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The third-order expression for the dispersion interaction between two atoms is written as a sum over lists of
transition matrix elements. Particular attention is given to the C9/R

9 interaction which occurs in the homonuclear
case when one atom is in an S state and the other is in a P state. Numerical values of the C9 coefficient are
given for the homonuclear alkali-metal dimers. The size of the C9:C3 dispersion coefficient ratio increases for
the heavier alkali-metal atoms. The C11 and C13 coefficients between two helium atoms and lithium atoms in
their ground states are also given.
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I. INTRODUCTION

One of the more interesting spin-offs in the field of cold-
atom physics has been the development of photoassociation
(PA) spectroscopy [1–3]. Besides being a pathway to the
formation of various molecules, analysis of data from PA
experiments has resulted in many of the most accurate atomic
lifetime determinations [4]. In addition, one can identify many
high-precision determinations of interatomic potential curves
using PA spectroscopy [5–7]. Most recently, Le Roy et al.
mapped out the Li2(X 1�+

g ) and the Li2(A 1�+
u ) potential

curves for the lithium dimer [8] to a new level of detail and
precision. One result from the Le Roy et al. analysis was a
value for the 2s→2p1/2 transition rate that was one order of
magnitude more precise than any previously measured atomic
oscillator strength [4].

Most of the PA experiments mapping out potential curves
have been performed for homonuclear dimers [5–7]. The
interatomic potential for the nS-nP configurations of the
photoexcited states have one atom in its ground state and
the other atom in a dipole excited state. For such a system,
the asymptotic part of the potential curve is sometimes written
as the function of their distance R,

VPA(R) = −C3

R3
− C6

R6
− C8

R8
− C10

R10
− · · · . (1)

The inclusion of terms up to O(R−10) can be regarded as
something akin to the standard model for the dispersion
interaction [9–13] aimed at getting a good representation of the
entire potential surface. The C3 term is sometimes called the
resonant term and arises because the two atoms are identical
with identical energy levels. However, Eq. (1) is incomplete
to O(R−10). Although it is not widely appreciated, third-order
perturbation theory for two identical atoms is known to give
rise to a term of order O(R−9) [14].

The contribution of the third-order term to the analysis of
PA experiments is currently unknown. This situation should
be rectified since the most recent analysis of the potential
curves asymptoting to the 7Li(2s)-7Li(2p) states gave a value
of C3 = 11.0024(2) a.u. [8] that was 0.016% larger than the

value of 11.0007 a.u. coming from a finite mass Hylleraas
calculation after corrections had been made to incorporate
relativistic effects [15]. Given that this C3 represents a level
of precision close to one order of magnitude better than
any previous determination, the possibility exists that the
third-order dispersion coefficients could be influencing the C3

derived from the analysis of the rovibrational spectrum.
There has been some research into the higher-order disper-

sion coefficients when both atoms are in spherically symmetric
states [16–21]. The most comprehensive work was that by
Ovsiannikov and Mitroy [20,21] who determined the Cn

coefficients up to n = 30 and included terms up to tenth-order
of perturbation theory. Apart from the work of Zhang et al.
[14], which was specialized to nS-nP configuration, there has
been no work on the third-order dispersion coefficients for
the general case. In the present work, we derive the general
expressions for the third-order dispersion coefficients. The two
most interesting cases are those when both atoms are in their
ground states, and the case when one atom is in an S state and
the other is in a state with L > 0.

Numerical values of the C11, C13, and C15 coefficients are
first given for the hydrogen dimer since other high-accuracy
calculations of these terms can be used as as a validation
check [18,20,21]. Values of C11 and C13 are computed using
Hylleraas wave functions for the helium dimer ground state.
The most precise descriptions of the helium dimer potential
includes dispersion coefficients up to C16 [22–25]. The two
effects tend to supersede the only previous calculations of
third-order C11 and C13 coefficients using configuration-
interaction-type wave functions [23,24]. The C9 coefficients
were also computed for the He(1 1Se)-He(2 1P o), He(2 1Se)-
He(2 1P o), and He(2 3Se)-He(2 3P o) dimers as a validation
using the previously computed values of Zhang et al. [14] as
a check. Numerical values of the C9 and C11 coefficients are
given for the lowest nS-nP configuration of the homonuclear
alkali-metal dimers. Most of the values were computed using a
fixed core Hartree-Fock plus semiempirical core-polarization
Hamiltonian. There have been no previous calculations of the
third-order dispersion coefficients for these alkali-metal–atom
configurations.
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II. THE THIRD-ORDER DISPERSION INTERACTION

The dispersion coefficients will initially be evaluated for
two separate atoms in the atomic representation. Later, the
modifications necessary to convert the atomic basis dispersion
coefficients to a molecular basis will be discussed. The coef-
ficients for the van der Waals interaction were computed by
evaluating the sum over intermediate states with a pseudostate
expansion [16,26].

A. The multipole expansion

The dispersion interaction operator in the asymptotic region
R � 1 a0 (a0 is the Bohr radius) may be presented in the form
of an expansion in power series of R−1 [27]:

V (R) =
∞∑

k=1

∞∑
k′=1

vkk′(n̂)

Rk+k′+1
, (2)

where
vkk′(n̂) = (−1)k

′
Gkk′K (CK (n̂) · [Qk(σ ) × Qk′

(ρ)]K ). (3)

The coefficient Gkk′K is

Gkk′K =
[

(2K)!

