results of good numerical accuracy. Therefore, the parameters
E(N = ∞) and A become N -dependent. This means that by
using different values of E(N = 400) and/or E(N = 600), one
finds a number of different E(N = ∞) values. Formally, we
have a distribution of E(N = ∞) values that can be written
in the form E(N = ∞) = Ẽ(N = ∞) ± �, where � is the
corresponding uncertainty. The values of Ẽ(N = ∞) and �

can be found in Table I for each muonic quasiatom.
Other bound-state properties of the abμe quasiatoms

computed with our approximate wave functions (see Table II),
e.g., the 〈rij 〉,〈r2

ij 〉,〈δ(rij )〉 expectation values, coincide well
either with the known properties of the hydrogen atom (in
those cases in which one of the indexes i or j designates
the electron), or with the bound-state properties known for
the three-body muonic molecular ion abμ (see, e.g., [1]
and references therein). This uniformly indicates that each
of the abμe quasiatoms has the two-shell cluster structure.
The electron moves at a substantial (atomic) distance from
the compact central cluster abμ. This central cluster abμ

has a structure that is similar to a molecular (or two-center)
structure. It is different from the expected “pure nuclear”
(or one-center) structure. The effective spatial radius of the
central cluster is mμ ≈ 206.768 times smaller than the radius
of the electron orbit. All these conclusions directly follow from
Table II.

Note that the set of operators included in Table II is not
exhaustive and was selected for illustrative purposes. Most of
the bound-state properties from Table II have been determined
to relatively high accuracy, which can be be estimated by com-
paring the corresponding expectation values computed with
the use of 400 and 600 basis functions. The overall accuracy
of the 〈r−1

ij 〉 expectation values (seven to eight stable decimal
digits) can be estimated by using the virial theorem. The
expectation values 〈rn

ij 〉, where n = −2,1,2, have close overall
accuracy. Analogously, the number of correct decimal digits
in the expectation values of the partial kinetic energies (or
single-particle kinetic energies) 〈− 1

2∇2
i 〉 can also be evaluated

with the use of the virial theorem. The expectation values of the
electron-nuclear δ functions contain approximately six stable
decimal digits, while the muon-nuclear and electron-muon δ

functions are slightly less accurate (approximately four to five
stable decimal digits). The expectation values of the δ functions
between two nuclei of hydrogen isotopes include only one to
two accurate decimal digits. These expectation values must
be improved in future calculations. The computed expectation
values can be compared directly with the expectation values
obtained earlier for the three-particle pdμ,ptμ, and dtμ ions
and for the one-electron hydrogen atom. In general, such a
comparison is of great interest, since it allows us to compare
directly the overall qualities of the different variational wave
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TABLE I. The total nonrelativistic energies E of the ground states of the six four-body muonic quasiatoms abμe (in atomic units). N

designates the total number of basis functions used in Eq. (3).

E(N ) pdμe ptμe dtμe

E(N = 400) −106.51224604 −107.99443095 −111.86418078
E(N = 600) −106.51229235 −107.99446242 −111.86418855
Ẽ(N = ∞)(�) −106.5125(2) −107.9947(2) −111.8645(2)
εH −0.49976528 −0.49975981 −0.49984161
εA −0.49991250 −0.49993369 −0.49994667

E(N ) ppμe ddμe ttμe

E(N = 400) −102.72328481 −110.31675855 −113.47258632
E(N = 600) −102.72329280 −110.31677881 −113.47259711
Ẽ(N = ∞)(�) −102.72335(3) −110.31685(3) −113.47265(3)
εH −0.49978922 −0.49985243 −0.49974808
εA −0.49987114 −0.49993376 −0.49995536

functions. On the other hand, it is very interesting to find
electronic properties of the four-body abμe quasiatoms that
are substantially different from the known properties of the
hydrogen atom(s).

