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Quantum entanglement and teleportation in pulsed cavity optomechanics
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Entangling a mechanical oscillator with an optical mode is an enticing and yet a very challenging goal in cavity
optomechanics. Here we consider a pulsed scheme to create Einstein-Podolsky-Rosen-type entanglement between
a traveling-wave light pulse and a mechanical oscillator. The entanglement can be verified unambiguously by a
pump-probe sequence of pulses. In contrast to schemes that work in a steady-state regime under a continuous-wave
drive, this protocol is not subject to stability requirements that normally limit the strength of achievable
entanglement. We investigate the protocol’s performance under realistic conditions, including mechanical
decoherence, in full detail. We discuss the relevance of a high mechanical Qf product for entanglement creation
and provide a quantitative statement on which magnitude of the Qf product is necessary for a successful
realization of the scheme. We determine the optimal parameter regime for its operation and show it to work in
current state-of-the-art systems.
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I. INTRODUCTION

In optomechanical systems a cavity mode can be strongly
coupled to a high-quality mechanical oscillator via radiation
pressure or dipole gradient forces [1–3]. Quantum effects
[4–6] are starting to play an increasingly important role: In
the microwave regime, ground-state cooling via laser-cooling
techniques [7], strong coupling [8,9], and coherent control of
single-phonon excitations [9] have been successfully achieved.
In the optical regime, cooling to the quantum ground state [10]
and effects of strong coupling [11] have been demonstrated
in recent experiments. It is as yet an outstanding goal to
observe genuine quantum effects such as entanglement [12]
at macroscopic length and mass scales.

Entanglement of a mechanical oscillator with light has
been predicted in a number of theoretical studies [13–23]
and would be an intriguing demonstration of optomechanics
in the quantum regime. These studies, as well as similar
ones investigating entanglement among several mechanical
oscillators [24–32], explore entanglement in the steady-state
regime. In this regime the optomechanical system is driven
by one or more continuous-wave light fields and settles into
a stationary state, for which the interplay of optomechanical
coupling, cavity decay, damping of the mechanical oscillator,
and thermal noise forces may remarkably give rise to persistent
entanglement between the intracavity field and the mechanical
oscillator.

Entanglement in the steady-state regime shows two main
characteristic features: First, entanglement reaches a maxi-
mal value when the system is driven close to a point of
dynamical instability. Vice versa, the limits on the strength of
entanglement achievable in protocols working in the steady-
state regime are set by the very conditions guaranteeing a
dynamically stable, stationary state. Recent studies indicate
that these limitations can even become rather restrictive when
a finite laser linewidth is taken into account [20,22]. Second,
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the verification of entanglement between the intracavity field
and the moving mirror has to be performed via measurements
on the outcoupled light leaving the optomechanical system.
Ultimately only correlations between modes of the light field
are measured, from which any entanglement involving the
mechanical oscillator has to be inferred. However, due to the
curious feature of quantum correlations that “no entanglement
is necessary to distribute entanglement” [33,34], this sort of
inference is in general a delicate issue. It is unambiguously
only possible under additional assumptions regarding the
particular dynamics (i.e., the system’s Hamiltonian) and
structure of the steady state [13].

An alternative approach to achieving optomechanical en-
tanglement is to work in the pulsed regime, where entangle-
ment is created and verified with two subsequent pulses of
light. This strategy has first been developed in the context
of atomic ensembles [35] and was recently considered for
systems employing levitated microspheres trapped in an
optical cavity [36]. A pulsed scheme does not rely on the
existence of a stable steady state, which provides us with
the benefit that entanglement is not limited by stability
requirements. The temporal ordering of the pulses excludes
the possibility of distributing entanglement without using
entanglement [33,34] such that it provides a direct (i.e.,
without additional assumptions) and unambiguous test of
entanglement. Similar protocols have also been discussed for
micromirrors in free space (i.e., without the use of an optical
cavity) [37,38].

In this article we provide a complete treatment of a
protocol for the generation and verification of optomechanical
entanglement using pulsed light. In addition to an idealized
scenario, which was briefly discussed in [36], we include
in our description the full dynamics of the optomechanical
system. Our derivation provides an exhaustive discussion of
imperfections, how they affect the performance of the protocol,
and how these effects can be minimized. Most prominently, we
(perturbatively) include thermal decoherence of the mechani-
cal system and find that a high Qf product (quality factor times
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the frequency of the mechanical oscillator) plays a crucial
role in the creation of optomechanical entanglement. More
specifically, we find that the relation Qf � kBT/h (where
T is the temperature of the mechanical environment) has to
hold, which is a general and often very stringent condition to
observe quantum effects in optomechanical systems [39]. A
large Qf product is thus one of the most important aspects
to consider in the design of novel high-quality mechanical
resonators.