(2k)!(2k′)!

]1/2

, (4)

where K = k + k′, Qk(σ ) = ∑
i σ

k
i Ck(σ̂ i), and Qk(ρ) =∑

j ρk
j Ck(ρ̂j ) are the operator of atomic 2k-pole electric mo-

ments for atoms (A) and (B), respectively, and the summation
is from 1 to the number of electrons of each atom. The
unit vector n̂ = R/R points from the first atom (A) to the
second atom (B). The Ck(σ̂ i) and Ck(ρ̂j ) are the spherical
tensors [28] of angular variables of the ith or j th electron’s
position vector σ i = {σi,θi,ϕi} and ρj = {ρj ,θj ,ϕj } of atoms
(A) and (B), correspondingly. CK (n̂) is the interatomic unit
vector n̂. Defining the quantization axis in the n̂ direction
simplifies Eq. (3) to

vkk′(n̂)= (−1)k
′
Gkk′K [Qk(σ ) × Qk′

(ρ)]K0

= (−1)k
′
Gkk′K

∑
μ

〈k −μk′μ|K0〉Qk
−μ(σ )Qk′

μ (ρ). (5)

B. The uncoupled general third-order matrix element

In atomic representation, the initial state for the A-B system
is generally written as the product states of atoms A and B,

�(0)(M) = �A(σ )�B(ρ) = |nalamanblbmb〉, (6)

with initial energy E(0)
nanb

= Ena
+ Enb

and M = ma + mb. The
electron-electron operator, Eq. (2), conserves M =ma+mb but
not the individual ma and mb.

According to perturbation theory, the third-order energy
correction �E(3) is written as

�E(3) =
∑
ncnd

′ ∑
nenf

′ A1(
Encnd

− E
(0)
nanb

)(
Enenf

− E
(0)
nanb

)
−�E(1)

∑
ncnd

′ A2(
Encnd

− E
(0)
nanb

)2 , (7)

where �E(1) is the first-order energy correction. In the atomic
representation, it can be expressed as

�E(1) =
∑
kk′μ

(−1)k+la−ma+lb−mb
Gkk′K

RK+1

(
la k la

−ma −μ m′
a

)

×
(

lb k′ lb

−mb μ m′
b

)(
k k′ K

−μ μ 0

)
T k

aaT k′
bb , (8)

where T k
aa and T k′

bb are the reduced matrix elements, which
comply with the style of the following formulas:

T k
uv = 〈nulu‖

∑
i

σ k
i Ck(σ̂ i)‖nvlv〉 (u,v = a,c,e), (9)

T k
uv = 〈nulu‖

∑
j

σ k
j Ck(ρ̂j )‖nvlv〉 (u,v = b,d,f ). (10)

In Eq. (7), A1 and A2 are

A1 =
∑
mcmd

∑
memf

〈�(0)(M)|V (R)|nclcmcndldmd〉

× 〈nclcmcndldmd |V (R)|nelemenf lf mf 〉
× 〈nelemenf lf mf |V (R)|�(0)(M)〉, (11)

A2 =
∑
mcmd

〈�(0)(M)|V (R)|nclcmcndldmd〉

× 〈nclcmcndldmd |V (R)|�(0)(M)〉, (12)

where |nclcmcndldmd〉 and |nelemenf lf mf 〉 are two interme-
diate states with the energy eigenvalue Encnd

= Enc
+ End

and
Enenf

= Ene
+ Enf

, respectively. The prime in the summation
of Eq. (7) indicates that the terms with Encnd

= E(0)
nanb

and
Enenf

= E(0)
nanb

should be excluded. Using Eqs. (2)–(6) one
obtains

A1 =
∑
k1k

′
1

∑
k2k

′
2

∑
k3k

′
3

(−1)k1+k2+k3
Gk1k

′
1K1Gk2k

′
2K2Gk3k

′
3K3

RK1+K2+K3+3

×U1T k1
ac T k2

ce T k3
ea T

k′
1

bd T
k′

2
df T

k′
3

f b, (13)

A2 =
∑
k1k

′
1

∑
k2k

′
2

(−1)k1+k2
Gk1k

′
1K1Gk2k

′
2K2

RK1+K2+2
U2T k1

ac T k2
ac T

k′
1

bd T
k′

2
bd ,

(14)

where Ki = ki + k′
i (i = 1,2,3), and U1 and U2 are

U1 =
∑

μ1μ2μ3

∑
mcmd

∑
memf

F1

(
k1 k′

1 K1

−μ1 μ1 0

) (
k2 k′

2 K2

−μ2 μ2 0

) (
k3 k′

3 K3

−μ3 μ3 0

) (
la k1 lc

−ma −μ1 mc

)

×
(

lb k′
1 ld

−mb μ1 md

) (
lc k2 le

−mc −μ2 me

) (
ld k′

2 lf

−md μ2 mf

)(
le k3 la

−me −μ3 m′
a

)(
lf k′

3 lb

−mf μ3 m′
b

)
, (15)
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with the phase factor F1 = (−1)la−ma+lb−mb+lc−mc+ld−md+le−me+lf −mf .

