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Thickness dependence of the Casimir force between a magnetodielectric plate
and a diamagnetic plate
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This paper examines the repulsive Casimir force between a magnetodielectric plate, with static permeability
greater than static permittivity, and a diamagnetic plate. As the thickness of the magnetodielectric plate is
decreased, the attractive component of the Casimir force decreases more than the repulsive one. This effect
makes the net Casimir force repulsive, and a larger repulsive Casimir force is generated compared to the Casimir
force between the plates with infinite thickness.
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I. INTRODUCTION

The effect of magnetic properties on the Casimir force
has attracted much attention [1–9]. The significant feature of
the Casimir force between a magnetic plate and a dielectric
plate is that the direction of the force can be opposite to that
between perfectly conductive plates. The sign of the Casimir
force between perfectly conductive plates is always attractive
independently of the separation. On the other hand, the sign
of the Casimir force between a magnetic plate and dielectric
plate can change as separation increases.

The repulsive Casimir force has already been observed
in liquid [10], and a stable Casimir suspension of dielectric
objects may be achieved [11] in the near future. Furthermore,
various methods to generate the repulsive Casimir force
in a vacuum have been proposed; however, the repulsive
Casimir force in a vacuum has not been observed yet. If
the repulsive Casimir force is generated in a vacuum, then
quantum levitation, which is among the potential applications
of the Casimir effect in nanotechnology, may be achieved in a
vacuum.

We have shown that the Casimir force between a diamag-
netic plate and a magnetodielectric plate can be repulsive for
large separations [9]. However, the strength of the repulsive
force is very small. To demonstrate the repulsive Casimir
force in a vacuum, we need to increase the strength of the
force. Thus, the main purpose of this paper is to propose a
simple method to increase the repulsive Casimir force. We
show that the repulsive Casimir force can be increased by
decreasing the thickness of the magnetodielectric plate. In
general, the absolute value of the Casimir force between two
dielectric plates of finite thickness decreases as their thickness
decreases [12]. However, this does not necessarily mean that
decreasing the plate thickness will make it difficult to generate
the repulsive Casimir force [13] because the direction of
the Casimir force is determined by the difference between
its attractive and repulsive components. If the attractive
component decreases more than the repulsive one as plate
thickness decreases, the Casimir force changes from attractive
to repulsive. In addition, to demonstrate quantum levitation in
a vacuum, it is preferred that the mass of the levitated object
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be small. Since the mass of the plate per unit area decreases as
the plate thickness decreases, the force necessary for levitating
it also decreases.

To generate the repulsive Casimir force, we need the
permeability of the magnetodielectric plate to be larger than
its permittivity. We chose yttrium iron garnet (YIG,Y3Fe5O12)
as the magnetodielectric for the following reasons: First, YIG
is a well-known material that exhibits magnetic properties
with low permittivity [2]. Second, optical data for YIG have
been obtained up to 30 eV [14,15]. Third, ultrathin layers of
YIG have been experimentally studied [16]. In addition, the
permeability of silicon-doped YIG changes because of the
photomagnetic effect. Enz et al. observed the change in initial
permeability μ(0) of Si-doped YIG from 160 to 4 in roughly
20 s after illumination [17]. This change allows the Casimir
force to be controlled optically.

The essential condition for the repulsive Casimir force
between a diamagnetic plate and a magnetodielectric plate
is that the permeability of the diamagnetic plate be much less
than one for an electromagnetic field at zero frequency, i.e.,
a dc field. Although the permeability of existing diamagnetic
materials is slightly less than one, Wood and Pendry designed a
metamaterial having arbitrary effective permeability between
zero and one at zero frequency by using a superconductor
array, which is referred to as a dc magnetic metamaterial [18].
It has been experimentally confirmed that a superconductor
array made of lead has very small permeability [19].