To further explore the effect of imperfections on the
protocol, we optimize the amount of created entanglement with
respect to key experimental parameters and present specific
values for two existing optomechanical systems. We find that
creation of entanglement is possible in a parameter regime
which is realistic yet challenging for current state-of-the-
art setups. Very importantly, our treatment also provides a
quantitative statement on what magnitude of the Qf product
is necessary in order to successfully create entanglement for
a given bath temperature T . These findings provide a general
understanding of the requirements to observe quantum effects
in optomechanical systems and represent essential information
for the material development and for the further design of
future optomechanical structures.

We finally note that the quantum state created in this
protocol exhibits a type of entanglement known as Einstein-
Podolsky-Rosen (EPR) entanglement [40] between the me-
chanical oscillator and the light pulse [36]. It thus provides
the canonical resource for quantum information protocols
involving continuous variable (CV) systems [41,42]. We give a
detailed description of how optomechanical EPR entanglement
can be used for the teleportation of the state of a propagating
light pulse onto a mechanical oscillator.

Note that other promising perspectives for pulsed optome-
chanics have recently been discussed also in [43–47], albeit
in a very different parameter regime employing light pulses
which are short on the time scale of a mechanical oscillation.
The importance of temporal ordering in the verification of
optomechanical entanglement has also been pointed out in
[15].

The paper is organized as follows: Sec. II A contains the
main results of this work. We first describe entanglement
creation under idealized circumstances and outline a way
to verify it unambiguously. Additionally, we show how it
can be used as a resource for CV teleportation. In Sec. II B
we analyze the influence of imperfections on the protocol’s
performance and find the optimal parameter regime for
maximal entanglement. Section III gives a detailed description
of the full system dynamics. The Appendix contains a short
derivation of the effective system Hamiltonian in the pulsed
regime.

II. CENTRAL RESULTS

A. Motivation for the pulsed scheme

1. Cavity optomechanical system

Let us consider an optomechanical cavity in a Fabry-
Pérot-type setup (Fig. 1), with mechanical oscillation fre-
quency ωm, mechanical dissipation rate γ , optical resonance
frequency ωc, and cavity decay rate κ . A light pulse of

FIG. 1. (Color online) Schematic of the system and the tele-
portation protocol: (a) A blue detuned light pulse (A) is entangled
with the mirror (B). (b) A second light pulse (V) is prepared in the
input state and interfering with A on a beam splitter. Two homodyne
detectors measure P out

l + Xv and Xout
l + Pv, yielding outcomes mX

and mP respectively. Feedback is applied by displacing the mirror
state in phase space by a unitary transformation DXm(mX) DPm(mP ).
(c) To verify the success of the protocol, the mirror state is coherently
transferred to a red detuned laser pulse and a generalized quadrature
X′

l (θ ) = X′
l
out cos θ + P ′

l
out sin θ is measured. Repeating steps (a)–

(c) for the same input state but for different phases θ yields a
reconstruction of the mirror’s quantum state.

duration τ and carrier frequency ωl impinges on the cavity
and interacts with the oscillatory mirror mode via radiation
pressure.

In a frame rotating with the laser frequency, the system is
described by the (effective) Hamiltonian [48]

H = ωma†
mam + �ca

†
cac + g(am + a†

m)(ac + a†
c), (1)

where am and ac are annihilation operators of the mechanical
and optical mode, respectively. The conditions under which
Eq. (1) is valid are discussed in detail in Sec. III A. The first two
terms give the energy of the mechanical oscillator and the cav-
ity field, where �c = ωc − ωl is the detuning of the laser drive
with respect to the cavity resonance. The last term describes the
linearized optomechanical coupling (with coupling constant g)
via radiation pressure xmxc ∝ (am + a

†
m)(ac + a

†
c) = (ama

†
c +

a
†
mac) + (amac + a

†
ma

†
c), which can be decomposed into two

terms [4,25,37,38]: a beam-splitter-like interaction (the first
term) and a two-mode-squeezing interaction (the second term).
The former can be used to cool the mirror as well as to generate
a state swap between the mechanical and the optical mode,
while the latter term describes the optomechanical analog to
the optical down-conversion process in an optical parametric
amplifier and is known to create entanglement from coherent
input states [4,49].