U2 =
∑
μ1μ2

∑
mcmd

(
la k1 lc

−ma −μ1 mc

)(
lb k′

1 ld

−mb μ1 md

) (
lc k2 la

−mc −μ2 m′
a

)(
ld k′

2 lb

−md μ2 m′
b

)

×
(

k1 k′
1 K1

−μ1 μ1 0

)(
k2 k′

2 K2

−μ2 μ2 0

)
. (16)

During the analysis it was noted that some (−1)k phase
factors in Eqs. (13) and (14) were omitted during the algebraic
development of the general expressions for the second-order
dispersion interaction presented in [29,30]. For example, the
first phase factor of Eqs. (13) and (14) in [29] should be
(−1)k1+1+k2 , not (−1)k

′
1+1+k′

2 . No impacts on the numerical
values presented in those papers have been detected. The
long-range interaction coefficients arising due to first-order
effects are not affected since these always involve even
multipoles of the spherical tensor. The second-order energy
expressions involve two occurrences of the operator, vkk′(n̂),
and this also tends to cause phase errors to cancel.

Finally, in Eq. (8), let k → k3, k′ → k′
3, and K → K3,

Substituting Eqs. (8), (13), and (14) into Eq. (7), one then
obtains the third-order energy

�E(3) =
∑
n�3

K1+K2+K3=2n

C2n+3(M)

R2n+3
. (17)

In the above, C2n+3(M) are the third-order dispersion coeffi-
cients,

C2n+3(M) =
∑
ncnd

′ ∑
nenf

′ (−1)k1+k2+k3Gk1k
′
1K1Gk2k

′
2K2Gk3k

′
3K3(

Encnd
− E

(0)
nanb

)(
Enenf

− E
(0)
nanb

)
×F1U1T k1

ac T k2
ce T k3

ea T
k′

1
bd T

k′
2

df T
k′

3
f b

−
∑
ncnd

′ (−1)k1+k2+k3Gk1k
′
1K1Gk2k

′
2K2(

Encnd
− E

(0)
nanb

)2

×F2U2
′T k1

ac T k2
ac T k3

aa T
k′

1
bd T

k′
2

bd T
k′

3
bb , (18)

where F2 and U2
′ are

F2 = (−1)la−ma+lb−mb , (19)

U2
′ =

∑
μ

(
la k3 la

−ma −μ m′
a

) (
lb k′

3 lb

−mb μ m′
b

)

×
(

k3 k′
3 K3

−μ μ 0

)
U2. (20)

C. The coupled third-order matrix element

In the molecular representation, the initial state is written
as the coupled state, that is,

�(0)(LM) = |nalanblbLM〉
=

∑
mamb

〈lamalbmb|LM〉|nalamanblbmb〉

=
∑
mamb

(−1)la−lb−ML̂

(
la lb L

ma mb −M

)

× |nalamanblbmb〉, (21)

with L̂ = √
2L + 1. According to perturbation theory, the

third-order energy correction is

�E(3) =
∑
ncnd

′ ∑
nenf

′ B1(
Encnd

− E
(0)
nanb

)(
Enenf

− E
(0)
nanb

)
−�E(1)

∑
ncnd

′ B2(
Encnd

− E
(0)
nanb

)2 , (22)

where �E(1) is the first-order energy correction, whose
expression in the molecular representation is

�E(1) =
∑
kk′

(−1)L−M+k L̂L̂′Gkk′K

RK+1

(
L K L′

−M 0 M

)

×

⎧⎪⎨
⎪⎩

la lb L

la lb L′

k k′ K

⎫⎪⎬
⎪⎭ T k

aaT k′
bb . (23)

In Eq. (22), B1 and B2 are

B1 =
∑
L1L2

∑
M1M2

〈�(0)(LM)|V (R)|nclcnd ldL1M1〉

× 〈nclcnd ldL1M1|V (R)|nelenf lf L2M2〉
× 〈nelenf lf L2M2|V (R)|�(0)(L′M)〉, (24)

B2 =
∑
mcmd

〈�(0)(LM)|V (R)|nclcnd ldL1M1〉

× 〈nclcnd ldL1M1|V (R)|�(0)(L′M)〉. (25)

Using Eqs. (2) and (21), together with the Wigner-Eckart
theorem, B1 can be expanded as

B1 =
∑
L1L2

∑
k1k

′
1

∑
k2k

′
2

∑
k3k

′
3

(−1)k1+k2+k3
L̂L̂′L̂2

1L̂
2
2

RK1+K2+K3+3

×Gk1k
′
1K1Gk2k

′
2K2Gk3k

′
3K3U3T k1

ac T k2
ce T k3

ea T
k′

1
bd T

k′
2

df T
k′

3
f b.

(26)
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Using the graphical methods [31], the factorU3, which contains
all the 3j symbols, can be reduced to

U3 =
∑
X

X̂2(−1)la+lb+le+lf +L+L2

(
K2 X K3

0 0 0

)

×
(

L1 X L′

M 0 −M

)(
L1 K1 L

M 0 −M

) {
L K3 L2

K2 L1 X

}

×

⎧⎪⎨
⎪⎩

la lb L

lc ld L1

k1 k′
1 K1

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

lc ld L1

le lf L2

k2 k′
2 K2

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

la lb L

le lf L2

k3 k′
3 K3

⎫⎪⎬
⎪⎭ .