We investigate the dependence on plate thickness of the
repulsive Casimir force between a magnetodielectric plate
and a diamagnetic plate with infinite thickness using the
continuous-medium approximation. The structure of the paper
is the following. In Sec. II, we briefly explain the Lifshitz
formula at finite temperature. In Sec. III, optical properties
of plates are specified. We chose bismuth strontium calcium
copper oxide (BSCCO, Bi2Sr2CaCu2O8+δ) [20] as a material
of dc magnetic metamaterial, which is well known as a high-Tc

superconductor because the thermal Casimir force becomes
large as the temperature increases. The dielectric functions
of YIG and BSCCO are shown along the imaginary axis
considering the static permeability of these plates. In Sec. IV,
we show the Casimir force between a YIG plate and BSCCO
plate, and discuss the dependence of the Casimir force on the
plate thickness. In Sec. V, we present our conclusions and
discuss the assumption used in this study.
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II. LIFSHITZ THEORY AT FINITE TEMPERATURE

The Casimir force is caused by boundary alternation of an
electromagnetic field and depends sensitively on the shape and
optical properties of the boundary. According to the Lifshitz
theory [21,22], the Casimir force between plates with infinite
thickness per unit area at separation a and temperature T can
be expressed by a sum of the following four components:

P (a,T ) =
∑

p∈{TM,TE}
P

p

0 (a,T ) +
∑

p∈{TM,TE}
P

p

l>0(a,T ). (1)

Here, P TM
0 and P TE

0 are contributions at zero frequency of
the electromagnetic field in the transverse magnetic (TM) and
transverse electric (TE) modes, respectively, and P TM

l>0 and P TE
l>0

are contributions at positive frequencies of the electromagnetic
field in TM and TE modes, respectively. The contributions of
the electromagnetic field with mode p at zero frequency are
given by

P
p

0 (a,T ) = −kBT

2π

∫ ∞

0
k2
⊥dk⊥

[
e2k⊥a

r
(1)
0,p(k⊥)r (2)

0,p(k⊥)
−1

]−1

, (2)

where kB is the Boltzmann constant and k⊥ is the modulus of
the wave-vector projection on the plate. We define the optical
axis perpendicular to the surface of the plate. In the above
equation, the following notations have been introduced:

r
(n)
0,TM(k⊥) =

ε(n)(0)k⊥ −
√

k2
⊥ + α(n)

ε(n)(0)k⊥ +
√

k2
⊥ + α(n)

, (3)

r
(n)
0,TE(k⊥) =

μ(n)(0)k⊥ −
√

k2
⊥ + α(n)

μ(n)(0)k⊥ +
√

k2
⊥ + α(n)

, (4)

where n is the index of the plate, and ε(n)(0) and μ(n)(0) denote
permittivity and permeability of the plate, respectively, at zero
frequency. The constant α is defined by

α(n) = lim
ξ→0

ε(n)(iξ )μ(n)(iξ )
ξ 2

c2
. (5)

The contribution to the Casimir force of electromagnetic
fields with mode p at positive frequencies is given by

P
p

l>0(a,T ) = −kBT

π

∞∑
l=1

∫ ∞

0
qlk⊥dk⊥

×
[

e2qla

r
(1)
p (iξl,k⊥)r (2)

p (iξl,k⊥)
− 1

]−1

, (6)

where ξl = 2πkBT l/h̄ with positive integer l represent the
Matsubara frequencies, and q2

l ≡ q2
l (l,k⊥) = k2

⊥ + ξ 2
l /c2. The

reflection coefficients for positive frequencies are given by

r
(n)
TM(iξl,k⊥) = ε(n)(ξl)ql − k

(n)
l

ε(n)(ξl)ql + k
(n)
l

, (7)

r
(n)
TE (iξl,k⊥) = μ(n)(ξl)ql − k

(n)
l

μ(n)(ξl)ql + k
(n)
l

, (8)

where k
(n)
l =

√
k2
⊥ + ε(n)(ξl)μ(n)(ξl)ξ 2

l /c2.
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FIG. 1. (Color online) (a) Dielectric permittivity along the imag-
inary frequency axis (solid line) and imaginary part (dashed line)
of permittivity for yttrium iron garnet. (b) Components of dielectric
permittivity parallel to the optical axis ε

(2)
‖ and perpendicular to the

optical axis ε
(2)
⊥ along the imaginary frequency axis of permittivity

for bismuth strontium calcium copper oxide.

