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Rank restriction for the variational calculation of two-electron reduced density matrices
of many-electron atoms and molecules
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Variational minimization of the ground-state energy as a function of the two-electron reduced density matrix
(2-RDM), constrained by necessary N -representability conditions, provides a polynomial-scaling approach to
studying strongly correlated molecules without computing the many-electron wave function. Here we introduce
a route to enhancing necessary conditions for N representability through rank restriction of the 2-RDM. Rather
than adding computationally more expensive N -representability conditions, we directly enhance the accuracy
of two-particle (2-positivity) conditions through rank restriction, which removes degrees of freedom in the
2-RDM that are not sufficiently constrained. We select the rank of the particle-hole 2-RDM by deriving the ranks
associated with model wave functions, including both mean-field and antisymmetrized geminal power (AGP)
wave functions. Because the 2-positivity conditions are exact for quantum systems with AGP ground states, the
rank of the particle-hole 2-RDM from the AGP ansatz provides a minimum for its value in variational 2-RDM
calculations of general quantum systems. To implement the rank-restricted conditions, we extend a first-order
algorithm for large-scale semidefinite programming. The rank-restricted conditions significantly improve the
accuracy of the energies; for example, the percentages of correlation energies recovered for HF, CO, and N2

improve from 115.2%, 121.7%, and 121.5% without rank restriction to 97.8%, 101.1%, and 100.0% with rank
restriction. Similar results are found at both equilibrium and nonequilibrium geometries. While more accurate,
the rank-restricted N -representability conditions are less expensive computationally than the full-rank conditions.
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I. INTRODUCTION

Significantly more information is encoded within the wave
function than is necessary for the calculation of energies and
properties of many-electron quantum systems. In 1955 Mayer
proposed in Physical Review calculating the ground-state
energy variationally as a functional of the two-electron reduced
density matrix (2-RDM) rather than the N -electron wave
function [1–3]. Unlike the wave function the 2-RDM scales
polynomially with the number N of electrons in the molecule.
In further work, however, it became apparent that the 2-RDM
must be constrained by nontrivial conditions to ensure that
it is representable by an N -electron density matrix (or wave
function), and the search for these conditions became known
as the N-representability problem [2,4–24]. For nearly 50
years the direct calculation of the 2-RDM without the wave
function was stymied by the need for better N -representability
conditions and better optimization methods.

The variational computation of an N -particle system’s
ground-state energy as a functional of the 2-RDM has
recently been realized through advances in (i) developing
N -representability conditions [6,8,9,11,12,22] and (ii) de-
signing optimization algorithms [12–15,25–28]. A systematic
hierarchy of N -representability conditions has been developed
in the form of p-positivity conditions [5,9,11,17], which
constrain p + 1 distinct metric matrices of the fermionic
p-RDM to be positive semidefinite. (A matrix is positive
semidefinite if and only if its eigenvalues are nonnegative). The
p + 1 metric matrices represent the probability distributions
of p − q particles and q holes with q ranging from 0 to p
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where a hole is the absence of a particle [9]. The p-positivity
conditions ensure that each of these probability distributions is
nonnegative. These conditions, even for small p, are capable
of capturing both moderate and strong electron correlation;
for example, the 2-positivity conditions are necessary and
sufficient for computing the ground-state energies of pairing
Hamiltonians [11], often employed in modeling long-range
order and superconductivity.

Minimizing the ground-state energy as a 2-RDM func-
tional constrained by these conditions produces a special
type of optimization known as semidefinite programming
(SDP) [13–15,25–33]. Importantly, because SDP problems are
solvable in polynomial time, the variational 2-RDM method
provides a polynomial-time relaxation of the exponentially
scaling many-electron problem that is suitable for describing
strong electron correlation. The 2-RDM methodology has been
applied in quantum chemistry and condensed-matter physics
to studying many-electron molecules and their reactions
[21,23,34,35], quantum phase transitions [36,37], quantum
dots [38], molecular clusters [39,40], and spin systems such as
the Hubbard [41] and Ising [42] models. While new wave-
function methods for strong correlation are being actively
developed [43–50], traditional wave-function methods are
limited to linear combinations of approximately 109 molecular
configurations.

