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Spectra of helium clusters with up to six atoms using soft-core potentials
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In this paper, we investigate small clusters of helium atoms using the hyperspherical harmonic basis. We
consider systems with A = 2,3,4,5,6 atoms with an interparticle potential which does not present a strong
repulsion at short distances. We use an attractive Gaussian potential that reproduces the values of the dimer
binding energy, the atom-atom scattering length, and the effective range obtained with one of the widely used
He-He interactions, the Aziz and Slaman potential, called LM2M2. In systems with more than two atoms, we
consider a repulsive three-body force that, by construction, reproduces the trimer binding energy of the LM2M2
potential. With this model, consisting of the sum of a two- and three-body potential, we have calculated the
spectrum of clusters formed by four, five, and six helium atoms. We have found that these systems present two
bound states, one deep and one shallow, close to the threshold fixed by the energy of the (A − 1)-atom system.
Universal relations between the energies of the excited state of the A-atom system and the ground-state energy
of the (A − 1)-atom system are extracted, as well as the ratio between the ground state of the A-atom system and
the ground-state energy of the trimer.
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I. INTRODUCTION

Systems composed by few helium atoms have been the
object of intense investigation from a theoretical and exper-
imental point of view. The existence of the He-He molecule
was experimentally established using diffraction experiments
[1–4]. Its binding energy E2b has been estimated to be around
1 mK and its scattering length a0 around 190 a.u. This makes
the He-He molecule one of the biggest diatomic molecules.
On the theoretical side, several He-He potentials have been
proposed; in spite of different details and derivations, all of
them share the common feature of a sharp repulsion below an
interparticle distance of approximately 5 a.u.

Another important characteristic of the He-He interactions
is their effective range r0 ≈ 13 a.u. Accordingly, the ratio a0/r0

is large enough (> 10) to place small helium clusters into the
frame of Efimov physics [5,6]. As shown by Efimov, when at
least two of the two-body subsystems present an infinitely large
scattering length (or zero binding energy), an infinite sequence
of bound states (called Efimov states) appear in the three-body
system; their binding energies scale in a geometrical way and
they accumulate at zero energy. The scaling factor, e−2π/s0 ≈
1/515.03, is universal and depends only on the ratio between
particle masses (for three identical bosons s0 ≈ 1.00624), not
on the details of the two-body interaction (see Ref. [7] for a
review). For a finite a0/r0 ratio, the number of the Efimov states
has been estimated to be N = (s0/π )ln|a0/r0| [6]; for example,
the (bosonic) three 4He system presents an excited state just
below the atom-dimer threshold that has been identified as an
Efimov state.

Triggered by this interesting fact, several investigations of
the helium trimer have been produced, establishing that its
excited state is indeed an Efimov-like state (see, for example,
Refs. [8–10]). In addition, analysis of the atom-dimer collision
in the ultracold regime has also been performed [11–13].

One of the main difficulties in solving the quantum
mechanical problem in the case of three helium atoms is the
treatment of the strong repulsion at short distances of the

He-He potential. Specific algorithms have been developed
so far to solve this problem. The Faddeev equation has
been opportunely modified [14]. Moreover, the hyperspherical
adiabatic (HA) expansion has been extensively used in this
case [13] (for a review, see Ref. [15]). However, due to the
difficulties in treating the strong repulsion, few calculations
exist for systems with more than three helium atoms. For
example, in Ref. [16] the diffusion Monte Carlo method has
been used to describe the ground state of He molecules up to
10 atoms, and in Ref. [17] a Monte Carlo technique has been
used to construct the lowest adiabatic potential in systems with
three and up to 10 helium atoms. On the other hand, description
of few-atoms systems using soft-core potentials are currently
operated (see, for example, Ref. [18]).

Therefore, the equivalence between hard- or soft-core-
potential descriptions needs some clarification. In a recent
work [19], an attractive He-He Gaussian potential has been
used to investigate the three 4He system. In the absence of
direct experimental data, the two-body potential has been
designed to reproduce the helium dimer binding energy E2b,
the He-He scattering length a0, and the effective range r0

of the Aziz and Slaman potential of Ref. [20], called LM2M2.
This Gaussian potential can be considered as a regularized-
two-body contact term in an effective field theory (EFT)
approximation of the physics driven by the LM2M2 potential
[21]. It should be noticed that two potentials predicting
similar values of a0 and r0 predict similar phase shifts in
the low-energy limit and, therefore, even if their shape is
completely different, they describe in an equivalent way the
physical processes in that limit [21]. The equivalence is lost
as the energy is increased, when the details of the potential
become more and more important.

Extending the study to the three-body system, differences
between the attractive Gaussian and the LM2M2 potentials are
immediately observed. For example, the trimer ground-state
energies differ by more than 15% (see Table I). A natural way
to restore the equivalence between the two potentials is by
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the addition of a three-body soft-term force to the Gaussian
potential. On the other hand, in an EFT treatment of the
three-boson system with large scattering length, a three-body-
contact term is required at leading order (LO). Its strength
is usually determined by fixing a three-body observable as,
for example, one of the trimer bound-state energies. After
this choice, cut-off independent results are obtained [22].
Following these ideas, and based on Ref. [19], in the present
work we have considered a Gaussian-hypercentral three-body
force with the strength fixed to reproduce the LM2M2 ground-
state binding energy of the three-atom system. The quality of
this description has been studied for different ranges of the
three-body force.