If the thickness of the magnetodielectric plate d is finite, its
reflection coefficients are changed as follows:

r (n)
p → r (n)

p

1 − e−2k
(n)
l d

1 − (
r

(n)
p

)2
e−2k

(n)
l d

. (9)

III. OPTICAL PROPERTIES OF PLATES

To consider the dependence of the Casimir force on the
thickness of the plate, we need the optical properties of the
plates. We specify the optical properties of YIG and BSCCO,
which are labeled 1 and 2, respectively. Figure 1(a) shows the
permittivity of YIG along the imaginary axis as a function of
photon energy E = h̄ξ . The permittivity is calculated using
the following Kramers-Kronig relation. In this calculation,
we used the experimental results for permittivity obtained by
Kahn et al. for 2.4 < E � 5.8eV [14], and by Kucera et al. for
5.8 < E � 30eV [15]. We assume that the imaginary part of
permittivity for E less than 2.4 eV is zero [23] and is expressed
by (11.6/E)4 for E > 30 eV [15].
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YIG exhibits magnetic resonance at several GHz; however,
the resonance frequency is much smaller than the first
Matsubara frequency at room temperature, 2.5 × 1014 Hz.
Thus, we assume that the permeability along the imaginary
axis is zero for nonzero frequencies. Static permeability is
susceptible to the temperature, impurity, and diffusants [24].
First, we use μ(0) = 160 as the static permeability of YIG [25];
we later consider the dependence of the Casimir force on static
permeability.

The permittivity of BSCCO in the superconductive state
has not been sufficiently measured. However, the necessary
condition to generate the repulsive Casimir force is that the
effective static permeability of the diamagnetic plate must be
less than one, and the difference in permittivity between the su-
perconducting and ordinary states does not significantly affect
the repulsive Casimir force. Thus, we use the permittivity of
BSCCO at room temperature. As shown below, if the thickness
of the plate is small, the contribution of the TE mode at zero
frequency to the Casimir force is dominant, and is determined
by the static permeability and α defined in (5). Since the
value of α for BSCCO is zero in both the superconducting
and ordinary conducting states, the contribution of the TE
mode at zero frequency is determined by the permeability and
plate thickness. Furthermore, the permittivity of BSCCO for
an electric field polarized perpendicular to the optical axis
ε⊥ diverges at zero frequency for both the superconducting
and ordinary states. Accordingly, the reflection coefficient for
BSCCO at zero frequency becomes one in both cases.

BSCCO is an anisotropic dielectric, and this anisotropy is
more important than the difference of permittivity between
the superconducting and ordinary conducting states. We use
the dielectric function given by Romanowsky and Capasso,
who studied the Casimir force acting on BSCCO [20]. The
component of permittivity parallel to the optical axis ε

(1)
‖ and

the component perpendicular to the optical axis ε
(1)
⊥ were

described in the framework of the oscillator model,

ε(iξ ) = 1 +
K∑

j=1

gj

ω2
j + ξ 2 + γj ξ

. (10)

We took the above parameters (oscillator frequencies ωj ,
oscillator strengths gj , and relaxation parameters γj ) from
Ref. [20]. We chose the optical axis perpendicular to the
conducting copper oxide planes. We note that ω1 in (10) for
ε⊥(iξ ) is zero; ε⊥(iξ ) diverges at ξ = 0. The permittivity of
BSCCO along the imaginary axis is shown in Fig. 1(b).

If a dc magnetic metamaterial designed by Wood and
Pendry can be made of BSCCO, its effective permeability
can be changed from zero and one (see details in Ref. [18]).
We assume that the permeability of the diamagnetic plate is
zero at zero frequency and one at positive frequency.

For anisotropic dielectric plates, the reflection coefficients
defined in (12) are replaced as follows:

r
(n)
TM(iξl,k⊥) =

√
ε

(n)
⊥ (ξl)ε

(n)
‖ (ξl)ql − k

(n)
z,l√

ε
(n)
⊥ (ξl)ε

(n)
‖ (ξl)ql + k

(n)
z,l

, (11)

r
(n)
TE (iξl,k⊥) = ql − k

(n)
x,l

ql + k
(n)
x,l

. (12)

Here, k
(n)
z,l and k

(n)
x,l are defined as

k
(n)
z,l =

√
k2
⊥ + ε

(n)
‖ (iξ )

ξ 2
l

c2
, (13)

k
(n)
x,l =

√
k2
⊥ + ε

(n)
⊥ (iξ )

ξ 2
l

c2
. (14)

The reflection coefficients for the dc magnetic metamaterial
considered here at zero frequency are given by r

(2)
TM(0,k⊥) = 1

and r
(2)
TE(0,k⊥) = −1.

