
PHYSICAL REVIEW A 84, 052330 (2011)

Disentanglement in bipartite continuous-variable systems

F. A. S. Barbosa,1 A. J. de Faria,2 A. S. Coelho,1 K. N. Cassemiro,1,3 A. S. Villar,1,3,4 P. Nussenzveig,1 and M. Martinelli1,*

1Instituto de Fı́sica, Universidade de São Paulo, P.O. Box 66318, 05315-970 São Paulo, Brazil
2Instituto de Ciência e Tecnologia, Universidade Federal de Alfenas, 37715-400 Poços de Caldas, MG, Brazil
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Entanglement in bipartite continuous-variable systems is investigated in the presence of partial losses such as
those introduced by a realistic quantum communication channel, e.g., by propagation in an optical fiber. We find
that entanglement can vanish completely for partial losses, in a situation reminiscent of so-called entanglement
sudden death. Even states with extreme squeezing may become separable after propagation in lossy channels.
Having in mind the potential applications of such entangled light beams to optical communications, we investigate
the conditions under which entanglement can survive for all partial losses. Different loss scenarios are examined,
and we derive criteria to test the robustness of entangled states. These criteria are necessary and sufficient for
Gaussian states. Our study provides a framework to investigate the robustness of continuous-variable entanglement
in more complex multipartite systems.
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I. INTRODUCTION

The dynamics of open quantum systems leads, in general,
to a degradation of key quantum features such as coherence
and entanglement. Since entanglement is considered to be an
important resource for applications in quantum information,
its degradation may seriously hinder the envisioned protocols.
Careful analyses of environment-induced loss of entanglement
are thus important steps in quantum information science. In
the discrete-variable scenario, studies of 2-qubit systems have
shown that entanglement can be completely lost after a finite
time of interaction with the environment, an effect now mostly
known as entanglement sudden death (ESD) [1,2]. Quantum
information can also be conveyed, stored, and processed by
continuous-variable (CV) systems. Bright beams of light can
be described by means of CV field quadratures and are natural
conveyors of quantum information. Unavoidable transmission
loss is the fiercest enemy for quantum communications. It has
recently been observed that losses may lead to complete disen-
tanglement in Gaussian CV systems [3,4]. This phenomenon
is a partial-loss analog of the finite-time disentanglement
observed in qubit systems.

The simplest CV systems one can consider are those
described by Gaussian statistics. Gaussian states are indeed
well studied [5] and fairly well characterized. For instance,
there exist necessary and sufficient criteria for Gaussian-state
entanglement of up to 1 × N systems (in which one subsystem
is collectively entangled to N other subsystems) [6,7]. In
spite of all this knowledge, the sensitivity of entanglement to
the interaction with the environment is still not completely
mapped. As experimentally observed by Coelho et al. [3]
and by Barbosa et al. [4], some Gaussian states become
separable for partial losses, while others remain entangled.
What distinguishes one class of states from the other? Are
there only two classes of such states? Is it sufficient to
produce states with a large degree of squeezing in order to
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avoid disentanglement? Is there any strategy involving local
operations to protect states against disentanglement?

In this paper, we extend the treatment of Ref. [4] and provide
answers to some of these questions. We theoretically analyze
the conditions leading to CV disentanglement in the simplest
case of bipartite systems. In the framework of open-system
dynamics, the effect of a lossy channel (without any added
noise) is equivalent to the interaction with a reservoir at
zero temperature. The property of entanglement resilience
to losses will be referred to as “robustness.” Entanglement
robustness is assessed by entanglement criteria previously
derived by other authors. For general CV states, these criteria
provide sufficient conditions for the robustness of bipartite
systems. Necessary and sufficient entanglement criteria for
Gaussian states lead to necessary and sufficient conditions for
entanglement robustness upon propagation in lossy channels.
Entanglement of CV Gaussian states may be created by a
number of different strategies such as, for instance, passive
operations on initially squeezed states [8]. We shall not discuss
these in detail here, but take for granted initially entangled
states.

A thorough investigation reveals the possibility of distinct
entanglement dynamics as losses are imposed on the subsys-
tems. We consider realistic scenarios, as depicted in Fig. 1. A
bipartite entangled state is the quantum resource of interest. It
can be distributed to two parties who wish to communicate,
as in Fig. 1(a), in a scenario that we refer to as a dual-channel
communication scheme. Another possibility would be that
one of the parties holds the quantum-state generator and
only one mode needs to propagate through a lossy quantum
channel, as in Fig. 1(b). We refer to this situation as a
single-channel scheme. One could surmise that, in principle, it
is equivalent to concentrate losses in a single channel or split
them among two channels. If our channels are optical fibers,
losses increase exponentially with the propagation distance.
Thus, one could think that propagation in a single fiber over a
certain distance would have the same effect as propagation of
both modes, each in one fiber, over half the distance (which
would result in the same overall losses). This is not correct:
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FIG. 1. (Color online) (a) Dual-channel losses: An entangled
quantum state is distributed to two parties, Alice and Bob, over two
lossy quantum channels. (b) Single-channel losses: Alice holds the
quantum-state generator and only distributes one entangled mode to
Bob over a single lossy quantum channel.

for certain states, one could propagate one of the modes over
an infinite distance in a single lossy channel without losing
entanglement, whereas entanglement would disappear after a
finite propagation distance if both modes were to suffer losses.