We assume the pulse to approximately be a flat-top pulse,
which has a constant amplitude for the largest part but
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possesses a smooth head and tail (see the Appendix). The
coupling constant g is then given by

g = g0

√
2κ

�2
c + κ2

Nph

τ
, (2)

with Nph being the number of photons in the pulse (see
Sec. III A). The single-photon coupling constant g0 is defined
by g0 = ωcx0/L, where x0 is the size of the zero-point motion
of the mechanical oscillator and L is the cavity length. It is
possible to make a single one of the interaction terms dominant
by tuning the laser such, that one of its motional sidebands
ωl ± ωm is resonant with the cavity, where for blue detuning
the resonant scattering to the lower (Stokes) sideband (ωc =
ωl − ωm) enhances the down-conversion interaction, while for
red detuning the resonant scattering to the upper (anti-Stokes)
sideband (ωc = ωl + ωm) enhances the beam-splitter interac-
tion [4]. In this pump-probe scheme we make use of both
dynamics separately: Pulses tuned to the blue side of the cavity
resonance are applied to create entanglement, while pulses on
the red side are later used to read out the final mirror state. A
similar separation of the Stokes and anti-Stokes sideband was
suggested in [37,38] by selecting different angles of reflection
of a light pulse scattered from a vibrating mirror in free space.

The full system dynamics, including the dissipative cou-
pling of the mirror and the cavity decay, are described by
quantum Langevin equations [50], which determine the time
evolution of the corresponding operators xm = (am + a

†
m)/

√
2,

pm = −i(am − a
†
m)/

√
2, and ac,a

†
c . They read

ẋm = ωmpm, (3a)

ṗm = −ωmxm − γ pm −
√

2 g(ac + a†
c) −

√
2γ f, (3b)

ȧc = −(i�c + κ)ac − i
√

2 g xm −
√

2κ ain, (3c)

where we introduced the (self-adjoint) Brownian stochastic
force f and quantum noise ain entering the cavity from
the electromagnetic environment. Both ain and—in the high-
temperature limit—f are assumed to be Markovian. Their
correlation functions are thus given by 〈ain(t)a†

in(t ′)〉 = δ(t −
t ′) (in the optical vacuum state) and 〈f (t)f (t ′) + f (t ′)f (t)〉 =
(2n̄ + 1)δ(t − t ′) (in a thermal state of the mechanics) [50].

2. Creation of optomechanical entanglement

In this section we impose the following conditions on
the system’s parameters. First, we drive the cavity with a
blue-detuned laser pulse (�c = −ωm) and assume to work
in the resolved-sideband regime (κ � ωm) to enhance the
down-conversion dynamics. Note that in this regime a stable
steady state only exists for very weak optomechanical coupling
[51], which poses a fundamental limit to the amount of
entanglement that can be created in a continuous-wave scheme
[14]. In contrast, a pulsed scheme does not suffer from these
instability issues. In fact, it is easy to check, by integrating
the full dynamics (see Sec. III B) up to time τ , that working
in this particular regime yields maximal entanglement, which
increases with increasing sideband resolution ωm/κ . Second,
we assume a weak optomechanical coupling g � κ , such that
only first-order interactions of photons with the mechanics
contribute. This minimize pulse distortion and simplifies the

experimental realization of the protocol. Taken together, the
conditions g � κ � ωm allow us to invoke the rotating-
wave approximation (RWA), which amounts to neglecting the
beam-splitter term in Eq. (1). Also, we neglect mechanical
decoherence effects in this section. We emphasize that this
approximation is justified as long as the total duration of
the protocol is short compared to the effective mechanical
decoherence time 1/γ n̄, where γ is the mechanical damping
rate and n̄ is the thermal occupation of the corresponding
bath. Corrections to this simplified model—including the
treatment of mechanical decoherence and dynamics beyond
the RWA—will be addressed in Sec. II B.

Based on the assumptions above we can now simplify
Eqs. (3). For convenience we go into a frame rotating with
ωm by substituting ac → aceiωmt , ain → aineiωmt , and am →
ame−iωmt . Note that in this picture the central frequency of ain is
located at ωl − ωm = ωc. In the RWA the Langevin equations
then simplify to

ȧc = −κac − ig a†
m −

√
2κ ain, (4a)

ȧm = −ig a†
c . (4b)

In the limit g � κ we can use an adiabatic solution for the
cavity mode and we therefore find

ac(t) ≈ −i
g

κ
a†

m(t) −
√

2

κ
ain(t), (5a)

am(t) ≈ eGtam(0) + i
√

2GeGt

∫ t

0
dse−Gsa†

in(s), (5b)

where we defined G = g2/κ . Equation (5b) shows that the
mirror motion gets correlated to a light mode of central
frequency ωl − ωm (which coincides with the cavity resonance
frequency ωc) with an exponentially shaped envelope αin(t) ∝
e−Gt . Using the standard cavity input-output relations aout =
ain + √

2κ ac allows us to define a set of normalized temporal
light modes:

Ain =
√

2G

1 − e−2Gτ

∫ τ

0
dt e−Gtain(t), (6a)

Aout =
√

2G

e2Gτ − 1

∫ τ

0
dt eGtaout (t), (6b)

which obey the canonical commutation relations [Ai,A
†
i ] = 1.