IV. DEPENDENCE OF THE CASIMIR FORCE ON THE
PLATE THICKNESS

The Casimir force between perfectly conductive plates with
infinite thickness per unit area is always attractive and is given
by

Pc(a) = − π2h̄c

240a4
. (15)

We consider the ratio of the Casimir force between a YIG
plate of thickness d and a superconductive BSCCO plate
with infinite thickness to the Casimir force between perfectly
conductive plates with infinite thickness. A positive ratio
means that the Casimir force between a YIG plate and and
BSCCO plate is attractive, while a negative ratio means it is
repulsive. Figure 2 shows the ratio of the Casimir force per
unit area between the YIG and BSCCO plates for five values
of d, that is, 1 μm, 100 nm, 10 nm, 1 nm, and infinity, at 130 K.
For any thickness, the Casimir force changes from attractive to
repulsive as the separation increases. However, the transition
point between the attractive and repulsive forces is different,
and it decreases as the thickness decreases. The transition
point from the attractive to the repulsive force is 7.8 μm
for the Casimir force between plates with infinite thickness.
Decreasing the thickness to 1 μm shifts the transition point

d 1 nm
d 10 nm
d 100 nm
d 1 μm

d

0 1 2 3 4 5 6 7

0.1

0.0

0.1

0.2

μm

P
P

c

FIG. 2. (Color online) Change with separation of the ratio of
the Casimir force between a YIG plate and a BSCCO plate to the
Casimir force between perfectly conductive plates for five different
values of YIG plate thickness at 130 K. The direction of the Casimir
force changes from attractive to repulsive as the separation increases.
The separation at which the Casimir force changes from attractive to
repulsive decreases as the thickness decreases.
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FIG. 3. (Color online) Absolute strength of the Casimir force
between a YIG plate and a BSCCO plate on a semilogarithmic
scale. The maximum value of the repulsive Casimir force for a fixed
thickness of the YIG plate increases as the thickness decreases.

to 4.3 μm. The absolute value of the Casimir force between
perfectly conductive plates increases rapidly as the separation
decreases. Accordingly, if the ratio is the same, the strength of
the Casimir force becomes larger for smaller separations.

Figure 3 shows the absolute value of the Casimir force
per unit area between the YIG and BSSCO plates for the
same condition. We find that the maximum value of the
repulsive force increases as the plate thickness decreases.
The Casimir force acting on the YIG plate with 1 μm
thickness takes maximum at a = 5.7 μm and its strength is
1.11 × 10−7 N/m2. This value is five times larger than the
maximum repulsive Casimir force between plates of infinite
thickness. The maximum repulsive Casimir force increases
as the thickness decreases, and it is estimated for d = 100,
10, and 1 nm as 5.9×10−7, 3.6×10−6, and 6.2×10−6 N/m2,
respectively.

Figure 4 shows the dependence of the four contributions
in Eq. (1) on plate separation, which are normalized by
the Casimir force between perfectly conductive plates Pc(a).
Among the four components, only P TE

0 contributes to the
repulsive force. In contrast, the attractive contribution for
large a is mainly determined by the contribution of the
electromagnetic field with the TM mode at zero frequency.
This contribution is given as

P TM
0 (a,T ) = −kBT

2π

∫ ∞

0
k2
⊥dk⊥

×
{[

ε(1)(0) + 1

ε(1)(0) − 1

]
coth(k⊥d)e2k⊥a − 1

}−1

.

(16)
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FIG. 4. (Color online) The components of the Casimir force
between a YIG plate of thickness 1 μm and a BSCCO plate, which
are normalized by the Casimir force between perfectly conductive
plates. The component of the TE mode at zero frequency dominantly
determines the strength of the Casimir force for larger separations.

For a → ∞ and d → 0, the asymptotic form is given by

P TM
0 (a,T ) ≈ −kBT

2π

(
3

8

) [
ε(1)(0) − 1

ε(1)(0) + 1

] (
d

a4

)
. (17)

Conversely, for d → ∞,

P TM
0 (a,T ) = −kBT

8π
Li3

[
ε(1)(0) − 1

ε(1)(0) + 1

] (
1

a3

)
, (18)

where Lin(z) is a polylogarithmic function. Thus, to eliminate
the attractive contribution for large separations, the plate thick-
ness must be sufficiently smaller than the separation distance.