These different scenarios lead to the introduction of a formal
classification, consisting of three robustness classes. On one
extreme, the entanglement of fully robust states vanishes only
for total attenuation of either beam. On the opposite extreme,
fragile states become separable for partial attenuations on
either beam or a combination of both. An intermediate class
of partially robust states shows either robustness or fragility,
depending on the way losses are introduced. Thus, imposing
losses on one field may be less harmful in a quantum
communication system than distributing both beams over two
lossy channels. Furthermore, we show that even states with
very strong squeezing [e.g., amplitude difference squeezing,
as in twin beams produced by an above-threshold optical
parametric oscillator (OPO)] can disentangle for partial losses.
A moderate excess noise, commonly encountered in existing
experiments, suffices for this. In addition, one could speculate
that pure states would necessarily be robust. We provide an
example of a pure state that disentangles for partial losses as
well.

The paper is organized as follows. In Sec. II, we establish
notation and the basic reservoir model (the environment). In
Sec. III, a sufficient criterion to determine the robustness of
the entangled state is demonstrated. In Sec. IV, we extend the
robustness criterion, resulting in a necessary and sufficient
robustness condition for all Gaussian bipartite states. The
different classes of entanglement robustness against losses in
each channel are defined in Sec. V. In Sec. VI, we examine
particular quantum states commonly treated in the literature.
A final Sec. VII is focused on the main physical results and
implications of our findings.

II. ENTANGLEMENT AND ESD IN LOSSY
GAUSSIAN CHANNELS

The quantum properties of Gaussian states are completely
characterized by the second-order moments of the appropriate
observables. The choice of observables depends on the system
under consideration. In the case of the electromagnetic field,
a complete description can be given in terms of orthogonal
field quadratures. We will consider the amplitude and phase
quadratures, respectively, written as p̂j = (â†

j + âj ) and q̂j =
i(â†

j − âj ) in terms of the field annihilation âj and creation â
†
j

operators. The indices j = 1,2 stand for the two field modes
of our bipartite system. The quadrature operators obey the
commutation relation [p̂j ,q̂j ] = 2i, from which we obtain an
uncertainty product lower bound of one. The standard quantum
limit (SQL) is thus equal to one, representing the noise power
present in the quadrature fluctuations of a coherent state.

It is useful to organize the second-order moments in the
form of a 4 × 4 covariance matrix V . Its entries are the
averages of the symmetric products of quadrature fluctuation
operators

V = 1
2 〈δξ̂δξ̂ T + (δξ̂δξ̂ T )T 〉 , (1)

where ξ̂ = (q̂1,p̂1,q̂2,p̂2)T is the column vector of quadrature
operators, and δξ̂ = ξ̂ − 〈ξ̂ 〉 are the fluctuation operators with
zero average. Similar notation will be valid for the individual
quadratures, e.g., δp̂1. The noise power is proportional to the
variance of the fluctuation, denoted for a given quadrature by
(e.g.) �2p̂1 = 〈(δp̂1)2〉. The Heisenberg uncertainty relation
can be expressed as [6,9]

V + i� � 0,
(2)

� =
[

J 0
0 J

]
and J =

[
0 1

−1 0

]
.

The covariance matrix can be divided in three 2 × 2 subma-
trices, from which two (Aj ) represent the reduced covariance
matrices of the individual subsystems and one (C) expresses
the correlations between the subsystems

V =
(

A1 C

CT A2

)
. (3)

The correlations originate from both classical and quantum
backgrounds, and can not be directly associated to entangle-
ment without considering the properties of each subsystem. As
we will see, the occurrence of ESD is related to the presence
of uncorrelated noise in the system, normally in the form
of unbalanced or insufficient correlations between different
subsystems or quadratures.

For bipartite Gaussian states, there exist necessary and
sufficient entanglement criteria [6,10]. These criteria are the
basis for our assessment of entanglement robustness.

First, we need to adopt a model for the quantum channel.
Here, we consider the realistic case of a lossy bosonic channel,
equivalent to the attenuation of light by random scattering.
Losses are modeled by independent beam splitters placed in
the beam paths. Each beam-splitter transformation combines
one field mode with the vacuum field. In the absence of added
noise, it can be associated to a reservoir at zero temperature.

052330-2



DISENTANGLEMENT IN BIPARTITE CONTINUOUS- . . . PHYSICAL REVIEW A 84, 052330 (2011)

A Gaussian attenuation channel transforms the field opera-
tors according to [11,12]

âj −→ â′
j = √

Tj âj + √
1 − Tj â

(E)
j , (4)

where Tj is the beam-splitter transmittance and â
(E)
j is the

annihilation operator from the environment. It acts on the
covariance matrix as

V ′ = L(V ) = L(V − I )L + I, (5)

where L = diag(
√

T1,
√

T1,
√

T2,
√

T2) is the loss matrix and I

is the 4 × 4 identity matrix.
The question we address here regards the behavior of entan-

glement as the covariance matrix undergoes the transformation
of Eq. (5).

III. DUAN ENTANGLEMENT CRITERION AND
ROBUSTNESS

We direct our attention, in a first moment, to the entan-
glement criterion presented in Ref. [10], here referred to as
the Duan criterion. According to them, a sufficient condition
for the existence of entanglement is obtained by fulfilling the
inequality

WD = �2û + �2v̂ −
(

a2 + 1

a2

)
< 0, (6)

where

û = 1√
2

(
|a|p̂1 − 1

a
p̂2

)
and v̂ = 1√

2

(
|a|q̂1 + 1

a
q̂2

)
.

(7)

The p̂i and q̂i are quadrature operators, obeying the commu-
tation relations stated above, and a is an arbitrary real nonzero
number. The quadrature combinations û and v̂ are collective
operators corresponding to the original example of Einstein,
Podolsky, and Rosen (EPR) [13]. As such, they are called
EPR-type collective operators.