Together with the definitions Bin = am(0) and Bout = am(τ )
we arrive at the following expressions, which relate the
mechanical and optical mode at the end of the pulse t = τ :

Aout = −eGτAin − i
√

e2Gτ − 1B†
in, (7a)

Bout = eGτBin + i
√

e2Gτ − 1A†
in. (7b)

By expressing Eqs. (7) in terms of quadratures Xi
m = (Bi +

B
†
i )/

√
2 and Xi

l = (Ai + A
†
i )/

√
2, where i ∈ {in,out}, and

their corresponding conjugate variables, we can calculate the
so-called EPR variance �EPR of the state after the interaction.
For light initially in vacuum (�Xin

l )2 = (�P in
l )2 = 1

2 and the
mirror in a thermal state (�Xin

m)2 = (�P in
m )2 = n0 + 1

2 , the
state is entangled iff [52]

�EPR = [
�

(
Xout

m + P out
l

)]2 + [
�

(
P out

m + Xout
l

)]2

= 2(n0 + 1)
(
er −

√
e2r − 1

)2
< 2, (8)
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where r = Gτ is the squeezing parameter and n0 is the initial
occupation number of the mechanical oscillator. Note that in
the limit of large squeezing r � 1 we find that the variance
�EPR ≈ (n0 + 1)e−2r/2 is suppressed exponentially, which
shows that the created state asymptotically approximates an
EPR state. Therefore, this state can be readily used to conduct
optomechanical teleportation as described in Sec. II A 4.

Rearranging Eq. (8), we find that the state is entangled as
long as

r > r0 = 1

2
ln

(
(n0 + 2)2

4(n0 + 1)

)
n0→∞∼ 1

2
ln n0. (9)

This illustrates that in our scheme the requirement on the
strength of the effective optomechanical interaction, as quan-
tified by the parameter r = g2τ

κ
, scales logarithmically with the

initial occupation number n0 of the mechanical oscillator. This
tremendously eases the protocol’s experimental realization,
as neither g nor τ can be arbitrarily increased—both for
fundamental and technical reasons—as we will show in
Sec. II B. Note that n0 need not be equal to the mean bath
occupation n̄ but may be decreased by laser precooling to
improve the protocol’s performance.

3. Entanglement verification

To verify the successful creation of entanglement a red
detuned laser pulse (�c = ωm) is sent to the cavity where
it resonantly drives the beam-splitter interaction and hence
generates a state swap between the mechanical and the optical
mode. It is straightforward to show that choosing �c = ωm

leads to a different set of Langevin equations which can be
obtained from Eq. (4) by dropping the Hermitian conjugation
(†) on the right-hand side. By defining modified mode func-
tions α′

in(out) = αout(in) and corresponding light modes A′
in(out)

one obtains input-output expressions in analogy to Eq. (7):

A′
out = −e−GτA′

in + i
√

1 − e−2GτBin, (10a)

Bout = e−GτBin − i
√

1 − e−2GτA′
in. (10b)

The pulsed state-swapping operation therefore also features
an exponential scaling with Gτ . For Gτ → ∞ the expres-
sions above reduce to A′

out = −iBin and Bout = iA′
in, which

shows that in this case the mechanical state—apart from a
phase shift—is perfectly transferred to the optical mode. In
the Schrödinger picture this amounts to the transformation
|ϕ〉m|ψ〉l → |ψ〉m|ϕ〉l, where ϕ and ψ constitute the initial
state of the mechanics and the light pulse, respectively. The
state-swap operation thus allows us to access mechanical
quadratures by measuring quadratures of the light and there-
fore to reconstruct the state of the bipartite system via optical
homodyne tomography. For this the protocol is operated in
two steps: After the blue detuned pulse is reflected from
the cavity, it is sent to a homodyne detection setup, where
a quadrature Xl(φ) = Xout

l cos φ + P out
l sin φ (φ being the

local oscillator phase) is measured. The same procedure is
subsequently carried out for a red detuned pulse, measuring
X′

l(θ ) (see Fig. 1), which, for the case of a perfect state
swap, yields the mechanical quadrature X′

l(θ ) = Xm(θ + π
2 ).

Here the rotation by π
2 is due to the phase shift from the

swap operation. By repeating this process multiple times for

different local-oscillator phases (φi,θj ), the quantum state
of the bipartite optomechanical system can be reconstructed.
Having obtained the full quantum state, entanglement can be
analyzed by various means [53], e.g., by applying the EPR
criterion from above.