(27)

Substituting Eq. (27) into Eq. (26) gives rise to the final
expression for B1,

B1 =
∑
X

(−1)L+L2

(
K2 X K3

0 0 0

) (
L1 X L′

M 0 −M

)
DX,

(28)

where DX is

DX =
∑
L1L2

∑
k1k

′
1

∑
k2k

′
2

∑
k3k

′
3

(−1)k1+k2+k3+la+lb+le+lf
L̂L̂′L̂2

1L̂
2
2X̂

2

RK1+K2+K3+3

×Gk1k
′
1K1Gk2k

′
2K2Gk3k

′
3K3T k1

ac T k2
ce T k3

ea

×T
k′

1
bdT

k′
2

df T
k′

3
f b

(
L1 K1 L

M 0 −M

) {
L K3 L2

K2 L1 X

}

×

⎧⎪⎨
⎪⎩

la lb L

lc ld L1

k1 k′
1 K1

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

lc ld L1

le lf L2

k2 k′
2 K2

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

la lb L

le lf L2

k3 k′
3 K3

⎫⎪⎬
⎪⎭ .

(29)

Performing a similar procedure for the B2 of Eq. (25), we
have

B2 =
∑
X

(−1)L
′−M

(
L X L′

−M 0 M

)
WX, (30)

with WX being

WX = −
∑
k1k

′
1

∑
k2k

′
2

∑
L1

(−1)k1+k2+la+lb+lc+ld
L̂L̂′L̂2

1X̂
2

RK1+K2+2
Gk1k

′
1K1

×Gk2k
′
2K2T k1

ac T k2
ac T

k′
1

bd T
k′

2
bd

(
k1 k2 X

0 0 0

)

×
{

L K1 L1

K2 L′ X

}⎧⎪⎨
⎪⎩

la lb L

lc ld L1

k1 k′
1 K1

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

lc ld L1

la lb L′

k2 k′
2 K2

⎫⎪⎬
⎪⎭ .

(31)

In Eq. (23) of �E(1), making k → k3 and k′ → k′
3,

combined with Eqs. (22), (28), and (30), the third-order energy
correction can finally be written as a sum of powers of 1/R in
the molecular representation,

�E(3) =
∑
n�3

K1+K2+K3=2n

C2n+3(L,M)

R2n+3
, (32)

where C2n+3(L,M) are the dispersion coefficients,

C2n+3(L,M)

=
∑
ncnd

′ ∑
nenf

′ ∑
L1L2X

(−1)L+L2+k1+k2+k3L̂L̂′L̂2
1L̂

2
2X̂

2(
Encnd

− E
(0)
nanb

)(
Enenf

− E
(0)
nanb

)D′
X

−
∑
ncnd

′ ∑
L1X

(−1)L+L′+k1+k2+k3L̂2L̂′2L̂2
1X̂

2(
Encnd

− E
(0)
nanb

)2 W ′
X, (33)

where D′
X and W ′

X are

D′
X = (−1)la+lb+le+lf Gk1k

′
1K1Gk2k

′
2K2Gk3k

′
3K3T k1

ac T k2
ce T k3

ea T
k′

1
bd T

k′
2

df T
k′

3
f b

(
K2 X K3

0 0 0

)(
L1 X L′

M 0 −M

)

×
(

L1 K1 L

M 0 −M

) {
L K3 L2

K2 L1 X

} ⎧⎪⎨
⎪⎩

la lb L

lc ld L1

k1 k′
1 K1

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

lc ld L1

le lf L2

k2 k′
2 K2

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

la lb L

le lf L2

k3 k′
3 K3

⎫⎪⎬
⎪⎭ ,

(34)

W ′
X = (−1)1+la+lb+lc+ld Gk1k

′
1K1Gk2k

′
2K2Gk3k

′
3K3T k1

ac T k2
ac T k3

aa T
k′

1
bd T

k′
2

bd T
k′

3
bb

(
L K L′

−M 0 M

)

×
(

L X L′

−M 0 M

)(
k1 k2 X

0 0 0

){
L K1 L1

K2 L′ X

}⎧⎪⎨
⎪⎩

la lb L

lc ld L1

k1 k′
1 K1

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

lc ld L1

la lb L′

k2 k′
2 K2

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

la lb L

la lb L′

k3 k′
3 K3

⎫⎪⎬
⎪⎭ . (35)
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D. Molecular representation for homonuclear dimers

For two atoms A and B, the zeroth-order wave function for
the combined system A-B, in a state with angular momentum
la and lb, and the total magnetic quantum number M , can be
written most generally in the form

�(0)(na,nb,M) =
la∑

ma=−la

lb∑
mb=−lb

δma+mb,MCma,mb

×� (nalamanblbmb,M), (36)

where �na
has an energy eigenvalue of Ena

, �nb
has an energy

eigenvalue of Enb
, and the expansion coefficients are Cma,mb

.
The evaluation of the third-order van der Waals coefficients is
confined to two cases in the present work. When both atoms
are in an S state and na = nb, one can simply write

�(0)(na,nb) = �(na,ma = 0,nb,mb = 0,M = 0). (37)

The van der Waals interaction is the same in the atomic and
molecular representations. The second case is when two like
atoms have la = 0 and lb > 0. When one of the atoms (A) is in
an S state and the other is in a different state, one has mb = M

and the zeroth-order wave function is

�(0)(na,nb,M) = [�(na0nbM,M) + β�(nbMna0,M)]/
√

2.