To explain why the Casimir force changes from attractive to
repulsive as the plate thickness decreases for small separations,
we must compare the attractive contribution with the repulsive

TEl 0

TMl 0

TEl 0

TMl 0

0 100 200 300 400 500
0.0

0.5

1.0

1.5

d nm

P
0p

P
0T

E
,P

l
0p

P
0T

E

FIG. 5. (Color online) Dependence of the ratio of four contribu-
tions: P TM

0 , P TE
0 , P TM

l>0 , and P TE
l>0 to P TE

0 at a = 2 μm for thickness d .
The contribution of the TM mode for positive frequencies becomes
smaller compared to that of the TE mode at zero frequency as the
plate thickness decreases. The change in the sign of the Casimir force
results from this decrease.
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FIG. 6. (Color online) Dependence of the maximum repulsive
force on μ(0) for d = 100, 50, and 10 nm. The repulsive Casimir
force increases with the permeability of YIG, and this effect is more
conspicuous as the plate thickness decreases.

one. Figure 5 shows the absolute value of the ratio of each
component to P TE

0 at a = 2 μm. We find that P TE
0 (repulsive

contributor) exceeds P TM
l�1 (main attractive contributor) as

the thickness decreases. This reversal can be explained by
considering the asymptotic behavior of reflection coefficients
for small d as

Rp(ξl,k⊥) ≈ 2k
(1)
l r (1)

p (iξl,k⊥)r (2)
p (iξl,k⊥)

1 − [
r

(1)
p (iξl,k⊥)

]2 d. (19)

Since the absolute value of the reflection coefficient |r (n)
p | is

less than 1, the absolute coefficient of d on the right-hand
side of (19) increases as r (1)

p increases. The absolute value of

r
(1)
0,TE is larger than r

(1)
TM in the range that contributes mainly to

the integral in (6). Thus, the repulsive contribution, which is
the contribution of the TE mode at ξ = 0, increases more
rapidly as the thickness increases in comparison to other
contributors. Then, the net Casimir force becomes repulsive for
small values of thickness. The factor k

(1)
l in (19) contributes to

an increase in Rp as l increases. However, the decrease in r (1)
p as

l increases is more significant. Accordingly, the new repulsive
force appears not because of the increasing contribution of the
repulsive force, but because of the decreasing contribution of
the attractive forces.

As mentioned in Sec. III, the permeability of YIG changes
depending on many factors, such as temperature and impurity.
Thus, we consider dependence of the Casimir force on the
permeability of YIG. Figure 6 shows the maximum repulsive
Casimir force as a function of the permeability of YIG.
The strength of the repulsive Casimir force increases as the
permeability of YIG increases and converges to a constant,
which depends on the plate thickness. As plate thickness
deceases, the repulsive Casimir force saturates at large YIG
permeability.

V. CONCLUSION

We have shown that it is possible to change the direction
of the Casimir force between a magnetodielectric plate and a
diamagnetic plate from attractive to repulsive by decreasing
its thickness under several conditions. The first condition is
that the magnetodielectric plate should have large permeability

and low permittivity, and YIG satisfies both conditions. The
second condition is that the permeability of a dc magnetic
metamaterial must be less than one. Although the effective
permittivity of a dc magnetic metamaterial consisting of a
superconducting lead array is much smaller than one, it is
not clear whether this effective permeability can be used as
the permeability in Lifshitz’s formula for the Casimir force
between plates. Further studies are needed to verify this
assumption. If the Casimir force acting on a dc magnetic
metamaterial depends on its static permeability, then the
combination of YIG and a dc magnetic metamaterial is a good
choice for examining the effect of the Casimir force on the
magnetic properties because both the effective permittivity and
permeability can be changed together. However, we emphasize
that the origin of the repulsive Casimir force between a
diamagnetic plate and a superconductor is the Meissner effect.
Thus, the structure designed by Wood and Pendry is not an
essential condition of the repulsive Casimir force. This is
a significant difference compared to the other methods of
generating the repulsive Casimir force using a complicated
microstructure.