Using the two-atom and three-atom systems to fix the model
interaction, we have analyzed heavier systems, up to A = 6
atoms. The numerical calculations are performed by means
of the hyperspherical harmonic (HH) expansion method with
the technique developed recently by the authors in Ref. [23].
In this approach, the authors use the HH basis, without a
previous symmetrization procedure, to describe bound states
in systems up to six particles. The method is based in a
particular representation of the Hamiltonian matrix, as a sum
of products of sparse matrices, well suited for a numerical
implementation. Converged results for different eigenvalues,
with the corresponding eigenvectors belonging to different
symmetries, have been obtained. In the present paper, we
extend the formalism to treat a three-body force. Moreover,
as we are dealing with atoms of 4He, only the spectrum
corresponding to totally symmetric eigenstates is of interest.

After fixing the strength of the three-body force to cor-
rectly describe the LM2M2 three-body ground state E

(0)
3b =

126.4 mK, we have calculated the first three levels of the
spectrum with total angular momentum L = 0 of the A =
4,5,6 systems. In the three cases, we have found that the first
two levels are bosonic bound states, one deep, E

(0)
Ab, and one

very shallow, E
(1)
Ab, close to the threshold formed by the A − 1

system plus one atom. The third state in all cases belongs to
a mixed symmetry with an energy above the threshold and
therefore not representing a bound state. The appearance of
only two bound states in this system is in agreement with
previous calculations [17]. This fact has been observed in
A = 4 and interpreted as a consequence of the Efimov-like
spectrum of the A = 3 system [24]. It should be noticed that,
whereas converged results can be found in the literature for
the ground state of the many atom systems, the energy of
the excited states is much more difficult to calculate and only
rough estimates are available.

To gain insight on the shallow state, we have varied
the range of the three-body force (maintaining fixed the
three-body ground-state energy) and we have studied the
effects of that variation in the A = 4,5,6 spectrum. In
the range considered, the variation produces small effects
in the eigenvalues; however, it is crucial to determine if
the shallow state is bound or not with respect to the A − 1
threshold. Interestingly, we have observed that when the ranges
of the two- and three-body forces have a ratio of about

√
2,

the ratio between the shallow- and ground-state energy is
E

(1)
Ab/E

(0)
A−1b ≈ 1.01–1.02, in agreement with Refs. [25,26].

This analysis confirms previous observations that each Efimov

state in the A = 3 system produces two bound states in
the A = 4 system. Furthermore, we have found E

(0)
4b /E

(0)
3b ≈

4.5, E
(0)
5b /E

(0)
3b ≈ 10.5, and E

(0)
6b /E

(0)
3b ≈ 18.5, which is in

agreement with Refs. [26,27].
The paper is organized as follows. In Sec. II, we describe

the two- and three-body forces we used in our calculations to
reproduce LM2M2 data. In Sec. III, the results for the bound
states of the A = 3,4,5,6 He clusters are collected, whereas
the conclusions are given in the last section. Some technical
details of the method have been summarized in the Appendix.

II. SOFT-CORE TWO- AND THREE-BODY
HELIUM POTENTIAL

As mentioned in the Introduction, the 4He-4He interaction
presents a strong repulsion at short distances, below 5 a.u. This
characteristic makes a detailed description of the system with
more than four atoms difficult. Accordingly, in the present
paper, we have studied small clusters of helium interacting
through soft-core two- and three-body potentials, which can
be interpreted as regularized two- and three-body contact terms
in a LO-EFT approximation of LM2M2.

Following Refs. [10,19], we use the Gaussian two-body
potential,

V (r) = V0e
−r2/R2

, (1)

with V0 = −1.227 K and R = 10.03 a.u. In the following, we
use h̄2/m = 43.281 307(a.u.)2K. This parametrization of the
two-body potential approximately reproduces the dimer bind-
ing energy E2b, the atom-atom scattering length a0, and the
effective range r0 given by the LM2M2 potential. Specifically,
the results for the Gaussian potential are E2b = −1.296 mK,
a0 = 189.95 a.u., and r0 = 13.85 a.u., to be compared to
the corresponding LM2M2 values E2b = −1.302 mK, a0 =
189.05 a.u., and r0 = 13.84 a.u. As shown in Ref. [19], the use
of the Gaussian potential in the three-atom system produces
a ground-state binding energy E

(0)
3b = 150.4 mK, which is

appreciably bigger than the LM2M2 helium trimer ground-
state binding energy of 126.4 mK. A smaller difference, though
still appreciable, is observed in the first excited state (see
Table I).