(38)

The factor β = ±1 can be related to the fundamental sym-
metries of the states by β = (−1)la+lb (−1)Sp, where S is the
total spin and p = +1 for even (g) and p = −1 for odd (u)
molecular states. Consider an alkali-metal dimer dissociating
into X(ns)-X(np) states. The 1�+

u state has β = +1, while the
1�+

g state has β = −1. The van der Waals interaction in the
molecular representation leads to what can be called the direct
and interchange contributions to the matrix elements, e.g.,

V (3) = [〈na0nbM,M|V |na0nbM,M〉
+β〈na0nbM,M|V |nbMna0,M〉]/2. (39)

E. The C9 term for the homonuclear case

For heteronuclear molecules the first term in the third-order
dispersion interaction is the C11/R

11 interaction. This term is
well known [18–21]. Homonuclear molecules allow for the
possibility of a C9/R

9 interaction when the two asymptotic
atomic states are connected by a dipole transition. This term
arises from the excitation transfer between the two identical
atoms. The excitation transfer can lead to a first-order dipole
interaction with the form C3/R

3 which is sometimes called the
resonant van der Waals interaction [30,32]. The interchange
matrix element for the case of la = 0 and lb > 0 is written

V (3) = β〈na0nbM,M|V |nbMna0,M〉. (40)

III. STRUCTURE CALCULATIONS

A. Hamiltonian and Hylleraas coordinates

The He and Li atoms are three- and four-body Coulomb
systems. Since the Hylleraas method for computing the He and
Li wave functions is quite similar, only the Li case is discussed.

Treating the nuclear mass as infinite, the nonrelativistic
Hamiltonian for Li can be written

H0 = −
3∑

i=1

1

2
∇2

i −
3∑

i=1

Z

ri

+
3∑

i>j�1

1

rij

, (41)

where rij = |ri − rj | is the distance between electrons i and
j , and Z is the nuclear charge. In our calculation the wave
functions are expanded in terms of the explicitly correlated
basis set in Hylleraas coordinates,

φ(r1,r2,r3) = r
j1
1 r

j2
2 r

j3
3 r

j12
12 r

j23
23 r

j31
31 e−αr1−βr2−γ r3

×YLML

(�1�2)�12,�3
(r̂1,r̂2,r̂3)χ (1,2,3), (42)

where YLML

(�1�2)�12,�3
(r̂1,r̂2,r̂3) is the vector-coupled product of

spherical harmonics to form an eigenstate of total angular
momentum L and component ML,

YLML

(�1�2)�12,�3
(r̂1,r̂2,r̂3) =

∑
all mi

〈�1m1�2m2|�12m12〉

×〈�12m12�3m3|LML〉Y�1m1 (r̂1)

×Y�2m2 (r̂2)Y�3m3 (r̂3), (43)

and χ (1,2,3) is the three-electron spin-1/2 wave function.
The variational wave function is a linear combination of
antisymmetrized basis functions φ. With some truncations
to avoid potential numerical linear dependence, all terms in
Eq. (42) are included such that

j1 + j2 + j3 + j12 + j23 + j31 � �, (44)

where � is an integer. The computational details for eval-
uating the necessary Hamiltonian matrix elements can be
found in [33]. The convergence for the energies and other
expectation values is studied by increasing � progressively.
The basis sets are essentially the same as the two earlier
Hylleraas calculations of the static polarizabilities [34,35].
The uncertainty in the final value of any quantity is usually
estimated to be equal to the size of the extrapolation from the
largest explicit calculation.

It should be noted that Hylleraas calculations for He and
Li of finite nuclear masses have been performed recently [34].
However, there is a tendency for finite nuclear mass effects to
lead to ground-state polarizabilities and dispersion coefficients
to increase in size. On the other hand, relativistic effects cause
the polarizabilities and dispersion coefficients to decrease in
size [15]. The two effects tend to almost cancel each other in
Li. Accordingly, we only present results for infinite nuclear
masses in this paper, otherwise it would be questionable
whether the use of a finite nuclear mass Hamiltonian would
produce numerical values which are closer to the true values.

B. The semiempirical approach

The transition arrays for the alkali-metal atoms are those
which were used in calculations of the dispersion interactions
between these atoms and the ground states of hydrogen and
helium [29]. These are computed by diagonalizing the fixed
core Hamiltonian in a large basis of Laguerre-type orbitals.
The core Hamiltonian is based upon a Hartree-Fock (HF)
description of the core with a semiempirical core-polarization
potential tuned to reproduce the energies of a low-lying
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spectrum. This approach to the determination of atomic
structure is referred to as the configuration-interaction plus
core-polarization (CICP) method in the remainder of this
paper.