4. Optomechanical teleportation protocol

As we have shown above, pulsed operation allows us to
create EPR-type entanglement, which forms the central en-
tanglement resource of many quantum information processing
protocols [41]. An immediate extension of this scheme is an
optomechanical continuous variables quantum teleportation
protocol. The main idea of quantum state teleportation in
this context is to transfer an arbitrary quantum state |ψin〉 of
a traveling-wave light pulse onto the mechanical resonator,
without any direct interaction between the two systems, but
by making use of optomechanical entanglement. The scheme
works in full analogy to the CV teleportation protocol for
photons [54,55]. Due to its pulsed nature it closely resembles
the scheme used in atomic ensembles [35,56] and it was
recently also suggested in the context of levitated microspheres
[36] (see [57] for an exhaustive description of a similar system
comprising a nuclear-spin ensemble entangled with light): A
light pulse (A) is sent to the optomechanical cavity and is
entangled with its mechanical mode (B) via the dynamics
described above. Meanwhile a second pulse (V) is prepared
in the state |ψin〉, which is to be teleported. This pulse then
interferes with A on a beam splitter. In the output ports of
the beam splitter, two homodyne detectors measure two joint
quadratures P out

l + Xv and Xout
l + Pv, yielding outcomes mX

and mP , respectively. This constitutes the analog to the Bell
measurement in the case of qubit teleportation and effectively
projects previously unrelated systems A and V onto an EPR
state [58]. Note that both the second pulse and the local
oscillator for the homodyne measurements must be mode
matched to A after the interaction; i.e., they must possess the
identical carrier frequency as well as the same exponential
envelope. The protocol is concluded by displacing the mirror
in position and momentum by mX and mP according to the
outcome of the Bell measurement. This can be achieved by
means of short light pulses, applying the methods described
in [43,45]. After the feedback the mirror is then described
by [41]:

Xfin
m = Xout

m + P out
l + Xv

= Xv + (
er −

√
e2r − 1

)(
Xin

m − P in
l

)
, (11a)

P fin
m = P out

m + Xout
l + Pv

= Pv + (
er −

√
e2r − 1

)(
P in

m − Xin
l

)
, (11b)

which shows that its final state corresponds to the input state
plus quantum noise contributions. It is obvious from these
expressions that the total noise added to both quadratures [the
second term in Eqs. (11a) and (11b), respectively] is equal to
the EPR variance. Again, for large squeezing r � 1 the noise
terms are exponentially suppressed, and, in the limit r → ∞,
where the resource state approaches the EPR state, we obtain
perfect teleportation fidelity, i.e., Xfin

m = Xv and P fin
m = Pv. In

particular this operator identity means that all moments of
Xv, Pv with respect to the input state |ψin〉 will be transferred
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to the mechanical oscillator, and hence its final state will be
identically given by |ψin〉.

To verify the success of the teleportation one has to read
out the mirror state after completing the feedback step. This
can be achieved by applying tomography on the mechanical
state as described in the previous section. The overlap of
the reconstructed state ρout and a pure input state |ψin〉
then gives the teleportation fidelity F = 〈ψin|ρout|ψin〉. For
coherent input states the fidelity is given by

F =
(

1 + �EPR

2

)−1

. (12)

In order to beat the optimal classical strategy for transmission
of quantum states (i.e., the optimal measure-and-prepare
scheme), the achieved fidelity (averaged over all coherent
states) must exceed F > 1/2 [59], which is equivalent to the
condition for entanglement, �EPR < 2.

B. Optimized protocol including imperfections

1. Perturbations

In the previous section we found that in the ideal scenario
the amount of entanglement essentially depends only on the
coupling strength (or equivalently on the input laser power)
and the duration of the laser pulse and that it shows an
encouraging scaling, growing exponentially with Gτ . This
in turn means that the minimal amount of squeezing needed
to generate entanglement only grows logarithmically with
the initial mechanical occupation n0. In this section we will
develop a more realistic scenario including thermal noise
effects and full system dynamics, both of which will decrease
the created entanglement. We will show, however, that under
conditions already available in state-of-the-art optomechanical
experiments one can find an optimal working point such that
the significance of these unwanted effects can sufficiently be
suppressed.

To extend the validity of the previous, simplified model, we
now include the following additional dynamics: contributions
from the beam-splitter Hamiltonian, higher-order interactions
beyond the adiabatic approximation, and decoherence effects
due to mechanical coupling to a heat bath. In the following
we will investigate their effect on our protocol and determine
the parameter regime featuring maximal entanglement. The
technical details of how we include them in our calculations
will be shown in Sec. III.