In this paper we present a new approach to improving
the accuracy of energies from the 2-RDM method through
rank restriction of the N -representability conditions. The
accuracy of the 2-RDM calculations with 2-positivity can be
dramatically enhanced through the addition of 3-positivity
conditions [12,17,51,52], but these conditions significantly
increase the total computational cost of the calculations. Rather
than turning to 3-positivity, we propose to improve 2-positivity
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more directly without an increase in its computational cost.
The central idea is that approximate N -representability con-
ditions like the 2-positivity constraints should be combined
with less flexibility in the 2-RDM than more stringent
N -representability conditions like 3-positivity.

One systematic approach to controlling the flexibility of
the 2-RDM is to restrict its rank or the rank of one of its
metric matrices. We can motivate the selection of the rank by
examining the ranks associated with model wave functions,
including mean-field [53] and antisymmetrized geminal power
(AGP) [2,54–62] wave functions. Importantly, because the
2-positivity conditions yield the exact ground-state energy of
any AGP Hamiltonian—that is, a Hamiltonian whose ground
state is described by an AGP wave function [2,11]— the AGP
2-RDM provides a lower bound on the optimal rank of the
particle-hole form of the 2-RDM. The resulting rank-restricted
N -representability conditions yield significantly improved
ground-state energies at a slightly lower computational cost
than unrestricted 2-positivity conditions.

After theoretical results are presented in Sec. II, illustrative
applications are made in Sec. III to computing ground-state
energies for a set of molecules in several basis sets as well as
bond stretching of hydrogen fluoride and diatomic nitrogen.
Section IV provides a brief discussion and concluding remarks.

II. THEORY

The energy is expressed as a functional of the 2-RDM
in Sec. II A, and the N -representability constraints, known
as 2-positivity conditions [5,9], are reviewed in Sec. II B. In
Sec. II C 1 we derive the maximum rank of the particle-hole
2G matrix for two model wave functions, the Hartree-Fock
wave function and the AGP wave function. For the AGP wave
function the maximum rank for each block of the spin-adapted
particle-hole 2G matrix is also derived. Finally, in Sec. II C 2
we extend a large-scale algorithm for SDP [13,26] to support
rank restriction.

A. Energy functional

Because electrons are indistinguishable with pairwise in-
teractions, the energy of any N -electron quantum system can
be expressed as a linear functional of the two-electron reduced
Hamiltonian matrix 2K and the 2-RDM [1–3]:

E =
∑

p,q,s,t

2K
p,q
s,t

2D
p,q
s,t , (1)

E = Tr(2K 2D), (2)

where the indices denote spin orbitals φp in a finite one-
electron basis set {φp}. The elements of the two-electron
reduced Hamiltonian matrix are

2K
p,q
s,t = 1

N − 1
1Kp

s δ
q
t + 2V

p,q
s,t , (3)

where matrices 1K and 2V contain the one- and two-electron
integrals, respectively, and the elements of the 2-RDM are

2D
p,q
s,t = 〈�|â†

pâ†
q ât âs |�〉, (4)

where â
†
p (âp) is a creation (annihilation) operator in second

quantization that creates (annihilates) an electron in spin
orbital φp and � represents the N -electron wave function.

B. N-representability conditions

Because not every two-electron density matrix is repre-
sentable by an N -electron density matrix, the 2-RDM must
be constrained by N -representability conditions [2,4–6,8–24].
A systematic hierarchy of constraints is furnished by the p-
positivity conditions [5,9,11,17]. The 1-positivity conditions,
constraining the one-particle 1D and the one-hole 1Q RDMs
to be positive semidefinite, correspond to restricting the
eigenvalues of the 1-RDM np, known as natural occupation
numbers, to lie between zero and one np ∈ [0,1], which
enforces the Pauli principle. Coleman [2,4] first proved
that these relatively simple conditions plus the usual trace,
Hermiticity, and antisymmetry constraints in the definition of
a density matrix are not only necessary but also sufficient for
the 1-RDM to represent an N -electron density matrix.