The quantity WD can be viewed as an entanglement witness.
We shall use the symbol W for witnesses in general. The
presence of a given property is signaled by a negative value of
the corresponding witness. As a merely sufficient criterion,
no statement can be made if WD � 0: the state could be
either separable or entangled. Nevertheless, the witness WD is
compelling from a practical point of view because it does not
require full knowledge of the covariance matrix, simplifying
the detection of entanglement in experiments. The downside
is its limited detection ability.

For a = 1, entanglement can be detected by a balanced
beam-splitter transformation of the input fields followed by
a measurement of squeezing in the two output fields [14,15].
Alternatively, one can measure the quadrature variances �2p̂i

and �2q̂i of each field and the cross correlations cp =
〈δp̂1 δp̂2〉 and cq = 〈δq̂1 δq̂2〉. The optimum choice for the
parameter a that minimizes WD is a2 = √

σ2/σ1, where the σj

are given by

σj = �2p̂j + �2q̂j − 2 = trAj − 2. (8)

The sign indeterminacy in a is solved by taking into account the
signs of the quadrature correlations. With these considerations,
one arrives at the minimized form of the Duan criterion

WM = σ1σ2 − (cp − cq)2 < 0. (9)

Equation (9) provides the first insight into the robustness of
bipartite states. The crucial fact to be observed is that the sign
of WM is conserved by attenuations. In fact, using Eq. (5), the
correlations transform as c′

p = √
T1T2 cp and c′

q = √
T1T2 cq ,

while σ ′
j = Tjσj . The attenuation operation factorizes in the

entanglement witness

W ′
M = T1T2WM. (10)

Therefore, an initially entangled state satisfying Eq. (9) will not
disentangle under partial losses. This fact was experimentally
verified by Bowen et al. [16].

Entangled states satisfying the Duan criterion do not
disentangle for partial losses imposed on any mode: they are
fully robust. Among them lie the two-mode squeezed states, a
large class of states for which both EPR-type observables are
squeezed [15,17,18].

Since WM is only a sufficient witness, the existence of robust
states for which WM � 0 can not be excluded. Below, we
demonstrate a necessary and sufficient criterion for robustness
of Gaussian states, effectively determining the boundary
between robust and fragile states.

IV. ENTANGLEMENT ROBUSTNESS: GENERAL
CONDITIONS

In order to obtain clear-cut conditions for the robustness
of entanglement, we must employ a necessary and sufficient
entanglement criterion. By analyzing whether the subsystems
remain entangled or become separable upon attenuation, we
will classify all bipartite Gaussian states.

A. PPT criterion

We find a convenient separability criterion in the require-
ment of positivity under partial transposition (PPT) of the
density matrix for separable states [19,20]. An entangled state,
on the other hand, will necessarily lead to a negative partially
transposed density matrix, which is nonphysical.

The partial transposition (PT) of the density operator
is equivalent in the level of the Wigner function to the
operation of time reversal applied to a single subsystem. On the
covariance matrix level, time reversal is obtained by changing
the sign of the momentum (for harmonic oscillators), or the
sign of the phase quadrature of one mode (for electromagnetic
fields), in this manner affecting the sign of its correlations [6].

Physical validity is assessed using Eq. (2). The uncertainty
relation can be recast into a more explicit form by expressing
it in terms of the determinants of the covariance matrix and its
submatrices as

1 + det V − 2 det C −
∑
i=1,2

det Aj � 0. (11)
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The PT operation modifies the sign of det C, resulting in the
following condition for entanglement [6]:

WPPT = 1 + det V + 2 det C −
∑
i=1,2

det Aj < 0. (12)

Since all separable states fulfill WPPT � 0, WPPT is a sufficient
entanglement witness. For Gaussian states, it is a necessary
witness as well, and the equation WPPT = 0 traces a clear
boundary in the space of bipartite Gaussian states, setting apart
the subspaces of separable and entangled states.

It is convenient to recall here that the purities of Gaussian
states are directly related to the determinant of the covariance
matrices [21]

μ = (det V )−
1
2 , (13)

μj = (det Aj )−
1
2 , (14)

so that the entanglement witness of Eq. (12) involves the total
purity of the systems, the purity of each subsystem, and the
shared correlations.

B. Covariance matrix under attenuation

By applying the witness of Eq. (12) to the attenuated
covariance matrix of Eq. (5), one obtains

W ′
PPT(T1,T2) = 1 + det V ′ + 2 det C ′ −

∑
j=1,2

det(A′
i), (15)

from which W ′
PPT(T1 = 1, T2 = 1) = WPPT. From Eq. (5), it

follows that the individual submatrices transform as C ′ =

√
T1T2C and A′

j = Tj (Aj − I ) + I under attenuations. The
bilinear dependence of Eq. (9) on T1 and T2, which led to
a constant sign of the witness, is not expected here and
robustness is not a general feature of bipartite entangled states.