Including the above-mentioned perturbations results in a
final state which deviates from an EPR-entangled state. To
minimize the extent of these deviations, the system parameters
must obey the following conditions:

(1) κ � ωm results in a sharply peaked cavity response
and implies that the down-conversion dynamics is heavily
enhanced with respect to the suppressed beam-splitter interac-
tion.

(2) g � κ inhibits multiple interactions of a single photon
with the mechanical mode before it leaves the cavity. This
suppresses spurious correlations to the intracavity field. It also
minimizes pulse distortion and simplifies the protocol with
regard to mode matching and detection.

(3) gτ � 1 is needed in order to create sufficiently strong
entanglement. This is due to the fact that the squeezing
parameter r = (g/κ)gτ should be large, while g/κ needs to
be small.

(4) n̄γ τ � 1, where n̄ is the thermal occupation of the
mechanical bath, assures coherent dynamics over the full
duration of the protocol, which is an essential requirement for
observing quantum effects. As the thermal occupation of the
mechanical bath may be considerably large even at cryogenic
temperatures, this poses (for fixed γ and n̄) a very strict upper
limit to the pulse duration τ .

Note however that not all of these inequalities have to be
fulfilled equally strictly, but there rather exists an optimum
which arises from balancing all contributions. It turns out that
fulfilling (4) is critical for successful teleportation, whereas
(1)–(3) only need to be weakly satisfied. Taking the above
considerations into account, we find a sequence of parameter
inequalities:

n̄γ � 1

τ
� g � κ � ωm, (13)

which defines the optimal parameter regime. In Sec. II A
we assumed the first two conditions to be well satisfied
and we neglected the existence of mechanical decoherence.
If we now take into account that the mechanical oscillator
couples to a heat bath with an effective decoherence rate n̄γ ,
we find that increasing the pulse duration to values larger
than the mechanical coherence time will drastically decrease
entanglement. This results in an upper bound for entanglement,
as now both the interaction strength and the pulse duration,
and therefore also the squeezing parameter r = (g/κ)gτ , are
bounded from above.

Dividing Eq. (13) by γ and taking a look at the outermost
condition n̄ � Qm, where Qm = ωm/γ is the mechanical
quality factor, we see that the ratio Qm/n̄ defines the
range which all the other parameters have to fit into. It
is intuitively clear that a high quality factor and a low
bath occupation number, and consequently a low effective
mechanical decoherence rate, are favorable for the success
of the protocol. Equivalently, we can rewrite the occupation
number as n̄ = kBTbath/h̄ωm and therefore find kBTbath/h̄ �
Qmωm, where now the Qf product (f = ωm/2π ) has to be
compared to the thermal frequency of the bath. Let us consider
a numerical example: For a temperature Tbath ≈ 100 mK the
left-hand side gives kBTbath/h̄ ≈ 2π · 109 Hz. The Qf product
consequently has to be several orders of magnitude larger to
successfully create entanglement. As current optomechanical
systems feature a Qf product of 2π · 1011 Hz and above
[60–63], this requirement seems feasible to meet. Note that in
an experiment Tbath will often depend on the input laser power,
as scattered light can heat up the cryogenic environment.
Hence, for a given bath occupation the coupling strength may
be limited for technical reasons.

In order to find the optimal working point, it is convenient
to introduce the following dimensionless parameters: the
sideband-resolution parameter η, the adiabaticity parameter
ξ , and the ratio of pulse length to mechanical coherence time
ε. They are given by

η = κ/ωm, ξ = g/κ, ε = γ τ.
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From Eq. (13) it follows that η � 1, ξ � 1 and ε � 1/n̄.
Each of those small parameters can be used to realize a
perturbative expansion of the additional dynamics listed above.
The perturbative solutions can then be used to calculate the
EPR variance and optimize the resulting expressions.

2. Optimization

As illustrated above, we expect—for fixed values of n̄ and
Qm—to find optimal values for the remaining parameters ε,ξ ,
and η. The maximal possible entanglement will ultimately be
set by n̄ and Qm, which will also constitute hard boundaries
in typical experiments.