The 2-positivity conditions [5,9], providing necessary
constraints on the 2-RDM, constrain the following three metric
matrices to be positive semidefinite:

2D � 0, (5)
2Q � 0, (6)
2G � 0, (7)

where the metric matrices 2D, 2Q, and 2G correspond to the
probability distributions for two particles, two holes, and one
particle and one hole. In second quantization the elements of
these matrices are expressible as

2X
p,q
s,t = 〈�|XĈp,q

XĈ
†
s,t |�〉, (8)

where

DĈp,q = â†
pâ†

q, (9)
QĈp,q = âpâq , (10)
GĈp,q = â†

pâq . (11)

All three metric matrices contain equivalent information in the
sense that rearranging the creation and annihilation operators
produces linear mappings between the elements of the three
matrices [1,2,11]; particularly, the two-hole RDM 2Q and the
particle-hole RDM 2G can be written in terms of the two-
particle RDM 2D as follows:

2Q
p,q
s,t = 2 2I

p,q
s,t − 4 1Dp

s ∧ 1I
q
t + 2D

p,q
s,t (12)

and

2G
p,q
s,t = 1I

q
t

1Dp
s − 2Dp,t

s,q , (13)

where 1I and 2I are the one- and two-particle identity matrices
and ∧ denotes the Grassmann wedge product [63,64]. While
all three matrices are interconvertible, the nonnegativity of the
eigenvalues of one matrix does not imply the nonnegativity
of the eigenvalues of the other matrices, and hence, each
semidefinite constraint in Eqs. (5), (6), and (7) provides an
important N -representability condition.
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C. Rank restriction

1. Model wave functions

The best-known model wave function is the mean-field
wave function introduced by Hartree, Fock, and Slater [53]. In
first quantization the N -electron Hartree-Fock wave function
can be expressed as

�HF = φ1(1) ∧ φ2(2) ∧ · · · ∧ φN (N ), (14)

while in second quantization it can be written as

|�HF〉 =
(

N∏
i=1

â
†
i

)
|0〉, (15)

where |0〉 denotes the vacuum state, the state without any
electrons. The rank of the particle-hole 2-RDM (or 2G), whose
elements are given in Eq. (8), equals the number of linearly
independent N -electron functions |fi,j 〉 having the form

|fi,j 〉 = â
†
j âi |�〉. (16)

For the Hartree-Fock wave function the set {|fi,j 〉} contains
the wave function |�HF〉 itself as well as (r − N )N functions
from all single excitations of |�HF〉. Hence the rank of 2G

from a Hartree-Fock wave function is (r − N )N + 1. For a
wave function to describe a correlated N -electron system in
r spin orbitals its particle-hole 2-RDM 2G must have a rank
strictly larger than (r − N )N + 1.

A flexible model wave function with electron correlation is
the AGP wave function [2,54–62], also known as the projected
Bardeen, Cooper, and Schrieffer (BCS) wave function, which
can be employed to model Cooper pairing in superconductiv-
ity. The N -electron AGP wave function in first quantization
can be written as

�AGP = g(1,2) ∧ g(3,4) ∧ · · · ∧ g(N − 1,N ), (17)

where g(1,2) is a two-electron function (or geminal), in
contrast to the set of one-electron orbitals {φi}. In second
quantization we can define the AGP wave function as a
projection of the BCS wave function onto the N -electron
space:

|�AGP〉 = P̂N

[
r/2∏
i=1

(1 + γi â
†
+i â

†
−i)

]
|0〉, (18)

where |0〉 is the vacuum state and P̂N is the projection operator
that projects the BCS wave function onto the Hilbert space of
N -electron wave functions. A key feature of the AGP wave
function is the special pairing of orbitals [2], which we denote
by +i and −i for i ∈ [1,r/2]. In the study of superconductivity
this pairing is employed to model the observed Cooper pairing
of the momenta of electrons.