Our method of generating the repulsive Casimir force is
closely related to the Casimir force between a magnetodielec-
tric plate and a metallic plate. Geyer et al. showed that if
the permittivity of a metallic plate obeys the plasma model
near zero frequency, the Casimir force can be repulsive for
large separations [26]. If the permittivity of the metallic plate
diverges near zero frequency in the form ε(iξ ) = 1 + ω2

p/ξ 2,
the value of α defined in (5) is not zero. Accordingly, P TE

0
can similarly contribute to the repulsive Casimir force with
the results of this study.

Although we have discussed the question of which low-
frequency form of the dielectric constant dispersion to use to
calculate the Casimir force, the recent measurement of the
Casimir force between gold plates by Sushkov et al. excludes
the plasma model as the correct low-frequency form [27,28]. If
the permittivity of metallic plates obeys the Drude model, the
value of α is zero; the electromagnetic field of the TE mode
at zero frequency does not contribute to the Casimir force.
Thus, if the permeability of a plate at a frequency above ξ1

is zero, one of the plates must possess diamagnetic properties
for the electromagnetic field at zero frequency to generate the
repulsive Casimir force.

We have found that larger repulsive Casimir forces can
be obtained only by decreasing the thickness of a diamagnetic
plate within the framework of the continuous-medium approx-
imation. However, this approximation is inappropriate for very
small thicknesses. Thus, we need to consider the dependence of
the permeability of YIG on the thickness and develop a method
of calculating the Casimir force acting on magnetodielectric
film beyond the continuous-medium approximation [29].

ACKNOWLEDGMENTS

The author thanks G. L. Klimchitskaya and K. Miura for
helpful discussions. This research was partially supported by
the Foundation of Shin Meiwa Kawanishi for Education and
the Ministry of Education, Science, Sports and Culture Grant-
in-Aid for Scientific Research(C) No. 22560054.

052505-5



NORIO INUI PHYSICAL REVIEW A 84, 052505 (2011)

[1] T. H. Boyer, Phys. Rev. A 9, 2078 (1974).
[2] O. Kenneth, I. Klich, A. Mann, and M. Revzen, Phys. Rev. Lett.

89, 033001 (2002).
[3] I. G. Pirozhenko and A. Lambrecht, J. Phys. A 41, 164015

(2008).
[4] F. S. S. Rosa, D. A. R. Dalvit, and P. W. Milonni, Phys. Rev.

Lett. 100, 183602 (2008).
[5] A. W. Rodriguez, J. D. Joannopoulos, and S. G. Johnson, Phys.

Rev. A 77, 062107 (2008).
[6] V. Yannopapas and N. V. Vitanov, Phys. Rev. Lett. 103, 120401

(2009).
[7] R. Zhao, J. Zhou, Th. Koschny, E. N. Economou, and C. M.

Soukoulis, Phys. Rev. Lett. 103, 103602 (2009).
[8] M. Levin, A. P. McCauley, A. W. Rodriguez, M. T. Homer Reid,

and S. G. Johnson, Phys. Rev. Lett. 105, 090403 (2010).
[9] N. Inui, Phys. Rev. A 83, 032513 (2011).

[10] J. N. Munday, F. Cappasso, and V. A. Parsegian, Nature (London)
457, 170 (2009).

[11] A. W. Rodriguez, A. P. McCauley, D. Woolf, F. Capasso, J. D.
Joannopoulos, and S. G. Johnson, Phys. Rev. Lett. 104, 160402
(2010).

[12] D. Kupiszewska and J. Mostowski, Phys. Rev. A 41, 4636
(1990).

[13] R. Zhao, Th. Koschny, E. N. Economou, and C. M. Soukoulis,
Phys. Rev. B 83, 075108 (2011).

[14] F. J. Kahn, P. S. Pershan, and J. P. Remeika, Phys. Rev. 186, 891
(1969).

[15] M. Kuc̆era, V. N. Kolobanov, V. V. Mikhailin, P. A. Orekhanov,
and V. N. Makhov, Phys. Status Solidi B 157, 745 (1990).

[16] E. Popovaa, N. Keller, M. Guyot, M.-C. Brianso, Y. Dumond,
and M. Tessier, J. Appl. Phys. 90, 1422 (2001).

[17] U. Enz, W. Lems, R. Metselaar, P. J. Rijnierse, and R. W. Teale,
IEEE Trans. Magn. 5, 467 (1969).

[18] B. Wood and J. B. Pendry, J. Phys. Condens. Matter 19, 076208
(2007).