Figure 2 shows results of this optimization for different
quality factors, plotted against the thermal occupation number
of the mechanical bath. Figure 2(a) shows the minimal
value of �EPR for a given Qm, and Figs. 2(b)–2(d) show
the corresponding optimal values for ηopt, ξopt, and εopt. As
expected the noise contribution from the mechanical bath is
found to be the most critical. As we show in Sec. III B the EPR
variance including thermal noise can be expressed by

�EPR = [
�

(
Xout

m + P out
l

)]2

+ [
�

(
P out

m + Xout
l

)]2 + (2n̄ + 1)ε, (14)

where Xout
i and P out

i here denote the solutions for γ = 0. The
dashed curves in Fig. 2(a) illustrate the noise contribution
(2n̄ + 1)εopt of the thermal bath. As shown above, this quantity
is added to the unperturbed EPR variance, and thus the system
can only exhibit strong entanglement if its value is far below
two. Note that working at the optimal point keeps the fraction
of thermal noise in �EPR approximately constant over a wide
range of n̄. This is shown in Fig. 2(e), where we defined
ε′

opt = εopt/�EPR.
As we have seen in the previous section, the EPR variance

depends on the occupation number of the oscillator at the initial
time t = 0. Due to this, the entanglement can be drastically
increased by precooling the mechanics by means of laser
cooling before starting the actual protocol. Figure 2 shows
that it is thus possible to create an entangled state even for
a fairly large bath occupation. This works due to short pulse
durations, during which the mechanical decoherence is small.

Taking a look at Fig. 2(c) we note that the sideband
resolution shows rather large optimal values near unity,
especially for increasing occupation numbers. This indicates
that the beam-splitter dynamics only weakly disturbs the
entangling interaction.

Table I gives a list of the optimized key experimental
parameters for two existing optomechanical structures. The
values in the first row correspond to the black dots shown in
Fig. 2.

Over and above the fundamental imperfections, technical
losses, such as mode mismatch and detector inefficiencies,
additionally decrease entanglement. They can all collectively
be described as (passive) beam-splitter losses adding vac-
uum noise to the optical signal. They will, however, never
completely break entanglement, as long as the overall loss is
smaller than unity. Noise contributions of this type can easily
be accounted for by adding appropriate noise terms to Eq. (7).

Finally let us compare the amount of entanglement created
in the pulsed and continuous-wave schemes [14] in terms of the
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FIG. 2. (Color online) Optimized parameters for Qm = 107 and
n0 = 50 [red (dark) line] and Qm = 105 and n0 = 0 [blue (light)
line], where n0 is the initial mechanical occupation and n̄ is the
mean bath occupation. This corresponds to the two cases of large Qm

with moderate pre-laser-cooling and lower Qm with precooling into
the ground state. Clearly, entanglement creation is possible in both
cases. (a) Minimal �EPR as a function of n̄. The upper axis gives
the corresponding bath temperature for an oscillator with a resonance
frequency of 3.8 MHz. To each point corresponds a triple εopt,ηopt,ξopt

[(b)–(d)], for which the minimal value is realized. The dotted, black
line shows the upper bound up to which entanglement is present.
The black dot marks the values for n̄ = 1100 (T = 200 mK), which
coincide with the values given in the first row of Table I. The dashed
lines show the respective thermal noise contribution (2n̄ + 1)εopt to
�EPR [see Eq. (14)]. (b)–(d) Values of ε,η,ξ which optimize �EPR for
a given n̄. (e) Relative amount of noise induced by the coupling to
the mechanical environment (ε ′

opt = εopt/�EPR).

logarithmic negativity EN [53] for the parameters used in the
first row of Table I (Qm = 105, n̄ = 1100, n0 = 0). In the case
of continuous driving one finds the maximal negativity close
to the instability region and for a detuning of around �c ≈ ωm,
yielding EN ≈ 0.4. For the pulsed protocol the optimization
yields a much larger value of EN ≈ 1.2. Note that EN is a
logarithmic quantity.
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TABLE I. Specific optimal values for an AlxGa1−xAs structure (3.8 MHz) [64] and an Si optomechanical crystal (3.7 GHz) [10]. The whole
set is fully determined by εopt, ηopt, ξopt. The value for the mean power P = h̄ωlNph/τ is obtained using Eq. (2). (The x in the formula above is
a number between 0 and 1 to indicate a ternary alloy between GaAs and AlAs.)

ωm/2π Qm Tbath n̄ n0 g0/2π κopt/2π τopt Popt gopt/2π �EPR

3.8 MHz 105 200 mK 1100 0.0 4.8 Hz 3.2 MHz 2.5 μs 30 mW 0.97 MHz 0.7
3.7 GHz 105 200 mK 0.7 0.7 910.0 kHz 0.26 GHz 0.41 μs 6 μW 0.032 GHz 0.1
3.7 GHz 105 1 K 3.7 3.7 910.0 kHz 0.31 GHz 0.30 μs 8 μW 0.040 GHz 0.5

III. DETAILED MODEL

A. Linearizing the dynamics

As was shown in [65], the radiation pressure interaction
is inherently nonlinear. In current micromechanical systems,
however, the single-photon coupling g0 is very weak (the best
values up to date are on the order of g0/κ ≈ 0.001 [63]) and
has to be enhanced by means of a strong optical pump field. It
is well known that in the case of a strong continuous-wave light
field the steady-state dynamics of the system is approximately
linear. We will show, in the following, that this also holds in
a (long) pulsed scheme. The linearization process follows the
same general idea as in the steady-state regime; it is, however,
slightly more involved due to the explicit time dependence of
the Hamiltonian.