The rank of 2G, again equaling the number of linearly
independent N -electron functions |fi,j 〉 in Eq. (16), can be
determined for AGP from the pairing of orbitals. For AGP the
functions |fi,j 〉 can be divided into two classes [57]:∣∣f P

i,i

〉 = P̂i,i |�AGP〉, (19)∣∣f Q
i,j

〉 = Q̂i,j |�AGP〉, (20)

where the P̂i,i are projection operators and Q̂i,j are operators
whose adjoint operators annihilate the AGP wave function,
that is,

Q̂
†
i,j |�AGP〉 = 0. (21)

Specifically, when the γi are not more than doubly degenerate,
r/2 linearly independent functions |f P

i,i〉 arise from the
projectors,

P̂i,i = â
†
i âi , (22)

and r(r − 2)/2 linearly independent functions |f Q
i,j 〉 arise from

the Q̂i,j operators whose adjoints are

Q̂
†
i,j = γi â

†
i âj − sgn(ij )γj â

†
−j â−i , (23)

where i,j ∈ [−r/2,r/2]\[0] with i �= j and i �= −j , and
sgn(ij ) returns the sign of the product of i and j .

The fact that each of the r(r − 2)/2 operators Q̂
†
i,j an-

nihilates the AGP wave function follows from the pairing
property of the orbitals [2,57]. From the definition of the
AGP wave function in Eq. (18), it can be seen that in each
Slater determinant contributing to the AGP wave function both
orbitals in a pair, i.e., φ+i and φ−i , are either occupied or
unoccupied. Furthermore, each pair in the wave function is
weighted by a corresponding element of the vector γ . Hence
the actions of the operators γi â

†
i âj and γj â

†
−j â−i on the AGP

wave function are always equal or opposite in sign, depending
on whether the function sgn(i,j ) is equal to +1 or −1, which
proves the result. The numbers of linearly independent |f P

i,i〉
and |f Q

i,j 〉 will be less than their maximum values of r/2 and
r(r − 2)/2 if the γi where γi = γ−i are more than doubly
degenerate. Such a case occurs when the AGP wave function
reduces to the Hartree-Fock wave function and the numbers of
linearly independent |f P

i,i〉 and |f Q
i,j 〉 become 1 and N (r − N ),

respectively. Consequently, for an AGP wave function the
maximum rank of 2G is r(r − 2)/2 + r/2 or r(r − 1)/2.

In electronic calculations, when the expectation value of
the z component of the spin operator 〈Ŝz〉 vanishes, the basis
functions of the 2G metric matrix can be spin adapted to
produce a block diagonal 2G matrix with four blocks [65]. The
four blocks correspond to the following four GĈp̄,q̄ operators:

GĈ
(0,0)
ī,j̄

= 1√
2

(â†
īα

âj̄α + â
†
īβ

âj̄β), (24)

GĈ
(1,−1)
ī,j̄

= â
†
īβ

âj̄α, (25)

GĈ
(1,0)
ī,j̄

= 1√
2

(â†
īα

âj̄α − â
†
īβ

âj̄β), (26)

GĈ
(1,+1)
ī,j̄

= â
†
īα

âj̄β , (27)

where the bar above the index refers to the spatial part of the
orbital, the spin part of each orbital is denoted as either α

(+1/2) or β (−1/2), and the upper right indices of GĈ
(s,m)
ī,j̄

denote the square of the total spin and the z component of the
total spin for the two-electron operators. If the pairing within
the AGP ansatz is taken to be between spin orbitals sharing the
same spatial component, the AGP wave function in Eq. (18)
can be rewritten with īα and īβ replacing +i and −i.
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To determine the rank of the 2G spin blocks, we can spin
adapt the projection operators in Eq. (22) and the adjoint of
the annihilation operators in Eq. (23), respectively, to obtain

P̂
(0,0)
ī,ī

= 1√
2

(P̂īα,īα + P̂īβ,īβ) (28)

and

Q̂
(0,0)
ī,j̄

= 1√
2

(Q̂īα,j̄α + Q̂īβ,j̄β), (29)

Q̂
(1,−1)
ī,j̄

= Q̂īα,j̄β , (30)