In order to have a closer description to the A = 3 system ob-
tained with the LM2M2 potential, we introduce the following
three-body interaction:

W (ρijk) = W0e
−2ρ2

ijk/ρ
2
0 , (2)

where ρ2
ijk = 2

3 (r2
ij + r2

jk + r2
ki) is the three-body hyper-radius

in terms of the distances of the three interacting particles.
Moreover, the strength W0 is fixed to reproduce the LM2M2
helium trimer binding energy of 126.4 mK. We have studied
different cases by varying the range of the three-body force ρ0

between 4 and 16 a.u. Specific cases with the corresponding
results in the A = 3 system are shown in Table I. In the first
two rows of the table, we report the ground and excited binding
energies of the trimer, both for LM2M2 potential and its
Gaussian representation. The excess of binding is evident for
this last model. Successively, we report, for selected values
of W0 and ρ0, the binding energies obtained summing to
the Gaussian potential the (repulsive) three-body force. By
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TABLE I. Ground state E
(0)
3b and the excited state E

(1)
3b of the

helium trimer calculated with the LM2M2 potential, with its Gaussian
representation and with the Gaussian potential plus the three-body
potential. In this case the two parameters, the strength W0 and the
range ρ0, are given.

Potential E
(0)
3b (mK) E

(1)
3b (mK)

LM2M2 [11] −126.4 −2.265
Gaussian −150.4 −2.467
[W0 (K), ρ0 (a.u.)]
(306.9,4) −126.4 −2.283
(18.314,6) −126.4 −2.287
(4.0114,8) −126.4 −2.289
(1.4742,10) −126.4 −2.292
(0.721,12) −126.4 −2.295
(0.422,14) −126.4 −2.299
(0.279,16) −126.4 −2.302

construction, the ground state has been fixed to the LM2M2
value and, in addition, we can observe that the excited state E

(1)
3b

is now closer to the corresponding LM2M2 result, showing an
extremely small variation with ρ0; the difference between the
extremal values obtained for ρ0 = 4 a.u. and ρ0 = 16 a.u. is
less than 1%.

It should be noticed that the ranges R of the two-body
force and ρ0 of the three-body force are somehow related.
The Gaussian two-body force can be thought as originating
from a contact interaction regularized using a Gaussian cutoff
with � = R−1 (see, for example, Ref. [7]). This means that
configurations, in the A = 2 system, in which two atoms
have a relative momentum k > �, remain outside the present
description or, in other words, details of the interaction for
distances below

√
〈r2〉 = R/

√
2 are not accessible. In the

A > 2 systems, three atoms interact through the three-body
force when they happen to be inside a sphere of radius
ρ0/

√
2 at the same time. It is clear that, as no information is

introduced in the two-body system for distances below R/
√

2,
from the relation ρ2

ijk = 2
3 (r2

ij + r2
jk + r2

ki) and putting each

distance at the value R/
√

2, we obtain for the three-body range
ρ2 = R2. Since R has been fixed in order to describe two-body
quantities, in the description of systems with A > 3 atoms, we
consider different values of ρ0 with particular attention at the
region ρ0 ≈ √

2R.
The calculations for the A � 3 systems, up to six atoms, are

performed using the unsymmetrized HH basis. The method has
been recently used to describe up to six nucleons interacting
through a central potential [23]. A brief description of the
method is given in the Appendix. In this paper we extend the
method to deal with the three-body force. Using a particular
rotation of the HH basis, it is possible to construct the potential
energy as a product of sparse matrices. The Hamiltonian matrix
is obtained using the following orthonormal basis:

〈ρ�|m[K]〉

=
(

β(α+1)/2

√
m!

(α + m)!
L(α)

m (βρ)e−βρ/2

)
YLM

[K] (�N ), (3)

where L(α)
m (βρ) is a Laguerre polynomial with α = 3N − 1

and β a variational nonlinear parameter. The matrix elements

of the Hamiltonian are obtained after integrations in the ρ,�

spaces. They depend on the indices m,m′ and [K],[K ′] as
follows:

〈m′[K ′]|H |m[K]〉

= −h̄2β2

m

[
T

(1)
m′m − K(K + 3N − 2)T (2)

m′m
]
δ[K ′][K]

+
∑
i<j

⎡
⎣ ∑

[K ′′][K ′′′]

Bij,LM

[K][K ′′]B
ij,LM

[K ′′′][K ′]V
m,m′

[K ′′][K ′′′]

⎤
⎦

+
∑

i<j<k

⎡
⎣ ∑

[K ′′][K ′′′]

Dijk,LM

[K][K ′′]D
ijk,LM

[K ′′′][K ′]W
m,m′
[K ′′][K ′′′]

⎤
⎦ . (4)

The matrices T (1) and T (2) have an analytical form and are
given in Ref. [28]. The matrix elements V

m,m′
[K][K ′] and W

m,m′
[K][K ′]

are obtained after integrating the matrices V12(ρ) and W (ρ) in
ρ space (we will call the corresponding matrices V12 and W ).
Introducing the diagonal matrix D such that 〈[K ′]|D|[K]〉 =
δ[K],[K ′]K(K + 3N − 2), and the identity matrix I in K space,
we can rewrite the Hamiltonian schematically as

H = −h̄2β2

m
((1)T ⊗ I + (2)T ⊗ D) +

∑
i<j

[
BLM

ij

]t
V12BLM

ij

+
∑

i<j<k

[
DLM

ijk

]t
WDLM

ijk , (5)

in which the tensor product character of the kinetic energy is
explicitly given. A method to diagonalize a matrix of this form
is given in Ref. [23].