[19] F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins,
J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and
J. B. Pendry, Nature Mater. 7, 295 (2008).

[20] M. B. Romanowsky and F. Capasso, Phys. Rev. A 78, 042110
(2008).

[21] E. M. Lifshitz, Zh. Eksp. Teor. Fiz. 29, 894 (1955).
[22] M. Bordag, G. L. Klimchitskaya, U. Mohideen, and V. M.

Mostepanenko, Advances in the Casimir Effect (Oxford Uni-
versity Press, New York, 2009).

[23] W. Y. Ching, Zong-quan Gu, and Yong-Nian Xu, J. App. Phys.
89, 6883 (2001).

[24] M. Guyot, V. Cagan, and T. Merceron, IEEE Trans. Magn. 20,
2157 (1984).

[25] V. Cagan and M. Guyot, IEEE Trans. Magn. 20, 1732
(1984).

[26] B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko, Phys.
Rev. B 81, 104101 (2010).

[27] A. O. Sushkov, W. J. Kim, D. A. R. Dalvit, and S. K. Lamoreaux,
Nature Phys. 7, 230 (2011).

[28] G. L. Klimchitskaya, M. Bordag, E. Fischbach, D. E. Krause,
and V. M. Mostepanenko, Int. J. Mod. Phys. A 26, 3918 (2011).

[29] R. Esquivel-Sirvent and V. B. Svetovoy, Phys. Rev. B 72, 045443
(2005).

052505-6

http://dx.doi.org/10.1103/PhysRevA.9.2078
http://dx.doi.org/10.1103/PhysRevLett.89.033001
http://dx.doi.org/10.1103/PhysRevLett.89.033001
http://dx.doi.org/10.1088/1751-8113/41/16/164015
http://dx.doi.org/10.1088/1751-8113/41/16/164015
http://dx.doi.org/10.1103/PhysRevLett.100.183602
http://dx.doi.org/10.1103/PhysRevLett.100.183602
http://dx.doi.org/10.1103/PhysRevA.77.062107
http://dx.doi.org/10.1103/PhysRevA.77.062107
http://dx.doi.org/10.1103/PhysRevLett.103.120401
http://dx.doi.org/10.1103/PhysRevLett.103.120401
http://dx.doi.org/10.1103/PhysRevLett.103.103602
http://dx.doi.org/10.1103/PhysRevLett.105.090403
http://dx.doi.org/10.1103/PhysRevA.83.032513
http://dx.doi.org/10.1038/nature07610
http://dx.doi.org/10.1038/nature07610
http://dx.doi.org/10.1103/PhysRevLett.104.160402
http://dx.doi.org/10.1103/PhysRevLett.104.160402
http://dx.doi.org/10.1103/PhysRevA.41.4636
http://dx.doi.org/10.1103/PhysRevA.41.4636
http://dx.doi.org/10.1103/PhysRevB.83.075108
http://dx.doi.org/10.1103/PhysRev.186.891
http://dx.doi.org/10.1103/PhysRev.186.891
http://dx.doi.org/10.1002/pssb.2221570227
http://dx.doi.org/10.1063/1.1379344
http://dx.doi.org/10.1109/TMAG.1969.1066522
http://dx.doi.org/10.1088/0953-8984/19/7/076208
http://dx.doi.org/10.1088/0953-8984/19/7/076208
http://dx.doi.org/10.1038/nmat2126
http://dx.doi.org/10.1103/PhysRevA.78.042110
http://dx.doi.org/10.1103/PhysRevA.78.042110
http://dx.doi.org/10.1063/1.1357837
http://dx.doi.org/10.1063/1.1357837
http://dx.doi.org/10.1109/TMAG.1984.1063574
http://dx.doi.org/10.1109/TMAG.1984.1063574
http://dx.doi.org/10.1109/TMAG.1984.1063470
http://dx.doi.org/10.1109/TMAG.1984.1063470
http://dx.doi.org/10.1103/PhysRevB.81.104101
http://dx.doi.org/10.1103/PhysRevB.81.104101
http://dx.doi.org/10.1038/nphys1909
http://dx.doi.org/10.1142/S0217751X11054371
http://dx.doi.org/10.1103/PhysRevB.72.045443
http://dx.doi.org/10.1103/PhysRevB.72.045443