Q̂
(1,0)
ī,j̄

= 1√
2

(Q̂īα,j̄α − Q̂īβ,j̄β), (31)

Q̂
(1,+1)
ī,j̄

= Q̂īβ,j̄α. (32)

All rs spin-adapted projection operators contribute to the (0,0)
spin block of 2G, and rs(rs − 1)/2 Q̂-type operators contribute
to each of the (0,0), (1,−1), (1,0), and (1,+1) spin blocks
where the number rs of spatial orbitals equals one-half the
number r of spin orbitals. Hence the rank of the singlet spin
block (0,0) of 2G is rs(rs + 1)/2, and the ranks of the three
triplet spin blocks of 2G are rs(rs − 1)/2. When 〈Ŝz〉 = 0, all
three triplet blocks are identical [65].

2. Semidefinite programming

The variational 2-RDM method with 2-positivity conditions
minimizes the ground-state energy as a 2-RDM functional,

minimize E(x) = cT x, (33)

where the vector c contains information about the quantum
system in the form of the two-electron reduced Hamiltonian in
Eq. (3) [9] and the vector x contains the three different metric-
matrix forms of the 2-RDM whose elements are given in
Eq. (8). Because the three metric matrices in x are interrelated
by linear mappings,

Ax = b, (34)

and constrained to be positive semidefinite,

M(x) =

⎛
⎜⎝

2D 0 0

0 2Q 0

0 0 2G

⎞
⎟⎠ � 0, (35)

where the operator M maps the vector x to a matrix, the
energy minimization constitutes a special type of constrained
optimization known as semidefinite programming (SDP)
[13–15,25–33]. SDP is a generalization of linear programming
from linear scalar inequalities to linear matrix inequalities.

Second-order algorithms for SDP, developed in the 1990s
[30,31], have an expensive r16 scaling [10,11] in floating-point
operations when applied to variational 2-RDM calculations
with 2-positivity constraints. Zhao et al. [12] introduced a
dual formulation of the 2-RDM optimization that decreased
the computational scaling to r12, and one of the authors
developed two first-order algorithms, a matrix-factorization
method [13,14,26], and a boundary-point method [28] that
reduce the floating-point operations to r6 and the memory
requirements from r8 to r4. Cancés et al. [15], who studied a

dual formulation of the SDP problem, confirmed the efficiency
of the matrix factorization method, and Verstichel et al. [22]
introduced a first-order algorithm based on interior-point
methods.

For the rank-restricted N -representability conditions the
SDP optimization must be modified to include rank restric-
tion of the particle-hole 2G metric matrix within M . In
the matrix-factorization method the solution matrix M is
explicitly constrained to be positive semidefinite by a matrix
factorization [13,14,26]:

M = RR∗. (36)

Importantly, the rank of M or any of its sub-blocks can be
readily constrained to an integer q by restricting the number
of columns of R to q where q is less than the dimension of
the square matrix M . With this flexibility we can solve SDP
problems both with and without rank restriction. If the rank of a
block in R is restricted to an unphysical value such as an integer
less than the rank corresponding to a Hartree-Fock model wave
function, the algorithm generally will not converge. Otherwise,
convergence of the rank-restricted SDP is similar to that of the
unrestricted SDP.

III. APPLICATIONS

After an overview of computational details and a summary
of N -representability conditions, we present results of the
rank-restricted variational 2-RDM method for molecules at
both equilibrium and nonequilibrium geometries.

A. Computational details

The variational 2-RDM method with 2-positivity and rank-
restricted 2-positivity conditions is illustrated with calculations
on several molecules at equilibrium and nonequilibrium
geometries in minimal Slater-type orbital (STO-6G) [66],
double-ζ (DZ) [67], and correlation-consistent polarized
double-ζ (cc-pVDZ) [68] basis sets. Nonequilibrium geome-
tries are obtained from the Handbook of Chemistry and Physics
[69], all core orbitals are double occupied (frozen), and the
molecules are in singlet states. The calculation of one- and
two-electron integrals and full configuration interaction (FCI)
is implemented in the quantum chemistry package GAMESS

(USA) [70].