III. RESULTS FOR A = 4,5,6 He CLUSTERS

In this section, we present results for small clusters, up
to A = 6, formed by atoms of 4He. Despite the differences
observed at the level of the three-body system between
the Gaussian two-body force and the LM2M2 potential,
the computation of the spectrum produced by the Gaussian
two-body force only for the A = 4,5,6 systems is of interest.

In Table II, we show the L = 0 ground state E
(0)
Ab and the

first two excited states E
(1)
Ab and E

(2)
Ab for increasing values

of the grand-angular momentum K using the unsymmetrized
HH basis. The calculations have been performed up to
K = 40 in A = 4, K = 24 in A = 5, and K = 22 in A =
6. It is a property of the HH basis that when all states
having a fixed value of K are included in the expansion
of the wave function, the symmetry of the eigenvectors
reflects the symmetries present in the Hamiltonian. Since the
Hamiltonian is symmetric under exchange of the particles, the
obtained eigenvectors have well-defined particle permutation
symmetry. In the present case, the ground state E

(0)
Ab and first

excited state E
(1)
Ab of the Hamiltonian matrix for A = 4,5,6 are

symmetric states and belong to the irreducible representation
[λ] with λ = A. In all cases, the second excited state E

(2)
Ab has

mixed symmetry and belongs to the irreducible representation
[λ 1] with λ = A − 1. In Table II, we also observe that the
ground-state binding energy, E(0)

Ab, has a very fast convergence
in terms of K and can be determined with five digits; this
value fixes the threshold of the continuum spectrum in the
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TABLE II. A = 4,5,6 binding energies of the ground, E
(0)
Ab, and the first two excited states, E

(1)
Ab and E

(2)
Ab, for increasing values of the

grand-angular-quantum number K using the two-body soft-core Gaussian potential. We also report the symmetry of the states; the ground,
E

(0)
Ab, and the first-excited, E

(1)
Ab, states are totally symmetric; the second-excited state belongs to a mixed representation.

E
(0)
4b (mK) E

(1)
4b (mK) E

(2)
4b (mK) E

(0)
5b (mK) E

(1)
5b (mK) E

(2)
5b (mK) E

(0)
6b (mK) E

(1)
6b (mK) E

(2)
6b (mK)

K [4] [4] [3 1] [5] [5] [4 1] [6] [6] [5 1]

0 725.98 31.688 1913.0 642.84 3773.1 2010.7
2 725.98 31.688 1913.0 642.84 314.15 3773.1 2010.9 1626.5
4 746.45 77.971 1941.2 746.01 400.95 3807.6 2140.1 1719.3
6 750.15 107.63 1944.1 778.79 516.60 3809.9 2166.2 1840.5
8 751.06 124.48 2.5177 1945.0 802.47 571.03 3810.8 2188.6 1882.5
10 751.28 135.94 29.401 1945.2 813.88 608.58 3810.9 2196.4 1909.0
12 751.35 144.17 50.336 1945.2 820.87 634.25 3810.9 2200.8 1923.4
14 751.37 149.30 66.672 1945.2 824.84 653.19 3810.9 2202.7 1931.9
16 751.37 152.98 79.082 1945.2 827.23 657.59 3810.9 2203.6 1936.5
18 751.38 155.54 89.069 1945.2 828.67 678.86 3810.9 2204.0 1938.7
20 751.38 157.43 97.021 1945.2 829.58 687.87 3810.9 2204.1 1939.7
22 751.38 158.76 103.54 1945.2 830.15 695.23 3810.9 2204.2 1940.0
24 751.38 159.77 108.90 1945.2 830.50 701.29
26 751.38 160.53 113.38
28 751.38 161.10 117.16
30 751.38 161.54 120.37
32 751.38 161.89 123.13
34 751.38 162.15 125.52
36 751.38 162.37 127.60
38 751.38 162.53 129.42
40 751.38 162.67 131.02

A + 1 system. True bound states in the A = 4 systems are
those having a binding energy bigger than the trimer binding
energy of 150.4 mK and, looking at the table, bound states in
the A = 5,6 systems appear below the threshold of 751.38 and
1945.2 mK, respectively. Since in all cases the second excited
state E

(2)
Ab is above the threshold, only two bosonic states are

bound in the A = 4,5,6 systems, one deep and one shallow
close to the A − 1 threshold. The next bosonic state appears
above E

(2)
Ab and, therefore, it is not bound. This result confirms

previous analysis in the four-body sector that the lower Efimov
state in the A = 3 system produces two bound states: one deep
and one shallow. Here, we have extended this observation up
to the A = 6 system. The convergence of the E

(1)
Ab is much

slower than for the ground state; however, with the extended
base used, it has been determined with an accuracy well
below 1%.