The effective Hamiltonian for the active electron is written

H = − 1
2∇2 + Vdir(r) + Vexc(r) + Vp1(r), (45)

where the direct Vdir(r) and the exchange Vexc(r) interactions of
the valence electron with the HF core are calculated exactly and
the �-dependent polarization potential Vp1(r) is semiempirical
in nature with the functional form

Vp1(r) = −
∑
�m

αcoreg
2
� (r)

2r4
|�m〉〈�m|. (46)

In the above, the coefficient αcore is the static dipole
polarizability of the core and g2

� (r) = 1 − exp(−r6/ρ6
� ) is a

cutoff function designed to make the polarization potential
finite at the origin. In these calculations, the cutoff parameters
ρ� are tuned to reproduce the binding energies of the low-lying
states. All the reduced transition matrix elements needed for
the Cn sums are computed with multipole operators modified
with core-polarization corrections [26,36,37].

IV. RESULTS FOR SPECIFIC MOLECULES

A. Hydrogen

The first test calculations are for the third-order C11,13,15

coefficients of the H(1s)-H(1s) dimer. A number of highly
accurate results for these coefficients exist in the literature
[18–21]. Our calculations using the formulas presented
here give rise to C11 = −3474.898 038 a.u., C13 =
−3.269 869 240 × 105 a.u., and C15 = −2.839 558 063 × 107

a.u. These are in perfect agreement with the previously
reported values [18,19].

B. Helium

1. The ground-state dimer

The convergence of C11 and C13 for the ground-state helium
dimer is tabulated in Table I. The only values available for
comparison are those of Przybytek [22–24]. The better than
0.1% agreement with the Przybytek C11 and C13 calculations
validates the analytic expressions developed for the evaluation
of C11 and C13. The present values of C11 and C13 are
converged to six and seven significant digits.

TABLE I. Convergence of the C11 and C13 coefficients for the
He(1 1Se)-He(1 1Se) dimer. The number of s-, p-, d-, and f -type
states in the Hylleraas basis are given in the (NS,NP ,ND,NF ) column.

(NS,NP ,ND,NF ) C11 C13

(68,70,53,60) −76.734140 −3808.62838
(140,168,146,105) −76.725890 −3808.32822
(250,330,310,252) −76.725730 −3808.32604
(406,440,425,360) −76.725724 −3808.32592
Extrapolated −76.72571(1) −3808.3254(5)
Przybytek [22–24] −76.74(4) −3806(1)

TABLE II. Convergence of the Hylleraas calculations of C9 for
the He(1 1Se)-He(2 1P o) and He(2 1Se)-He(2 1P o) combinations.
Values are given for β = 1. Values for β = −1 can be obtained by
multiplying C9 by −1.

(NS ,NP ,NP ′ ,ND) Mb = 0 Mb = ±1

He(1 1Se)-He(2 1P o)
(68,70,44,53) −270.7714 76.59798
(100,112,68,92) −271.2254 76.74983
(140,168,100,146) −271.2281 76.75505
(190,240,140,218) −271.2257 76.74236
(250,330,190,310) −271.2449 76.76323
Extrapolated −271.25(1) 76.764(1)
Zhang et al. [38] −271.24449(2) 76.76195(2)

He(2 1Se)-He(2 1P o)
(68,70,44,53) 1.716995 × 106 −3.654470 × 105

(100,112,68,92) 1.719162 × 106 −3.660414 × 105

(140,168,100,146) 1.719227 × 106 −3.661189 × 105

(190,240,140,218) 1.719528 × 106 −3.658259 × 105

(250,330,190,310) 1.719885 × 106 −3.662254 × 105

Extrapolated 1.7199(1) × 106 −3.6623(1) × 105

Zhang et al. [38] 1.719978(5) × 106 −3.662611(5) × 105

2. C9 values for dimers with one atom in an excited state

Tables II and III present C9 for helium dimers with one
atom in a dipole excited state. The calculation of C9 includes
contributions from unnatural parity states which are not present
in the calculation of C11 for the ground-state dimer. The
Hylleraas calculations of C9 have been previously reported
by atoms by Zhang et al. [14,38] and the current values were
mainly computed as a validation exercise since the values of
Zhang et al. were obtained using larger Hylleraas basis sets
and are therefore more precise. The present values of C9 are
consistent with those of Zhang et al. [14,38].

V. THE LITHIUM DIMER

A. The ground-state dimer

Table IV presents a convergence study for C11 and C13

of the ground-state Li dimer. The convergence is slower than
the He ground-state dimer, where C11 is converged only to
four significant digits. The difference between the CICP and
Hylleraas values of C11 is less than 0.2%. The CICP calculation
did not include any contributions from the core.

TABLE III. Convergence of the Hylleraas calculations of 10−5C9

for the He(2 3Se)-He(2 3P o) combinations. Values are given for β =
1. Values for β = −1 can be obtained by multiplying C9 by −1.

(NS ,NP ,NP ′ ,ND) Mb = 0 Mb = ±1

(44,70,70,44) 5.110069 −1.168104
(100,112,100,119) 5.118769 −1.170238
(190,240,190,262) 5.119765 −1.170506
(322,330,322,364) 5.120391 −1.170679
(406,440,504,490) 5.120544 −1.170722
Extrapolated 5.12058(4) −1.17073(1)
Zhang et al. [14] 5.12059227(6) −1.17073536(2)
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TABLE IV. Convergence of the C11 and C13 coefficients for the
Li(2s)-Li(2s) dimer. The number of s-, p-, d-, and f -type states in
the Hylleraas basis are given in the (NS,NP ,ND,NF ) column.