The expectation values of different bound-state proper-
ties determined to high numerical accuracy allow one to
estimate a large number of fundamental atomic properties
that can be directly measured in actual experiments. Here,
by “fundamental property” we mean some combination of
atomic expectation values that determines the results of direct
experimental observations. In other words, any fundamental
property leads to some experimental effects. Below, we discuss
only the following two effects: (a) the evaluation of the field
component of the total isotope shift for the abμe quasiatoms,
and (b) the hyperfine structure splittings in these quasiatoms.
As is well known (see, e.g., [5,6] and references therein), the
field shift in atomic systems is related to the extended nuclear
charge distribution, which produces the non-Coulomb field

at distances close to the nucleus, i.e., at r ≈ RN ≈ 10−13 cm
(=1 fm), where RN is the radius of the nucleus. It is clear
that the largest deviations between the Coulomb and actual
potentials can be found close to the atomic nucleus, i.e.,
for distances r ≈ RN ≈ re � � � a0, where re = α2a0 is
the classical electron radius and � = αa0 is the Compton
wavelength. Here and below, α = 7.297 352 568 × 10−3 is the
fine-structure constant and a0 ≈ 5.291 772 49 × 10−11 m is the
Bohr radius. An approximate formula for the field shift Efs

M in
light atoms takes the form [7]

Efs
M = 8π

5
Qα4ξ

(
RN

re

)2

, (7)

where Q is the nuclear charge and ξ is an additional factor that
is uniformly related to the charge distribution in the nucleus
[7]. An essentially equivalent formula was given long ago by
Cooper and Henley [8]. Now note that all “nuclei” in abμe

TABLE II. The expectation values 〈Xij 〉 in atomic units (me = 1,h̄ = 1,e = 1) of some properties for the ground states of the pdμe,pdμe,
and dtμe ions. Below, the notations 1 and 2 designate the two heavy hydrogen nuclei, while 3 stands for the negatively charged muon and 4
denotes the electron.

〈Xij 〉 pdμe ptμe dtμe 〈Xij 〉 pdμe ptμe dtμe

〈r−2
12 〉 6844.24 7006.69 7860.90 〈r−1

12 〉 76.31734 77.53007 83.49840
〈r−2

13 〉 38979.3 37946.9 48009.2 〈r−1
13 〉 132.5684 130.9652 149.4313

〈r−2
23 〉 52479.2 56036.3 52600.6 〈r−1

23 〉 155.7732 161.5537 156.7953
〈r−2

14 〉 1.99803 1.99926 1.99821 〈r−1
14 〉 0.999936 1.000105 0.999971

〈r−2
24 〉 1.99773 1.99894 1.99805 〈r−1

24 〉 0.999946 1.000120 0.999977
〈r−2

34 〉 1.99637 1.99740 1.99714 〈r−1
34 〉 0.999893 1.000065 0.999932

〈r12〉 0.0149961 0.0146856 0.0132898 〈r2
12〉 0.253289×10−3 0.242031×10−3 0.193839×10−3

〈r13〉 0.0118563 0.0119035 0.0102429 〈r2
13〉 0.187901×10−3 0.187857×10−3 0.137575×10−3

〈r23〉 0.0100972 0.0096824 0.0097874 〈r2
23〉 0.137921×10−3 0.126410×10−3 0.126237×10−3

〈r14〉 1.498820 1.498714 1.499141 〈r2
14〉 2.990077 2.989908 2.992869

〈r24〉 1.498797 1.498686 1.499141 〈r2
24〉 2.989995 2.989814 2.992831

〈r34〉 1.498817 1.498708 1.499158 〈r2
34〉 2.990058 2.989881 2.992882

〈− 1
2 ∇2

1 〉 11997.364 12048.584 16719.815 〈δ12〉 168.0 87.2 9.71

〈− 1
2 ∇2

2 〉 15710.188 17057.831 18036.979 〈δ13〉 1.0352×106 9.9989×105 1.3589×106

〈− 1
2 ∇2

3 〉 19683.906 20227.987 21406.215 〈δ23〉 1.5244×106 1.6635×106 1.5331×106

〈− 1
2 ∇2

4 〉 0.5000089 0.50017715 0.50002151 〈δ14〉 0.30981 0.31007 0.31145

〈δ24〉 0.30838 0.30849 0.31041 〈δ34〉 0.30650 0.30729 0.30895
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quasiatoms are three-body muonic molecular ions abμ with
the spatial radius aμ ≈ a0/mμ � re = α2a0. Therefore, we
can predict that the field component of the total isotope shift
in the abμe quasiatoms must be substantially larger (10 000
times larger) than for the usual light atoms. Furthermore, this
component of the total isotope shift will be a- and b-dependent,
since the spatial radius of the abμe quasiatom depends on the
two nuclei of the hydrogen isotopes a and b.