For this atom-atom potential, the ratio r0/a ≈ 1/14 and,
therefore, we are not too far from the unitary limit, and we
can make predictions for the universal ratios E

(1)
Ab/E

(0)
(A−1)b and

E
(0)
Ab/E

(0)
3b . From the table, we can observe that E

(1)
4b /E

(0)
3b =

1.085, E
(1)
5b /E

(0)
4b = 1.10, and E

(1)
6b /E

(0)
5b = 1.13. These results

are not so close to the universal ratio of around 1.01, indicating
that effective range corrections are important. For the ratios
with respect to the trimer ground state, we have E

(0)
4b /E

(0)
3b =

5.01, E
(0)
5b /E

(0)
3b = 12.97, and E

(0)
6b /E

(0)
3b = 25.4. As we will

see, these ratios are substantially modified when a three-body
force is included.

Now, we consider the model with both two- and three-body
interaction. The pattern of convergence for the ground and

excited states of the A = 4,5,6 helium systems, using the
Gaussian two-body potential plus the repulsive three-body
potential with ρ0 = 14 a.u., is given in Table III. The maximum
grand angular momentum considered is K = 40 for A = 4,
K = 24 for A = 5, and K = 22 for A = 6. As in the case in
which only the two-body force has been considered, in all of
the three cases only two bound states appear: one deep and
one shallow very close to the A − 1 threshold. The ground
state presents a fast convergence with K and the accuracy can
be estimated below 0.1 mK. The convergence for the excited
state is slower and, for the values of K considered, its accuracy
is given at the level of 3 mK. However, from the results, it
is well established that, with the value of ρ0 considered, the
excited state, E(1)

Ab, is bound with respect to the A − 1 threshold.
In fact, for A = 4, the 3 + 1 threshold appears at 126.4 mK
and the upper bound estimate for this state is 129 mK. Its ratio
E

(1)
4b /E

(0)
3b is 1.020. For A = 5, the 4 + 1 threshold appears

at 568.8 mK and the upper bound estimate for the excited
state is 575 mK. Its ratio E

(1)
5b /E

(0)
4b is 1.011. For A = 6, the

5 + 1 threshold appears at 1326.6 mK and the upper bound
estimate for the excited state is 1350 mK. Its ratio E

(1)
6b /E

(0)
5b

is 1.018. The ratio between the trimer ground state and the
ground states of the A = 4,5,6 systems are E

(0)
4b /E

(0)
3b = 4.5,

E
(0)
5b /E

(0)
3b = 10.5, and E

(0)
5b /E

(0)
3b = 18.5, respectively. These

ratios are in good agreement with those given in Refs. [25–27],
and represent a substantial improvement with respect to the
case in which the three-body force is not included. At the
ratio r0/a under consideration, the use of the two-body soft-
core potential alone reduces the Efimov character of ground
and first-excited states, which is recovered by including the
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TABLE III. A = 4,5,6 binding energies of the ground, E(0)
Ab, and first-excited, E(1)

Ab, states for increasing values of the grand-angular-quantum
number K . The three-body force parameters are ρ0 = 14 a.u. and W0 = 0.422 K. We also report the symmetry of the states; both the ground,
E

(0)
Ab, and the first-excited, E

(1)
Ab, states are totally symmetric.

E
(0)
4b (mK) E

(1)
4b (mK) E

(0)
5b (mK) E

(1)
5b (mK) E

(0)
6b (mK) E

(1)
6b (mK)

K [4] [4] [5] [5] [6] [6]

0 538.93 4.557 1288.1 365.1 2293.8 1109.9
2 538.93 4.557 1288.1 365.1 2293.8 1109.9
4 561.69 40.29 1319.6 460.4 2331.8 1237.3
6 566.68 67.47 1324.4 497.6 2336.6 1273.0
8 568.21 84.22 1326.1 527.0 2338.4 1307.7
10 568.58 96.04 1326.5 542.7 2338.7 1323.1
12 568.73 105.30 1326.6 554.0 2338.8 1334.4
14 568.77 111.17 1326.6 561.0 2338.9 1340.9
16 568.78 115.58 1326.6 565.9 2338.9 1345.3
18 568.79 118.78 1326.6 569.3 2338.9 1348.2
20 568.79 121.20 1326.6 571.8 2338.9 1350.2
22 568.79 122.98 1326.6 573.6 2338.9 1351.6
24 568.79 124.38 1326.6 574.9
26 568.79 125.47
28 568.79 126.33
30 568.79 127.02
32 568.79 127.57
34 568.79 128.02
36 568.79 128.40
38 568.79 128.70
40 568.79 128.96
Ref. [16] 558.4 1302.2 2319.4
Ref. [17] 559.7 132.6 1309.3 597.1 2329.4 1346.7

three-body force. It is interesting to compare the results
obtained using the soft-core representation of the LM2M2
potential with the results of Refs. [16,17] (quoted in Table III)
obtained using the original LM2M2 interaction. For the ground
state, the agreement is around 2% for A = 4,5 and around 1%
for A = 6. The agreement is worst for the excited state; how-
ever, the results from Ref. [17] are obtained using approximate
solutions of the adiabatic hyperspherical equations.

The overall agreement for A = 4,5,6 between LM2M2 and
the soft potential gives a further indication that at the LO in
an EFT approach to the Efimov physics, there is no need for a
four-body force; this is only a side observation which is not at
all conclusive for the lack of a systematic study as a function
of the cutoff.