In the Appendix, we derive an explicit transmittance-
dependent form of W ′

PPT(T1,T2). We can factor out a term
T1T2, which can not change the sign of WPPT. It assumes the
form

W ′
PPT(T1,T2) = T1T2WR(T1,T2). (16)

The reduced witness WR preserves the sign of W ′
PPT (except

for T1 = T2 = 0, for which we know both modes are in their
vacuum states and W ′

PPT = 0), maintaining only the relevant
dependence on T1 and T2. It reads as

WR(T1,T2) = T1T2�22 + T2�12 + T1�21 + �11. (17)

The expressions for the coefficients �ij in terms of the
covariance matrix entries are given in the Appendix. We note
that they are regarded as constants here, independent of T1

and T2.
The different dynamics of entanglement under losses

appear in the witnesses W ′
PPT and WR . Figure 2 depicts four

entangled states (three of them fragile) plus a separable state

FIG. 2. (Color online) Possible behaviors of the PPT entanglement witness W ′
PPT under attenuation, as a function of the transmittances

T1 and T2. (a) Fully robust entanglement. (b) Fragility for any combination of beam attenuations. (c) Separable state. (d) Single-channel
partial robustness: either mode, i.e., the state is robust for any individual attenuation, but not for a combination of attenuations, such as equal
attenuations. (e) Single-channel partial robustness: specific mode, i.e., the state is robust when one mode is attenuated but presents ESD upon
attenuation of the other mode.
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under attenuation. The plots show W ′
PPT(T1,T2) based on the

covariance matrix

V =

⎡
⎢⎢⎢⎣

�2q1 0 cq 0
0 �2p1 0 cp

cq 0 �2q2 0
0 cp 0 �2p2

⎤
⎥⎥⎥⎦ , (18)

constructed from diagonal submatrices. This simple form of
V , observed in the experiments of Ref. [4], suffices to span all
types of entanglement dynamics of Gaussian states.

The curves of Figs. 2(a)–2(d) were specifically obtained
from

V =

⎡
⎢⎢⎣

2.55 0 cq 0
0 1.80 0 −1.26
cq 0 2.55 0
0 −1.26 0 1.80

⎤
⎥⎥⎦ . (19)

As the correlation cq is varied, different types of entanglement
dynamics are observed. Modifying this parameter while
keeping constant the other entries of the covariance matrix
is equivalent to adding uncorrelated noise to the system (for
instance, classical phonon noise dependent on the temperature
of the nonlinear crystal [4,22]). In Fig. 2(a) (cq = 1.275), a
state violating the Duan criterion is fully robust, as expected.
Disentanglement does not occur for finite losses imposed on
any of the fields. In Fig. 2(b), the choice cq = 0.893 charac-
terizes a state for which ESD occurs for partial attenuation in
a single channel (mode) or in both channels. This represents
the most fragile class of states. In Fig. 2(c) (cq = 0.3825),
the initial state is separable and it naturally remains separable
throughout the whole region of attenuations.

A more subtle entanglement dynamics appears in Fig. 2(d)
(cq = 1.033). The state is robust against any single-channel
attenuation but may become separable if both modes are
attenuated. Such a state would suffice as a resource for quantum
communications involving single-channel losses.

If we consider a more general covariance matrix, with
asymmetric modes, the system may be robust against losses on
one mode, but not on the other. This is observed in Fig. 2(e),
where W ′

PPT is calculated for the covariance matrix

V =

⎡
⎢⎢⎣

2.55 0 0.653 0
0 1.80 0 −0.797

0.653 0 1.62 0
0 −0.797 0 1.32

⎤
⎥⎥⎦ . (20)

This particular covariance matrix is obtained from Eq. (19),
with cq = 1.033, by imposing the attenuation T2 = 0.40.
Before this attenuation, the state was partially robust, as in
Fig. 2(d). It remains robust against losses on mode 2, but now
disentanglement with respect to losses solely on mode 1 may
occur. This illustrates the fact that the new states produced
upon attenuation become more fragile. Since attenuation is a
Gaussian operation, states can not become more robust upon
attenuation [23,24].

C. Full robustness

We show here that fully robust states can be directly
identified from the covariance matrix. In order to obtain the

necessary condition, we note from Eq. (17) that the entangle-
ment dynamics close to complete attenuation is dominated by
�11. Thus, an initially entangled state WR(T1 = 1, T2 = 1) <

0 with �11 > 0 must become separable for sufficiently large
attenuation, from which we derive the witness

Wfull = �11 = σ1σ2 − tr(CT C) + 2 det C. (21)

Wfull � 0, provided WPPT < 0, supplies a simple, direct, and
general condition for testing the entanglement robustness of
bipartite Gaussian states.

The robustness can not depend on the choice of local
measurement basis for each mode since, as discussed in
the Appendix, local rotations commute with the operation
of losses. In other words, local passive operations, such as
rotations and phase shifts, do not change the robustness. By
using local rotations to diagonalize the correlation matrix C,
we obtain

W
(D)
full = σ1σ2 − (cp − cq)2 � 0, (22)

which coincides with WM of Eq. (9). Thus, the Duan criterion
in the simple form of Eq. (9) is a particular case of Eq.
(21) when the correlation submatrix is diagonal. For Gaussian
states given by covariance matrices with diagonal correlation
submatrix, WM is a necessary and sufficient witness for robust
entanglement, but only sufficient otherwise.

D. Partial robustness

As seen in Fig. 2, there exist states that can be robust against
single-channel losses, yet disentangle for finite losses split
among two channels. Similar to the procedure in the previous
section, we will define witnesses capable of identifying partial
robustness.

Let us consider the case T2 = 1 for definiteness. The
attenuated witness of Eq. (17) becomes

WR(T1,T2 = 1) = (WPPT − W1)T1 + W1, (23)

where

W1 = Wfull + �21 (24)

(see Appendix for the expression of �21). The analysis of W1

follows the same lines used in the case of fully robust states,
with the simplification that the witness depends linearly on the
attenuation. Thus, there is only one possible path cutting the
plane WR(T1,T2 = 1) = 0. The fraction of transmitted light
for which ESD occurs is

T c
1 = W1

W1 − WPPT
. (25)

From WPPT < 0, it follows that 0 < W1 < W1 − WPPT to
assure that T c

1 exists as a meaningful physical quantity (0 <

T c
1 < 1) whenever W1 > 0.