B. Summary of N-representability conditions

Variational RDM ground-state energies are computed with
the first-order nonlinear SDP algorithm developed by Mazz-
iotti [13,14,26]. The following N-representability conditions
are enforced:

(1) Hermiticity of the 2-RDM:

2D
i,j

k,l = 2D
k,l
i,j . (37)

(2) Antisymmetry of upper and lower indices,

2D
i,j

k,l = −2D
j,i

k,l = −2D
i,j

l,k = 2D
j,i

l,k , (38)

is enforced by antisymmetrized basis functions φ̃i,j =
1/

√
2(φi,j − φj,i).
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TABLE I. The percentage of the correlation energy recovered by the variational 2-RDM method with full-rank and rank-restricted
N -representability conditions is shown for the molecules CO, N2, H2O, HF, and NO+ in a variety of basis sets.

Full Theoretical Full CI Correlation % Correlation energy

Molecule Basis set rank rank energy (a.u.) energy (a.u.) Full rank Theoretical rank

CO STO-6G 64 36 −112.443174 −0.139676 108.5 101.2
DZ 256 136 −112.893590 −0.208672 119.3 102.5
cc-pVDZ 676 351 −113.054884 −0.305767 121.7 101.1

N2 STO-6G 64 36 −108.699813 −0.158189 107.6 97.7
DZ 256 136 −109.104172 −0.226029 119.1 102.8
cc-pVDZ 676 351 −109.278339 −0.329000 121.5 100.0

H2O STO-6G 36 21 −75.728838 −0.050041 104.0 101.7
DZ 144 78 −76.141153 −0.132021 111.8 102.9
cc-pVDZ 529 276 −76.241677 −0.214915 116.7 107.3

HF STO-6G 36 21 −99.526353 −0.026196 100.0 99.7
DZ 100 55 −100.146049 −0.124147 107.2 100.5
cc-pVDZ 324 171 −100.228652 −0.209363 115.2 97.8

NO+ STO-6G 64 36 −128.637594 −0.241971 108.7 102.4
DZ 256 136 −129.060275 −0.315068 115.3 103.6

(3) Trace conditions on the spin-adapted blocks of the 2-
RDM [65]:

Tr(2D(1,0)) = Ns(Ns − 1),
(39)

Tr(2D(0,0)) = Ns(Ns + 1),

where Ns = N/2.
(4) Contraction of the spin-adapted 2-RDM [65] onto the

1-RDM:

(Ns − 1) 1Diα
jα =

∑
k

2D
(1,1)
i,k;j,k,

(40)
(Ns + 1) 1Diα

jα =
∑

k

2D
(0,0)
i,k;j,k.

(5) The 2-positivity conditions [Eqs. (5)–(7)], on three
different representations of the 2-RDM whose elements, given
in Eq. (8), are related by the linear mappings in Eqs. (12) and
(13).

(6) In the case of rank restriction, the rank of the particle-
hole matrix 2G(0,0) is restricted.

C. Results

Two sets of N-representability constraints are imposed in
the calculations shown in Tables I, II, and III and Figs. 1 and
2: (i) 2-positivity conditions without rank restriction, labeled
full rank; and (ii) 2-positivity conditions plus rank restriction,
labeled theoretical rank, in which the rank of the 2G(0,0) block
of the particle-hole matrix is restricted to rs(rs + 1)/2—its
maximum value from a model AGP wave function.

For a variety of molecules and basis sets Table I shows
the percentage of the correlation energy recovered by the
variational 2-RDM method with full-rank and rank-restricted
N -representability conditions. Rank restriction significantly
improves the percentage of correlation energy for all molecules
and basis sets. For CO the 2-positivity conditions without re-
striction yield 108.5%, 119.3%, and 121.7% of the correlation

energy in STO-6G, DZ, and cc-pVDZ basis sets, while these
conditions with rank restriction yield 101.2%, 102.5%, and
101.1% of the correlation energy. Even though the theoretical
rank increases dramatically with basis-set size, the percentage
of the correlation energy recovered remains nearly constant.
Because the rank restriction limits the flexibility of the 2-RDM,
we observe that the computed energies with rank restriction
are neither consistently above nor below the FCI energy.