Moreover, in the four panels of Fig. 1, we analyze modifica-
tions to the spectrum of the systems we have considered when
different values of W0 and ρ0 are used. The results for A = 3
can be extracted from Table II; the A = 3 ground state is stable
by construction, and small variations are observed for E

(1)
3b . As

shown in Fig. 1(a), E
(1)
3b is always below the 2+1 threshold.

For A = 4, see Fig. 1(b) the excited state E
(1)
4b is above the 3+1

threshold, and therefore not bounded for values of ρ0 < 7 a.u.
For A = 5, Fig. 1(c), and A = 6, Fig. 1(d), the corresponding
excited states are above the 4+1 and 5+1 thresholds for values
of ρ0 < 12 a.u. and ρ0 < 10 a.u., respectively. For A = 5,6,
the results for the bound state present a bump with the smaller
binding energy around ρ0 = 10 a.u. To sum up, the most
sensitive property of the spectrum as a function of ρ0 is,
for A = 4,5,6, if the E

(1)
Ab is above or below threshold. As

previously discussed, a reasonable choice is ρ0 = 14 a.u., and
around this value all the excited states are bound.

Finally, in Table IV, the results for the universal ratios
are shown for values of ρ0 = 12,14,16 a.u.; we observe that
small variations of ρ0 do not drastically change these values. It
should be noticed that in the present analysis the unitary limit
is not completely reached, since the ratio between the two-
body effective range and scattering length is r0/a ≈ 1/14. An
analysis of the universal ratios as a function of a is in progress.

IV. CONCLUSIONS

In this paper, we have attacked two different problems.
From one side, we have studied the possibility of calculating
bound and excited states in a bosonic (atomic) system
up to A = 6 using the unsymmetrized HH expansion and
considering soft two- and three-body forces. On the other hand,
the model has been constructed to approximate the description
of small helium clusters taking as a reference the results of
the LM2M2 potential. These two problems are related, since
the LM2M2 presents a strong repulsion at short distances.
Therefore, the possibility of using a soft-core representation
of the original potential has been analyzed in detail. In
Ref. [19], bound states and low-energy scattering states of the
trimer have been analyzed using the soft-core representation
of the LM2M2. The results obtained in that work were
encouraging in the sense that they were found to be in close
agreement to those obtained using the original potential.

Here, we have extended the analysis to bigger systems.
Therefore, the description of such systems with sufficient
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FIG. 1. Ground- and excited-state energies of the A = 2,3,4,5,6 systems as a function of ρ0. In panel (a), we report the ground- and
excited-state energy of the A = 3 system together with the ground-state energy of A = 2; for all of the values of ρ0 we have considered, the
excited A = 3 state is bounded. In panel (b), we report the ground- and excited-state energy of the A = 4 system together with the ground-state
energy of A = 3; the excited A = 4 state is bounded for ρ0 > 7. In panel (c), we report the ground- and excited-state energy of the A = 5
system together with the ground-state energy of A = 4; the excited A = 5 state is bounded for ρ0 > 12. In panel (d), we report the ground-
and excited-state energy of the A = 6 system together with the ground-state energy of A = 5; the excited A = 6 state is bounded for ρ0 > 10.

accuracy is crucial. To this end, we have used a method
recently developed in Ref. [23] in which the HH basis is
used without symmetrization of the basis states. The basis
is complete and, when all basis elements are included up to a
certain maximum value of the grand angular momentum K , the
eigenvectors reflect the symmetries present in the Hamiltonian.
In the particular case here considered, the eigenvectors have
well-defined symmetry under particle permutation and they
can be organized as belonging to the different irreducible
representations of the group of permutations of A objects, SA.
This simple fact has allowed us to make an important statement
regarding the number of bosonic bound states present in the
systems under study. After the direct diagonalization of the
A-body system, we have analyzed the first three states for
increasing values of K . We have considered a very extended
basis: up to K = 40 for the A = 4 system and K = 24 (K =
22) for the A = 5 (A = 6) system. This allowed us to obtain
converged results for the first eigenvalues of the spectrum.

TABLE IV. Ratios E
(0)
Ab/E

(0)
3b and E

(1)
Ab/E

(0)
(A−1)b as a function of the

three-body cutoff ρ0.

ρ0 (a.u.) E
(0)
4b /E

(0)
3b E

(1)
4b /E

(0)
3b E

(0)
5b /E

(0)
3b E

(1)
5b /E

(0)
4b E

(0)
6b /E

(0)
3b E

(1)
6b /E

(0)
5b

12 4.47 1.01 10.33 1.001 18.12 1.005
14 4.50 1.02 10.50 1.011 18.50 1.018
16 4.54 1.03 10.70 1.021 19.06 1.029

The first two were symmetric states having eigenvalues with
energy below the continuum threshold (fixed by the lowest
bound state in the A − 1 system) and therefore they represent
true bound states. The third state was found to belong to a
mixed symmetry and is above the threshold. This was the case
for all the systems considered (A = 4,5,6) and it means that
the next bosonic state has an energy above the mixed state and
therefore it is not bound. Therefore, we have unambiguously
determined that these systems present only two bound states.