(NS,NP ,ND,NF ) C11 C13

(120,55,55,52) −40.407906 × 106 −1.100112 × 1010

(256,138,138,132) −40.382372 × 106 −1.102884 × 1010

(502,306,306,302) −40.389347 × 106 −1.103513 × 1010

(918,622,622,636) −40.388211 × 106 −1.103784 × 1010

Extrapolated −40.386(2) × 106 −1.1039(2) × 1010

CICP [39] −40.44 × 106 −1.105 × 1010

B. The Li(2s)-Li(2 p) case

The convergence of C9 for the Li(2s)-Li(2p) dimer using
the Hylleraas calculation is listed in Table V. However, the
convergence of C11 is slow and no rigorous estimate of the
uncertainty is available (see Table VI). Comparisons for C3,
C9, and C11 between the Hylleraas and CICP calculations are
made in Table VI. The agreement between the Hylleraas and
CICP calculations is better than 1%. The CICP calculation
does not include any contribution involving core excitations.

The relative importance of the C9 coefficient can be
estimated by comparison with the C8 and C10 coefficients. The
C8 coefficients are 9.908 95(5) × 105 and 0.485 648(5) × 105

for the � and � states with β = −1 [34]. The C10 coefficients
are 1.2113 × 108 and 9.1839 × 105 for the � and � states with
β = −1 [40]. The C8 coefficients are 2.740 79(2) × 105 and
1.030 44(2) × 105 for the � and � states with β = +1 [34].
The C10 coefficients are 3.0096 × 108 and 8.9295 × 105 for
the � and � states with β = +1 [40]. The third-order C9

coefficients are roughly the same size as the second-order C8

coefficients.
The C9 coefficients have potential applications in the

analysis of photoassociation spectra for homonuclear dimers
[2,4,8]. The C3 and C9 values for a given molecular state will
typically have the same sign (see Table VI). Omission of the
C9 dispersion interaction from the analysis of the photoasso-
ciation spectrum could potentially lead to the analysis having
an inherent tendency to overestimate the magnitude of C3 and
thus the transition rate.

At present, the most precise atomic transition rate ever
measured is that of the Li(2s)-Li(2p1/2) transition, namely,
C3 = 11.002 41(23) [8]. This value was derived from the
A(1�+

u ) state (β = 1) of the 7Li dimer. This transition rate
is about 0.016% larger than the best theoretical estimate

TABLE V. Convergence of C9 for the Li(2s)-Li(2p) dimer using
Hylleraas basis sets. Values are given for β = 1. Values for β = −1
can be obtained by multiplying C9 by −1.

(NS ,NP ,NP ′ ,ND) 10−5C9 (Mb = ±1) 10−5C9 (Mb = 0)

(120,55,36,55) −0.516749 2.296186
(256,138,108,138) −0.516610 2.288464
(502,306,264,306) −0.516932 2.287301
(918,622,568,622) −0.517170 2.287505
(1589,1174,1106,1174) −0.517255 2.287809
Extrapolated −0.5173(1) 2.2880(2)
CICP −0.5152 2.279

TABLE VI. C3, C9, and C11 for X(ns)-X(np) homonuclear
alkali-metal dimers. These coefficients were computed using the
CICP matrix elements, except for the first four rows where the
Hylleraas matrix elements were used.

Molecule β C3 C9 × 10−5 C11 × 10−7

Hylleraas
Li � 1 11.0007 [15] 2.2880(2) −5.930

−1 −11.0007 [15] −2.2880(2) −50.321
Li � 1 −5.5004 [15] −0.5173(1) −9.924

−1 5.5004 [15] 0.5173(1) 2.652
CICP

Li � 1 11.008 2.279 −5.976
−1 −11.004 −2.279 −50.32

Li � 1 −5.504 −0.5152 −9.925
−1 5.504 0.5152 2.640

Na � 1 12.44 2.839 −30.27
−1 −12.44 −2.839 −147.0

Na � 1 −6.221 −0.5993 −28.64
−1 6.221 0.5993 4.772

K � 1 16.82 13.05 −132.1
−1 −16.82 −13.05 −7.325

K � 1 −8.412 −2.318 −143.2
−1 8.412 2.318 27.42

Rb � 1 17.73 19.72 −224.2
−1 −17.73 −19.72 −121.1

Rb � 1 −8.864 −3.552 −235.8
−1 8.864 3.552 42.27

Cs � 1 19.91 35.00 −520.9
−1 −19.91 −35.00 −255.1

Cs � 1 −9.955 −53.23 −494.7
−1 9.955 53.23 802.6

of C3 = 11.0007 using Hylleraas wave functions [15]. The
Hylleraas estimate of C3 = 11.0007 was made for 7Li and
incorporated an estimate of the relativistic correction. The
experimental analyses use rovibrational data that sample the
potential out to an internuclear separation of about 170a0.
The interatomic potential can be described by a
purely dispersive form past about 25a0 [41]. At this
separation, the size of the C9 to C3 potential ratio is
2.2 × 105/(11 × 256) = 0.000 082. The magnitude of this
ratio is about the same size as the relative uncertainty in the
experimental value of C3. However, the ratio of the C9 to C8

interaction is 0.034 at 25a0. Formal considerations suggest
the third-order C9 interaction should probably be included
in an attempt to construct the potential of the A(1�+

u ) state.
However, it would appear that the inclusion of the C9 term
in the potential would change the values of C3 by an amount
that would be less than the quoted uncertainty and is therefore
unlikely to resolve the current discrepancy between the best
experimental and theoretical values of C3.