Dissociation of the triple-bonded nitrogen molecule N2

provides a classic case of strong electron correlation. Table II
and Fig. 1 present the potential energy curve of N2 in the
cc-pVDZ basis set from the variational 2-RDM method with
and without rank restriction. At R = 1.485 Å, while the
2-RDM method with the full rank recovers 119.6% of the
correlation energy, the 2-RDM method with the theoretical
rank yields 99.6% of the correlation energy. At this distance

TABLE II. The percentage of correlation energy along the
potential energy curve of the nitrogen molecule N2 in the cc-pVDZ
basis set is reported from the variational 2-RDM method with and
without rank restriction. At R = 1.485 Å in a region of the potential
energy curve where the spins are recoupling, sometimes known as
the spin recoupling region, the error from the rank-restricted 2-RDM
method is only +0.002 a.u. relative to FCI.

Bond Full CI Correlation % Correlation energy

length (Å) energy (a.u.) energy (a.u.) Full rank Theoretical rank

0.80 −108.664476 −0.257118 120.7 97.5
1.1208 −109.282139 −0.332762 120.1 98.7
1.175 −109.275424 −0.347604 120.1 98.7
1.475 −109.141160 −0.442743 119.6 99.6
1.85 −109.008801 −0.590167 116.4 97.5
2.225 −108.970662 −0.748815 111.3 96.2
2.6 −108.963937 −0.874616 108.2 95.5
2.975 −108.962249 −0.963251 106.8 95.4
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TABLE III. The percentage of correlation energy along the potential energy curve of hydrogen fluoride in the cc-pVDZ basis set is reported
from the variational 2-RDM method with and without rank restriction. At R = 1.95 Å in the spin-recoupling region the rank restriction reduces
the error from –44.5 a.u. to –3.1 a.u.

Bond Full CI Correlation % Correlation energy

length (Å) energy (a.u.) energy (a.u.) Full rank Theoretical rank

0.70 −100.129860 −0.199411 115.3 96.1
0.9161 −100.228633 −0.209189 115.2 97.6
1.2 −100.181953 −0.222427 115.3 98.0
1.3 −100.157836 −0.227830 115.3 98.3
1.5 −100.113798 −0.240945 115.5 97.2
1.95 −100.052917 −0.283544 115.7 101.1
2.8 −100.026420 −0.369590 115.6 104.7

in a region of the potential energy curve where the spins
are recoupling, sometimes known as the spin recoupling
region, the error from the rank-restricted 2-RDM method is
only +0.002 a.u. relative to FCI. Figure 1 shows that the
potential energy curve from the rank-restricted 2-RDM method
closely agrees with the curve from FCI in a large region
surrounding the equilibrium geometry. The largest errors from
rank restriction occur at significantly stretched geometries,
where strong spin entanglement increases the actual rank of
the particle-hole 2G matrix. In contrast, as observed in previous
work, the 2-RDM method without rank restriction has its
largest errors in the spin-recoupling region of the potential
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N-N Distance

FIG. 1. The potential energy curve of the nitrogen molecule N2

in the cc-pVDZ basis set from the variational 2-RDM method with
and without rank restriction. Results are compared with those from
Hartree-Fock and FCI.

energy curve. One measure for the potential curve’s shape is
the nonparallelity error, the difference between the largest error
and the smaller error along the curve relative to FCI. While the
2-RDM methods with and without rank restriction have similar
nonparallelity errors over the whole curve shown in Fig. 1, in
the region R ∈ [0.8,1.85] the rank restriction improves the
nonparallelity error from 0.044 a.u. to 0.013 a.u.

Due to the high electronegativity of fluorine, the dissocia-
tion of the hydrogen fluoride molecule illustrates the breaking
of a polar covalent single bond. Table III and Fig. 2 present the
potential energy curve of HF in the cc-pVDZ basis set from the
variational 2-RDM method with and without rank restriction.