The two bosonic bound states have been studied for
different values of the three-body potential rage ρ0. This
analysis is given in Fig. 1, where the position of the excited
state moves from unbound to bound as ρ0 increases. The
particular case ρ0 ≈ √

2R is explicitly given in Table II,
showing that in fact the excited state is slightly bound.
Moreover, since the He-He potential predicts a large two-body
scattering length, we have studied the universal ratios
E

(0)
Ab/E

(0)
3b and E

(1)
Ab/E

(0)
(A−1)b. These ratios have been studied in

detail in the A = 4 case (see Refs. [24–26]). Estimates have
also been obtained for bigger systems [27]. Our calculations,
obtained for one particular value of the ratio r0/a, are in
agreement with those references on the universal character of
these states in A > 3 systems. An analysis of the universal
ratios as a → ∞ is at present underway.

Finally, we would like to discuss the quality of the
description using the two- and three-body soft-core-potential
model. We observe a substantial good agreement, at the level
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of 2% or better, for the ground states of the A-atom systems
in comparison to the results of the LM2M2 potential given
by Lewerenz [16]. The excited states have been calculated in
Ref. [17], though using a reduced Hilbert space. Comparing
to those results, we observe an agreement around 5%. From
this analysis, we can conclude that a four-body force will have
effects beyond this level of accuracy. A deeper analysis in this
subject is in progress.

APPENDIX

Following Refs. [23,28], we present a brief overview of the
properties of the HH basis and its implementation without
generating basis elements with well-defined permutational
symmetry. This approach allows us to avoid the complications
of symmetry-adapted-basis construction, and to easily treat
permutational-symmetry-breaking terms [23,29]

We start with the following definition of the Jacobi
coordinates for an equal mass A-body system with Cartesian
coordinates r1 . . . rA,

xN−j+1 =
√

2j

j + 1
(rj+1 − Xj ), j = 1, . . . ,N. (A1)

For a given set of Jacobi coordinates x1, . . . ,xN , we can
introduce the hyper-radius ρ,

ρ =
(

N∑
i=1

x2
i

)1/2

=
(

2
A∑

i=1

(ri − X)2

)1/2

=
(

2

A

A∑
j>i

(rj − ri)
2

)1/2

, (A2)

the hyperangular coordinates �N ,

�N = (x̂1, . . . ,x̂N,φ2, . . . ,φN ) , (A3)

with the hyperangles φi defined via

xN = ρ cos φN

xN−1 = ρ sin φN cos φN−1

...

xi = ρ sin φN · · · sin φi+1 cos φi
(A4)

...

x2 = ρ sin φN · · · sin φ3 cos φ2

x1 = ρ sin φN · · · sin φ3 sin φ2.

The explicit expression for the HH functions, having well-
defined values of LM , is

YLM
[K] (�N ) =

⎡
⎣ N∏

j=2

Pαlj
,αKj−1

Kj
(φj )

⎤
⎦ [Yl1 (x̂1) ⊗ Yl2 (x̂2)|L2 · · ·

⊗YlN−1 (x̂N−1)|LN−1 ⊗ YlN (x̂N )]LM, (A5)

with the indicated coupling scheme. The hyperspherical
polynomial is

Pαlj
,αKj−1

Kj
(φj ) = N αlj

,αKj

nj
(cos φj )lj (sin φj )Kj−1

×P
αKj−1 ,αlj

nj
(cos 2φj ). (A6)

The set of quantum numbers [K] includes the n2 . . . nN indices
of the Jacobi polynomials, the l1 . . . lN angular momenta of the
particles, and the intermediate couplings L2 . . . LN−1. The Kj

quantum numbers are defined as

Kj =
j∑

i=1

(li + 2ni), n1 = 0, K ≡ KN, (A7)

K ≡ KN is known as the grand angular momentum, andN αβ
n is

a normalization factor. For the definition of the αa , where a can
be either an angular momentum lj or a quantum number Kj ,
one needs to introduce the hyperspherical-binary-tree structure
[30]. For example, the tree of Fig. 2 corresponds to the choice
of hyperangles given by Eq. (A4), in which the coefficients
specialize to αKj

= Kj + 3j/2 − 1 and αlj = lj + 1/2.
Hyperspherical functions constructed using different

hyperspherical-coordinate definitions can be related using the
T coefficients [31,32]. Schematically, these coefficients relate
the following tree structures:

li li−1 Ki−2

φi

φi−1

Ki−1

Ki

=

Ni

ñi−1=0

T αKi−2
αli−1

αli

ni−1ñi−1Ki

li li−1 Ki−2

φi

φ̃i−1

K̃i−1

Ki

.