Therefore, an entangled state satisfying W1 � 0 is robust
against losses in channel 1, and W1 is the witness for this type of
robustness. The corresponding analysis regarding attenuations
on the subsystem 2 yields the witness

W2 = Wfull + �12, (26)
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with the same properties of W1. A relation analogous to Eq.
(25) holds for T c

2 . Both witnesses are invariant under local
rotations, as expected.

V. ROBUSTNESS CLASSES

Based on the different dynamics of entanglement of Fig. 2,
we propose a classification of bipartite entangled states
according to their resilience to losses. We take guidance
in the sign of the reduced witness WR(T1,T2), which is a
hyperbolic paraboloid surface. The contour defined by the
condition WR(T1,T2) = 0 provides a complete description of
the entanglement dynamics in terms of �ij . As depicted in
Fig. 2, there are three relevant situations. Bipartite entangled
Gaussian states can be assigned to the following different
classes:

(i) Fully robust states remain entangled for any partial
attenuation: WR(T1,T2) < 0,∀T1,2.

(ii) Partially robust states: (a) symmetric: remain entangled
against losses on a single mode, but may disentangle for com-
binations of partial attenuations on both modes: WR(T1,T2 =
1) < 0,∀T1, and WR(T1 = 1,T2) < 0,∀T2. (b) asymmetric:
remain entangled against losses on a specific mode, but
may disentangle for partial losses on the other mode: either
WR(T1,T2 = 1) < 0,∀T1, or WR(T1 = 1,T2) < 0,∀T2.

(iii) Fragile states disentangle for partial attenuation on any
mode or combinations of partial attenuations on both modes.

For a complete classification of all bipartite Gaussian states,
one should include the separable states.

With the witnesses previously defined, we have necessary
criteria to assess the robustness of all bipartite Gaussian states.
A state will be robust with respect to losses imposed on
subsystem 1 if

W1 � 0. (27)

Likewise, robustness to losses on subsystem 2 is given by

W2 � 0. (28)

States will be partially robust if at least one of W1 or W2 is
negative or even if both are negative simultaneously (partially
robust, symmetric). Only if WR(T1,T2) < 0,∀T1,2 will we have
full robustness.

As mentioned above, this classification is of practical
interest. Several quantum communication protocols using
continuous variables can be realized by one of the parties
(Alice) locally producing the entangled state and sending only
one mode to a remote location. The other party (Bob) then
performs operations on his part of the state, according to
instructions sent by Alice through a classical channel. The
success of these communication schemes strongly depends on
the losses that the subsystem of Bob may undergo, which could
be detected by an eavesdropper (Eve). In this situation, Alice
must produce entangled states that are at least partially robust
in order to avoid problems with signal degradation. It may not
be necessary for her to produce fully robust states: partially
robust entangled states may suffice for successful quantum
communication protocols.

VI. PARTICULAR CASES

In the preceding analysis, we have found precise conditions
to determine whether or not bipartite Gaussian entangled states
are robust against losses. Given the practical interest of such
states as resources for quantum communication protocols, we
examine here particular Gaussian states that fall within the
classification scheme proposed above. One might think that
it should suffice to generate pure states with a large amount
of squeezing in order to have robust entanglement. We begin
by providing a specific example of a pure strongly squeezed
state, which is only partially robust. We then examine different
forms of the covariance matrix in order to map out the different
possibilities.

A. Pure and highly squeezed states with only partial robustness

In most experiments, Gaussian bipartite entanglement is
witnessed by a violation of the simplified Duan inequality of
Eq. (6). Typically, this is done by combining highly squeezed
individual modes on a beam splitter. This method allows the
creation of arbitrarily strong entanglement in the sense that
quantum information protocols such as teleportation could, in
principle, be realized with perfect fidelity in the limit of an
EPR state.

If such a state is contaminated by uncorrelated classical
noise (e.g., from Brillouin scattering in an optical fiber [25]),
it may then become subject to disentanglement from losses.
Even states that are pure may be subject to disentanglement
in a dual-channel scenario. We present below the covariance
matrix for a pure state with these characteristics:

V =

⎛
⎜⎜⎝

52.5 0 −47.5 0
0 0.105 0 0.095

−47.5 0 52.5 0
0 0.095 0 0.105

⎞
⎟⎟⎠ . (29)

This state has a very small symplectic eigenvalue, indicating
very strong entanglement [26]. As can be observed in Fig. 3,
the state is partially robust: losses on any single channel do not
lead to disentanglement, while ESD will occur for combined
losses in both channels.

Let us now examine different symmetries of the covariance
matrix and their implications on the entanglement dynamics.

B. Symmetric modes and quadratures: Fully robust states

We begin by examining completely symmetric modes, for
which �2p̂1 = �2q̂1 = �2p̂2 = �2q̂2 = s and 〈δp̂1δp̂2〉 =
〈δq̂1δq̂2〉 = c, and 〈δp̂j δq̂j ′ 〉 = 0. The covariance matrix has
the form

V =

⎛
⎜⎜⎜⎝

s 0 c 0

0 s 0 −c

c 0 s 0

0 −c 0 s

⎞
⎟⎟⎟⎠ . (30)

Such states can be generated, for instance, by the interference
of (symmetric) squeezed states on a balanced beam splitter
(entangled squeezed states) [15,17]. In this case, one has
s = ν cosh 2r and c = ν sinh 2r , where r is the squeez-
ing parameter and ν � 1 accounts for an eventual thermal
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mixedness, representing a correlated classical noise between
the systems.