 Full Rank 
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 Theoretical Rank 
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FIG. 2. The potential energy curve of the hydrogen fluoride
molecule in the cc-pVDZ basis set from the variational 2-RDM
method with and without rank restriction. Results are compared with
those from Hartree-Fock and FCI.
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At all bond lengths the rank restriction significantly reduces the
error in the percentage of the correlation energy relative to FCI.
At R = 1.95 in the spin-recoupling region the rank restriction
reduces the error from −44.5 a.u. to −3.1 a.u. In the region
R ∈ [0.7,2.8] shown in Fig. 2 the rank restriction decreases
the nonparallelity error from 0.027 a.u. to 0.024 a.u., and in
the region R ∈ [0.7,1.95] it decreases the nonparallelity error
from 0.014 a.u. to 0.010 a.u. In contrast to the triple-bonded
N2, the singly bonded hydrogen fluoride at highly stretched
geometries has energies from the rank restriction below those
from FCI.

IV. DISCUSSION AND CONCLUSIONS

Variational minimization of the ground-state energy as
a function of the 2-RDM [9–24], constrained by N -
representability conditions, provides a polynomial-scaling
approach to studying strongly correlated molecules without
computing the many-electron wave function. Here we have
introduced a new approach to enhancing necessary conditions
for N -representability through rank restriction of the 2-RDM.
Applications were made to molecules at both equilibrium and
nonequilibrium geometries.

An important set of N -representability conditions on the
2-RDM is the 2-positivity conditions, which restrict the prob-
ability distributions of two particles (2D), two holes (2Q), and
a particle-hole pair (2G) to be nonnegative. In Sec. II C 1 we de-
rived the maximum rank of the particle-hole 2G metric matrix
for two model wave functions, the Hartree-Fock and the AGP
wave functions. The Hartree-Fock wave functions are a small
subset of the AGP wave functions, and hence their particle-hole
matrices have a maximum rank (r − N )N + 1 which is strictly
less than the maximum rank r(r − 1)/2 of the AGP particle-
hole matrices. Because the 2-positivity conditions constrain
AGP Hamiltonians—that is, Hamiltonians with AGP ground-
state wave functions—to yield the exact ground-state energies,
the rank of the AGP 2G matrix provides a minimum rank for the
molecular particle-hole 2G matrix within variational 2-RDM
calculations of general systems. Selecting a smaller rank for
2G would render the variational 2-RDM method inexact for

AGP Hamiltonians. Unlike the case in Hartree-Fock theory, the
maximum rank of 2G within the AGP ansatz is independent
of the number N of particles, which reflects its independence
from a reference determinant wave function and hence, its
ability to treat strong electron correlation.

The variational 2-RDM method with rank-restricted 2-
positivity conditions was applied to computing the energies
and 2-RDMs for a variety of molecules at equilibrium
geometries as well the potential energy curves of the nitrogen
and hydrogen fluoride molecules. Specifically, the rank of
the singlet spin block of the particle-hole matrix was re-
stricted to its maximum value from an AGP wave function
rs(rs + 1)/2 with rs = r/2. The rank-restricted conditions
were implemented through an extension of the first-order
matrix-factorization algorithm for large-scale SDP. The results
demonstrate that rank restriction significantly improves the
accuracy of computed energies. For example, the percentages
of correlation energies recovered for HF, CO, and N2 improve
from 115.2%, 121.7%, and 121.5% without rank restriction to
97.8%, 101.1%, and 100.0% with rank restriction, respectively.
The improvement occurs at equilibrium and nonequilibrium
geometries and across basis sets. Computationally, the rank-
restricted conditions are slightly less expensive than the full
2-positivity conditions. Rank restriction removes degrees of
freedom that are not sufficiently constrained by the 2-positivity
conditions without sacrificing the method’s ability to treat
strong electron correlation, as seen in the bond dissociation of
N2. Although further research is needed to study the method in
larger molecules such as polyaromatic hydrocarbons [21,35]
and firefly luciferin [23], the present results indicate that
rank restriction is a promising approach to improving the
2-positivity conditions within the variational 2-RDM method
without increasing computational cost.
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