(A8)

Here Ki = Ki−1 + li + 2ni = K̃i−1 + li + 2ñi . The explicit
definition of the coefficients is given in Ref. [23]. Let us call
YLM

[K] (�i
N ) the HH basis element constructed in terms of a set of

Jacobi coordinates in which the ith and (i + 1)th Jacobi vectors
result from the transposition between particles j,j + 1,

x′
i = −1

j
xi +

√
(j + 1)2 − 2(j + 1)

j
xi+1

(A9)

x′
i+1 =

√
(j + 1)2 − 2(j + 1)

j
xi + 1

j
xi+1,
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FIG. 2. Hyperspherical tree corresponding to Eq. (A4).

with all the other vectors equal to the original ones (transposed
basis). The coefficients

Ai,LM
[K][K ′] =

∫
d�N

[
YLM

[K] (�N )
]∗YLM

[K ′]
(
�i

N

)
(A10)

are the matrix elements of a matrix ALM
i that allows us

to express the transposed HH basis elements in terms of
the reference basis. The coefficients Ai,LM

[K][K ′] form a very
sparse matrix and they can be calculated analytically using
the T -coupling coefficients and the Raynal-Revai matrix
elements [23]. A generic rotation between the reference HH
basis and a basis in which the last Jacobi vector is defined
as x′

N = rj − ri can be constructed as successive products of
the Ak,LM

[K][K ′] coefficients. Defining YLM
[K] (�ij

N ), the HH basis
element constructed in terms of a set of Jacobi coordinates
in which the N th Jacobi vector is defined x′

N = rj − ri , this
coefficient can be given in the following form:

Bij,LM

[K][K ′] =
∫

d�
[
YLM

[K] (�N )
]∗YLM

[K]

(
�

ij

N

)
= [

ALM
i1

· · ·ALM
in

]
[K][K ′]. (A11)

The particular values of the indices i1, . . . ,in, labeling the
matrices ALM

i1
, . . . ,ALM

in
, depend on the pair (i,j ). The matrix

BLM
ij = ALM

i1
· · ·ALM

in
(A12)

is written as a product of the sparse matrices ALM
i .

We consider now the potential energy of an A-body system
constructed in terms of two-body interactions:

V =
∑
i<j

V (i,j ). (A13)

In terms of the HH basis, it reads∑
ij

Vij (ρ) =
∑
ij

[
BLM

ij

]t
V12(ρ)BLM

ij , (A14)

where the matrix elements of the matrix V12(ρ) are defined as

V
(1,2)

[K][K ′](ρ) = 〈
YLM

[K] (�N )
∣∣V (1,2)

∣∣YLM
[K ′](�N )

〉
= δl1,l

′
1
· · · δlN ,l′N δL2,L

′
2
· · · δLN ,L′

N
δK2,K

′
2
· · · δKN ,K ′

N

×
∫

dφN (cos φN sin φN )2PαlN
,αKN−1

KN
(φN )

×V (ρ cos φN )PαlN
,αKN−1

K ′
N

(φN ). (A15)

Each term of the sum in Eq. (A14) results in a product
of sparse matrices, a property which allows an efficient
implementation of matrix-vector product. This procedure can
be easily extended to spin-dependent potentials [33].

We now consider a three-body force depending on the
hyper-radius ρijk of a triplet of particles ri ,rj ,rk ,

V (3) =
∑

i<j<k

W (ρijk). (A16)

The term in which i,j,k ≡ 1,2,3 verifies ρ2
123 = x2

N + x2
N−1.

It can be calculated on a hyperspherical-basis set relative to a
nonstandard hyperspherical tree with the branches attached to
leaves xN and xN−1 going to the same node. The transition
between the two hyperspherical sets is given by the T
coefficients

YLM
[K] (�N ) =

∑
ñN−1

T αKN−2 αlN−1 αlN

nN−1ñN−1K
YLM

[K̃] (�̃N ) , (A17)

where all the variables with the tilde refer to the nonstandard
tree. With this choice, we simply have

ρ123 = ρ cos φN, (A18)

and the fixed-ρ matrix elements read〈
YLM

[K̃ ′](�̃N )
∣∣W (ρ)

∣∣YLM
[K̃] (�̃N )

〉
= δl′1,l1 · · · δl′N ,lN δL′

2,L2 · · · δL′,LδM ′,MδK̃ ′
2,K̃2

· · · δK̃ ′
N−1,K̃N−1

×
∫

(cos φN )4(sin φN )3N−8dφNP
αK̃N−1

,αKN−2

K ′ (φN )

×P
αK̃N−1

,αKN−2

K (φN )W (ρ cos φN ). (A19)

The three-body force matrix W (ρ) is extremely sparse, and
it is diagonal on all quantum numbers but the grand-angular
momentum. Finally, the matrix W (ρ) in the standard basis is
obtained by means of the T coefficients,〈

YLM
[K ′](�N )

∣∣W (ρ)
∣∣YLM

[K] (�N )
〉

=
∑
ñN−1

T αKN−2 αlN−1 αlN

n′
N−1ñN−1K ′ T αKN−2 αlN−1 αlN

nN−1ñN−1K

× 〈
YLM

[K̃ ′](�̃N )
∣∣W (ρ123)

∣∣YLM
[K̃] (�̃N )

〉
. (A20)

In order to calculate the other terms of the three-body
force, we use the matrices ALM

p , defined in Eq. (A10), that
transpose particles; with a suitable product of these sparse
matrices,

DLM
ijk = ALM

p1
· · ·ALM

pm
, (A21)

we can permute the particles in such a way that xN = ri − rj ,
xN−1 = 2/

√
3[rk − (ri + rj )/2], ρ2

ijk = x2
N−1 + x2

N , and the
total three-body force reads

V (3) =
∑

i<j<k

[
DLM

ijk

]t
W (ρ)DLM

ijk . (A22)
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