Entanglement and robustness witnesses are thus

WPPT = (s2 − c2 + 1)2 − 4s2 (31)

and

Wfull = 4[(s − 1)2 − c2] = 4(s2 − c2 + 1 − 2s), (32)

from which one directly sees that WPPT < 0 and Wfull < 0 lead
to the same condition (s − 1 − |c| < 0). Therefore, entangled
states with symmetry between the two modes and the two
quadratures are fully robust. The lack of ESD in these
systems indicates that strong symmetries lead to entanglement
robustness, even when classical noise is present, as long as it
is correlated.

The highly symmetric covariance matrices of Eq. (30) are a
particular case of the standard form II of Ref. [10]. For these,
the Duan criterion is equivalent to the PPT criterion, which then
entails full robustness for all entangled states with covariance
matrices in standard form II. Moreover, since any state can be
brought to standard form II by local squeezing and quadrature
rotations without changing its entanglement [10], any fragile
state can be made robust by suitable local unitary operations.
The converse is also true: local squeezing can transform robust
states into fragile ones without changing the entanglement.
For instance, if one applies a gate that makes use of local
squeezing to a given robust entangled state, it can become
fragile and undergo disentanglement upon transmission. Local
squeezing is one of the important steps in an implementation
of a controlled-NOT (C-NOT) [or quantum nondemolition
(QND)] gate with continuous variables [27].

C. Symmetric modes and asymmetric quadratures

More general covariance matrices are necessary in order
to observe disentanglement. States that are symmetric on
both modes but asymmetric on the quantum statistics of the
quadratures have been recently observed to present ESD [4].
The system under investigation consisted of the twin light

FIG. 3. (Color online) Entanglement as a function of losses for the
covariance matrix given by Eq. (29). Disentanglement may occur only
for combined losses on both modes. In this example, the symplectic
eigenvalue [6] is only 0.22 for the initial state.

beams produced by an optical parametric oscillator, described
by a covariance matrix of the form

V =

⎛
⎜⎜⎜⎝

�2q 0 cq 0

0 �2p 0 cp

cq 0 �2q 0

0 cp 0 �2p

⎞
⎟⎟⎟⎠ . (33)

The entanglement and robustness witnesses read as

WPPT = [
(�2p)2 − c2

p

][
(�2q)2 − c2

q

]
− 2�2p �2q + 2cpcq + 1 (34)

and

Wfull = (�2p + �2q − 2)2 − (cq − cp)2. (35)

In this situation, the subsystems have equal purities (μS =
1/

√
�2p�2q). The quadrature variances and correlations are

constrained by (�2p)2 − c2
p � 0 and (�2q)2 − c2

q � 0. We
introduce the normalized correlations C̄p = cp/�2p and C̄q =
cq/�

2q for simplicity. They are bounded by −1 � C̄j � 1.
These parameters suffice to describe any state with the form
of Eq. (33).

In Fig. 4, the robustness condition is mapped in terms of
the correlations for a fixed purity μS = 0.626, showing the
regions corresponding to different robustness classes. Fully
robust state (a) falls within the I region in Fig. 4, while the
separable state (c) is located in the IV region. Within the
intermediate region, two different types of fragile states are
present. State (d) is partially robust, lying close to the boundary
to robust states. State (b) shows ESD for partial losses in
general, lying close to the boundary to separable states.

Alternatively, following the treatment described in Ref. [4],
the covariance matrix of Eq. (33) can be parametrized in terms
of the physically familiar EPR-type operators

p̂± = 1√
2

(p̂1 ± p̂2) (36)

and

q̂± = 1√
2

(q̂1 ± q̂2). (37)

Entanglement can be directly observed from the product
of squeezed variances of the proper pair of EPR operators
(p̂−,q̂+) or (p̂+,q̂−). Additionally, the entanglement and ro-
bustness criteria of symmetric two-mode systems of Eqs. (34)
and (35) can be written in the simpler forms

WPPT = WprodW prod, (38)

Wfull = WsumW sum, (39)

where

Wsum = �2p̂− + �2q̂+ − 2,

W sum = �2p̂+ + �2q̂− − 2,

Wprod = �2p̂−�2q̂+ − 1,

W prod = �2p̂+�2q̂− − 1.
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FIG. 4. (Color online) The space of states with covariance
matrices of the form of Eq. (33) is plotted as a function of the
normalized correlations C̄p and C̄q . Separable states lie in the region
IV; fully robust states are comprised within the region I; partially
robust states are in the region II, and fragile states are in the region III.
Points outside of these regions do not correspond to physical states.
Here, we use �2p = 1.80 and �2q = 2.55. The points included
represent the states in Figs. 2(a)–2(d).

The distinction between robust and partially robust entan-
glement is clearly illustrated with symmetric modes. Con-
sidering attenuation solely on mode 1 (entirely equivalent to
attenuation on mode 2, given the symmetry), the condition for
partial robustness of Eq. (27) yields

W1 = WsumW prod + WprodW sum. (40)

The condition W1 = 0 defines the border between partial
robustness and fragility. Since a state must be initially
entangled in order to disentangle, obviously,

Wfull < 0 =⇒ WPPT < 0. (41)

Given the commutation relations between p̂ and q̂, Wprod and
W prod (or Wsum and W sum) can not be simultaneously negative.
In this context, the condition of Eq. (41) can be restated as

Wsum < 0 =⇒ Wprod < 0 (42)

or

W sum < 0 =⇒ W prod < 0. (43)

For W1 = 0,

WsumW prod = −WprodW sum. (44)

This equation holds only if Wprod < 0 and Wsum > 0 (or
W prod < 0 and W sum > 0). Thus, W1 = 0 lies between the
curves WPPT = 0 and Wfull = 0.