Another interesting problem involves predicting the hyper-
fine structure splitting of the four-body pdμe and other similar
quasiatoms. Later the computed hyperfine structure splitting
must be compared with the corresponding experimental
results. For instance, consider the hyperfine structure splitting
of the four-body pdμe quasiatom. The central quasiparticle,
i.e., the pdμ ion, has two bound states with different angular
momenta. These states are also bound in the analogous ptμ

and ppμ ions. In each of the ddμ and dtμ ions, one finds five
bound states: two S(L = 0) states, two P (L = 1) states, and
one D(L = 2) state. The heaviest t tμ ion has six bound states:
two S(L = 0) states, two P (L = 1) states, one D(L = 2) state,
and one F (L = 3) state. We can define the angular moment L

of the central “nucleus” abμ and the magnetic moment S (or
“spin” for short) associated with L. The “nuclear” spin S of the
abμ quasinucleus is combined with the electron spin se, and
this produces the hyperfine structure splitting of the four-body
abμe quasiatom. By determining the expectation values of the
corresponding δ functions and a few other properties, one can
evaluate the hyperfine structure splitting in all S(L = 0) states
of the six four-body abμe systems, where (a,b) = (p,d,t).
Accurate numerical evaluation of the hyperfine splitting
in the abμe systems will be our goal in an upcoming study.
The computed values of the hyperfine structure splittings must
be compared with the actual experimental values. Analysis
of the hyperfine structure splitting for the rotationally excited
states is more complicated.

In some sense, the four-body muonic quasiatoms are the
two-shell atomic systems that are similar to the helium-muonic
atoms discussed in [9–11] (see also references therein). In
particular, these four-body muonic quasiatoms, e.g., pdμe,
have a very compact central cluster (pdμ) and one electron
moving in the electric field of this cluster. The fundamental
difference between the pdμe quasiatom and the 4Heμe atom
follows from the different nature of their central clusters. A

very heavy nucleus 4He (or 3He) is essentially the center of the
4Heμe atom, while the two positively charged particles p and
d in the pdμ quasinucleus are not bound to each other without
the muon. Briefly, we can say that such a central cluster pdμ

has a “molecular” structure.

V. CONCLUSIONS

We have discussed the bound-state spectra and properties
of the muonic four-body quasiatoms abμe, where (a,b) =
(p,d,t). The energy spectra of such four-body quasiatoms are
of interest in some applications. Briefly, an arbitrary bound
state in the four-body muonic quasiatom abμe is represented
as motion of the negatively charged electron e− in the field of
a compact “central cluster” abμ, which has positive electric
charge +1. The spatial radius of the central cluster in the abμe

quasiatom is ≈206.77 times smaller than the actual radius
of the electron orbit re ≈ a0, where a0 is the Bohr (atomic)
radius. In general, the study of bound-state spectra in four-body
muonic quasiatoms abμe may lead to some important results
and conclusions that can also be useful in applications to other
atomic and quasiatomic systems. In reality, for each four-body
muonic quasiatom abμe, we know the bound-state spectra of
its central quasinucleus abμ. Moreover, the probabilities of
all possible electromagnetic transitions in this quasinucleus
(abμ) can be determined to very good accuracy. This sim-
plifies the analysis of many related phenomena, including
internal radiative transitions, in the four-body quasiatom
abμe.

There are a number of related problems that are of
special interest in various applications, such as an accurate
computation of some bound-state properties for the four-
body muonic quasiatoms abμe, including the lowest-order
relativistic, and QED corrections to the total and binding
energies. There is great interest in determining such corrections
from direct calculations and comparing them with the results
of approximate evaluations based on the one-electron model
of the abμe quasiatom. In general, the theoretical and
experimental analysis of four-body quasiatoms abμe is a
broad area of study. Analysis and solutions of this problem
will certainly lead to a substantial improvement of our current
knowledge about the bound-state spectra in four-body systems
with arbitrary particle masses.
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