C. The heavier alkali-metal atoms

Table VI shows C9 and C11 for the heavier alkali-metal
atoms computed with CICP wave functions. For all the dimers
from Li to Rb it is seen that the magnitude of C9 is larger
for the � state than for the � state. Core excitations were
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not included in the calculations. Calculations of the C6 values
for the homonuclear alkali-metal dimers show that the core
contributions are less than 1% for Li and 12% for Rb [26].

Table VI also includes values of C9 and C11 for Cs. These
values were computed with a nonrelativistic structure model
designed along the same lines as the CICP models for Li to Rb
[26]. This model results in 397.5 for the polarizability and 6732
for the ground-state C6 value. More sophisticated calculations
based on relativistic perturbation theory give 398.4(7) [42] for
the polarizability and 6851 for C6 [43,44]. The large spin-orbit
splitting for the 6p levels is of course omitted from the present
calculations. We would estimate an uncertainty in the present
C9 and C11 values of about 20%. The estimated C6 values for
the 6s-6p asymptotic state are 18 323 for the state with M = 0
and 12 342 for the state with M = 1.

Table VI shows that the relative importance of C9 with
respect to C3 increases as the alkali-metal atoms increase in
size. Most analyses of molecular spectra that take long-range
dispersion forces into account typically include C6, C8, and
C10. Therefore it would seem reasonable that the C9 coefficient
should be included as a matter of course in any analysis of
photoassociation spectra aimed at deriving a value for the the
C3 parameter.

The C10 and C11 coefficients for lithium are roughly equal
in magnitude. For example, the β = 1 �-state values of C10

and C11 are 3.01 × 107 [40] and −5.929 × 107, respectively.
The third-order C11 dispersion interaction would be an order
of magnitude smaller than the C10 term of the second-order
dispersion interaction at an internuclear distance of 25a0.

VI. SUMMARY

In this paper, the general matrix elements for the third-order
dispersion interaction between two atoms have been derived
and calculations performed for the hydrogen and helium
dimers, and for the alkali-metal atom dimers. The third-order
dispersion coefficients have been computed previously for
hydrogen and helium dimers [14,18,19,38]. Perfect agreement
has been achieved with the earlier calculations of C11 for the
ground-state hydrogen dimer. For helium dimers with one atom
in a dipole excited state, the agreement of C9 with the previous
calculations [14,38] has indicated the algebraic correctness of
our derivations. For the ground-state helium dimer, improved
results have also been obtained for C11 and C13.

The C9 dispersion coefficients occur in the interaction
potentials for homonuclear dimers when one of the atoms
is in a dipole excited state. The C9:C3 ratio increases for
the heavier alkali-metal dimers. This term has potential
application in the analysis of photoassociation spectra for
homonuclear dimers [2,4,8].

At the present time, the best theoretical estimate of the
Li(2s)-Li(2p) transition rate [15] is incompatible with an
analysis of the potential curves asymptoting to the Li(2s)-
Li(2p) state [8]. While the discrepancy is only 0.016%, it is
larger than the theoretical and experimental error limits. This

discrepancy is highly significant and should be taken very
seriously since the Hylleraas calculation [15] represents the
theoretical state of the art and the analysis of the Li(2s)-Li(2p)
potential curve likewise represents a landmark in diatomic
spectral analysis [8].

This discrepancy has relevance to cold-atom physics and
the new generation of optical frequency atomic clocks. The
blackbody radiation shift is looming as the potential source
of the largest systematic error [45–49]. It is possible to
compensate for this error if the polarizabilities of the two states
in the clock transition are known. One way the polarizabilities
can be determined is to measure polarizability ratios of two
atoms in an atom interferometer [50]. This requires that the
polarizability of one atom be known to high precision so
it can serve as a reference standard. From the theoretical
perspective the lithium atom is the preferred atom to serve
as such a standard [49]. The current conflict between the most
precise theoretical and experimental estimates of the resonance
lifetimes limits the accuracy of any working polarizability
standard based on 7Li.

Inclusion of the C9 interaction will probably have only
a very small impact on the value of the Li C3 determined
from a potential fit to the photoassociation data. It could
be more important for the heavier alkali-metal atoms, which
do not have spectroscopic data going out to the very large
internuclear separations as occurs for the Li dimer. However,
the wealth of spectroscopic data available from high-precision
photoassociation experiments does raise the possibility of
determining atomic lifetimes with a precision superior to
0.01%. The potential analysis required will need to account
for a number of small corrections, possibly including magnetic
interactions, finite mass effects, spin-orbit, retardation, and
other effects. The relative importance of all these terms
will need to be determined by systematic computational
investigation as a necessary prelude. As part of any effort
to achieve C3 precisions significantly better than 0.01% it will
be necessary to include the C9/R

9 potential in the analysis just
as current analyses of diatomic spectra aiming at determining
dissociation energies need to include the C6/R

6 potential [51].
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