A plot of the state space in terms of these EPR variables is
presented in Fig. 5. Fixed values for the partial purities μ+ =

FIG. 5. (Color online) The space of symmetric two-mode states
is plotted as a function of the EPR variances �2q̂+ and �2p̂−,
normalized to the standard quantum limit (SQL). Separable states lie
in the region IV; fully robust entangled states are within the region I;
partially robust states are in the region II, and fragile states are in the
region III. The partial purities are μ− = 0.7267 and μ+ = 0.4529.

1/
√

�2p̂+�2q̂+ and μ− = 1/
√

�2p̂−�2q̂− are assumed, so
that we can write the entanglement and robustness conditions
in terms of �2p̂− and �2q̂+. The observation of ESD reported
in Ref. [4] was obtained for partially robust states lying in the
region delimited by the conditions Wsum > 0 and W1 < 0.

D. System in standard form I

The last case we consider is a covariance matrix in the
standard form I [6,10]. It represents two different modes with
symmetric quadratures

V =

⎛
⎜⎜⎜⎝

s 0 cq 0

0 s 0 cp

cq 0 t 0

0 cp 0 t

⎞
⎟⎟⎟⎠ . (45)

The entanglement and full robustness witnesses read as

WPPT = (
st − c2

q

)(
st − c2

p

) − s2 − t2 + 2cqcp + 1 (46)

and

Wfull = 4(s − 1)(t − 1) − (cq − cp)2. (47)

The subsystems have purities μ1 = s−1 and μ2 = t−1. We
define the normalized correlations c̄j = cj /

√
st = cj

√
μ1μ2

as before.
A covariance matrix in standard form I also presents ESD

for certain parameters, spanning all three classes of states
described above. Owing to the symmetry in the covariance
matrix, ESD in such a system does not occur for symmet-
ric correlations c̄q = −c̄p independently of the purities μ1

and μ2.
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VII. CONCLUSION

We have addressed in this paper the issue of entanglement
in the open-system dynamics of continuous-variable (CV)
systems. Entanglement is a crucial albeit fragile resource for
quantum information protocols. Understanding its behavior in
open systems is very important for future practical applica-
tions.

Our analysis is carried out for the simplest possible situation
in the CV setting: bipartite Gaussian states under linear losses.
The general study undertaken here was motivated by the
experimental results presented in [3,4].

Starting from necessary and sufficient entanglement crite-
ria, we derived necessary and sufficient robustness criteria,
which enable us to classify these states with respect to
their entanglement resilience under losses. Having in mind
realistic communications scenarios, we present a robustness
classification: states may be fully robust, partially robust, or
fragile. For instance, if one generates an entangled state for
which only one mode will propagate in a lossy quantum
channel (single-channel losses), the conditions derived for
partially robust states apply. Such partial robustness would
be the minimum resource required for single-channel robust
quantum communications.

On the other extreme, EPR states, for which quantum
correlations appear in collective operators of both quadratures,
are the best desirable quantum resource. Their entanglement
is resilient to any combination of losses acting on both
modes, only disappearing when the state suffers total loss.
However, a rather likely deviation from such states could
already be catastrophic for entanglement: if a moderate amount
of uncorrelated noise (e.g., thermal noise) is introduced in
the EPR-type collective operators for one quadrature, even
when the other quadrature remains untouched and is perfectly
squeezed, entanglement can be lost for partial attenuation.
This offers a clue to the main ingredients leading to ESD in
bipartite Gaussian states. An appealing example is given by the
OPO operating above threshold. The usual theoretical analysis
leads to symmetric modes, with asymmetric quadratures, but
no uncorrelated classical noise. Thus, the OPO is predicted to
generate fully robust entangled states. However, uncorrelated
thermal noise originating in the nonlinear crystal couples into
the two modes [22], leading to ESD [4].

We have also found that such noise does not necessarily
have to imply mixedness. Even for pure states, the lack
of correlation between modes increases the state’s fragility.
Robustness is thus achieved not only for high levels of
entanglement between CV systems, but also symmetry in
the form of quantum correlations is desirable. This point
was illustrated by our study of mathematical examples of
Gaussian states, for which symmetry implied robustness in
spite of mixedness. We also point out that robustness can
be obtained, in principle, for any entangled state by local
unitary operations, such as squeezing and quadrature rotations.
However, these operations are not always simple to implement
in an experiment.

As an outlook, we should keep in mind that scalability
is one of the main goals in quantum information research at
present. As larger and more complex systems are envisioned
for the implementation of useful protocols, higher orders of

entanglement will be required. Disentanglement for partial
losses was experimentally observed in the context of a tripartite
system [3]. An understanding of entanglement resilience for
higher-order systems will be important. The methods and
analyses developed here constitute the starting point for such
investigations.
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Fundação de Amparo à Pesquisa do Estado São Paulo
(FAPESP). K.N.C. and A.S.V. acknowledge support from the
AvH Foundation.

APPENDIX: ATTENUATED WITNESS

We would like to obtain an explicit expression for
W ′

PPT(T1,T2) in terms of the physical parameters of the bipartite
system (variances and correlations). We note that the procedure
can not be directly realized by first bringing V ′ (or V ) to
a standard form and then applying the attenuation, since
local symplectic operations S ∈ Sp(2,
) ⊕ Sp(2,
) normally
do not commute with the attenuation operation L(SV ST ) �=
SL(V )ST [12,28]. Consequently, invariant quantities under
global and local symplectic transformations are not necessarily
conserved by attenuations, such as the global and local purities.
On the other hand, SL(V )ST = L(SV ST ) is satisfied only
if SST = I , i.e., S must be a local phase space rotation
S ∈ SO(2,
) ⊕ SO(2,
). Therefore, a criterion for entan-
glement robustness should depend solely on local rotational
invariants.

We derive the explicit behavior of the witness W ′
PPT under

attenuation. Writing the PPT separability criterion in terms of
the symplectic invariants [6], we obtain

WPPT = 1 + det V + 2 det C −
∑
j=1,2

det Aj , (A1)

det V = det A1 det A2 + det C2 − 	4, (A2)

	4 = tr(A1JCJA2JCT J ). (A3)

After attenuation, the matrices A1, A2, and C become

C ′ =
√

T1T2C, (A4)

A′
i = Ti(Ai − I ) + I. (A5)

To derive Eq. (17), we express the symplectic invariants
in terms of quantities presenting similar behavior. Two such
quantities are obtained from Eqs. (5) and (A4):

det(V ′ − I ) = T 2
1 T 2

2 det(V − I ), (A6)

det C ′ = T1T2 det C. (A7)

For any 2 × 2 matrix M, the following expressions are valid:

det(M − I ) = det M − trM + 1, (A8)

tr(M − I ) = tr(M) − 2, (A9)

and one obtains

 ′

j − σ ′
j = T 2

j (
j − σj ), (A10)

σ ′
j = Tjσj , (A11)
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where σi = trAi − 2, and 
i = det Ai − 1 is the deviation
from a pure state (impurity), which is zero for a pure state and
positive for any mixed state.

By applying Eq. (A8) to det(V − I ), we find quantities that
scale polynomially on the beam attenuations:

det V = det(V − I ) + η, (A12)

η = σ1(
2 − σ2) + σ2(
1 − σ1) + σ1σ2

+ det(A1) + det(A2) + 	1 + 	2 − 	C − 1, (A13)

	1 = tr[CT J (A1 − I )JC],

	2 = tr[CJ (A2 − I )JCT ], (A14)

	C = tr(CT C),

where the last three quantities scale as

	′
1 = T 2

1 T2	1, 	′
2 = T1T

2
2 	2, (A15)

	′
C = T1T2	C. (A16)

By substituting Eq. (A12) in (A1) and applying the
attenuation operation, we arrive at

W ′
PPT(T1,T2) =

∑
i,j=1,2

T i
1 T

j

2 �ij ,

�22 = det(V − I ) = det(V ) − η,

�12 = σ1(
2 − σ2) + 	2, (A17)

�21 = σ2(
1 − σ1) + 	1,

�11 = σ1σ2 − 	C + 2 det(C),

The function W ′
PPT describes the dynamics of all bipartite

Gaussian states under losses.

[1] T. Yu and J. H. Eberly, Science 323, 598 (2009), and references
therein.

[2] M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P.
Walborn, P. H. Souto Ribeiro, and L. Davidovich, Science 316,
579 (2007).

[3] A. S. Coelho, F. A. S. Barbosa, K. N. Cassemiro, A. S. Villar,
M. Martinelli, and P. Nussenzveig, Science 326, 823 (2009).

[4] F. A. S. Barbosa, A. S. Coelho, A. J. de Faria, K. N. Cassemiro,
A. S. Villar, P. Nussenzveig, and M. Martinelli, Nat. Photon. 4,
858 (2010).

[5] S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513
(2005).

[6] R. Simon, Phys. Rev. Lett. 84, 2726 (2000).
[7] R. F. Werner and M. M. Wolf, Phys. Rev. Lett. 86, 3658 (2001).
[8] M. M. Wolf, J. Eisert, and M. B. Plenio, Phys. Rev. Lett. 90,

047904 (2003).
[9] R. Simon, N. Mukunda, and B. Dutta, Phys. Rev. A 49, 1567

(1994).
[10] Lu-Ming Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev.

Lett. 84, 2722 (2000).
[11] A. S. Holevo and R. F. Werner, Phys. Rev. A 63, 032312 (2001).
[12] J. Eisert and M. M. Wolf, in Quantum Information with

Continuous Variables of Atoms and Light, edited by N. J. Cerf,
G. Leuchs, and E. S. Polzik (Imperial College Press, London,
2007), pp. 23–42.

[13] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777
(1935).

[14] N. Bohr, Phys. Rev. 48, 696 (1935).
[15] Ch. Silberhorn, P. K. Lam, O. Weiss, F. Konig, N. Korolkova,

and G. Leuchs, Phys. Rev. Lett. 86, 4267 (2001).
[16] W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, Phys.

Rev. Lett. 90, 043601 (2003).
[17] A. Furusawa et al., Science 23, 706 (1998).
[18] A. S. Villar, L. S. Cruz, K. N. Cassemiro, M. Martinelli, and

P. Nussenzveig, Phys. Rev. Lett. 95, 243603 (2005).
[19] A. Peres, Phys. Rev. Lett. 77, 1413 (1996).
[20] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A

223, 1 (1996).
[21] S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513

(2005).
[22] J. E. S. César, A. S. Coelho, K. N. Cassemiro, A. S. Villar,

M. Lassen, P. Nussenzveig, and M. Martinelli, Phys. Rev. A 79,
063816 (2009).

[23] J. Eisert, S. Scheel, and M. B. Plenio, Phys. Rev. Lett. 89, 137903
(2002).

[24] G. Giedke and J. I. Cirac, Phys. Rev. A 66, 032316 (2002).
[25] D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz,
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