We consider a laser pulse with a fixed number of photons
Nph and an envelope function ε(t), which is normalized in the
sense that

∫ τ

0dt |ε(t)|2 = 1. Its head and tail are assumed to
be smooth and its amplitude should be constant ε(t) ≈ 1/

√
τ

for the most part of τ . The full Hamiltonian for the system,
including the laser driving term and the nonlinear radiation
pressure interaction [65], is then given by

H (t) = ωma†
mam + �0a

†
cac

+ g0a
†
cac(am + a†

m) + iE(t)(ac − a†
c), (15)

where �0 = ωc,0 − ωl is the detuning for the case of a
cavity with fixed length and E(t) = √

2κNphε(t) is the driving
strength. In the Appendix we show that we can eliminate
the driving term by going into a (time-dependent) displaced
picture. The transformed Hamiltonian then takes the form

H̄ (t) = ωma†
mam + �c(t)a†

cac + g0a
†
cac(am + a†

m)

+ g0[α∗(t)ac + α(t)a†
c](am + a†

m), (16)

where the effective detuning �c and the mean cavity field α

now depend explicitly on time. The resulting expressions (see
the Appendix) are essentially the same as are found in the
steady-state case (see for example [66]). The nonlinear term
in Eq. (16) can be neglected whenever |α| � 1, which is true
for sufficiently strong driving |E| and will be the case for the
greatest part of the pulse duration. By assuming α(t) to be
real and by introducing the effective optomechanical coupling
constant g(t) = g0 |α(t)|, the procedure leaves us with a linear
Hamiltonian in the form of Eq. (1).

Note that for the case of �c ≈ ωm the relative frequency
shift induced by radiation pressure will be of the order of
O(g/ωm)2 and therefore small. Consequently [together with
the assumption that ε(t) ≈ 1/

√
τ ] we will in the following

drop the explicit time dependence of the effective detuning
and the effective coupling strength.

B. Solving the full system

The full Langevin equations (3) resulting from the lin-
earized Hamiltonian (including the beam-splitter interaction
and mechanical decoherence) can be rewritten in the compact
form

d

dt
R(t) = (S − D)R(t) −

√
2DRin(t), (17)

where R = (am,a
†
m,ac,a

†
c ) and correspondingly Rin denotes the

input noise. S and D are matrices comprising the respective
coefficients. To solve this set of equations we apply the Laplace
transformation, introducing R̄(s) = L[R](s), with L[f ](s) =∫ ∞

0 dt e−stf (t). Solving for R we obtain

R̄(s) = M̄(s)[R(0) −
√

2DR̄in(s)], (18)

and thus

R(τ ) = M(τ )R(0) − (M ∗
√

2DRin)(τ ), (19)

where M̄(s) = (s1 − S + D)−1, M(τ ) = L−1[M̄](τ ), and ∗
denotes the convolution integral (f ∗ g)(t) = ∫ t

0ds f (t −
s)g(s). In the case of a bipartite system it is possible to find an
exact expression for M for arbitrary parameters. The obtained
solution, however, is very tedious and will not be presented
here. We proceed as follows: We separate the mechanical
decoherence in a perturbative approach (i.e., we expand M in
powers of ε), while the other dynamics will be treated exactly.
This allows us to find input-output equations corresponding to
Eq. (7) and to calculate the EPR variance for the full system.

We established in Sec. II B 2 that for the protocol to work
we require the effective mechanical decoherence time to be
much larger than the duration of the light pulse, i.e., ε n̄ � 1.
We emphasise that ε is the smallest of all parameters, and the
coherent evolution will only be negligibly perturbed by the
coupling to the mechanical bath. We will therefore only keep
terms O(εn̄) while neglecting O(ε). Based on this premise
we simplify Eq. (19) twofold: First, we drop the mechanical
damping from the first term, as it gives corrections on the order
of O(ε) only; thus M ≈ M|γ=0. This amounts to dropping
the term − γ

2 pm in Eq. (3b). Second, we approximate the
mechanical noise contribution (in the second term) by only
keeping the free, harmonic evolution, while neglecting their
coupling to the optical mode. The coupling is a second order
process and is therefore suppressed by an additional factor of ξ .
Note that by doing so we overestimate the effect of mechanical
noise, as it contributes to the creation of optomechanical
correlations when subject to the coherent dynamics. The
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complete noise term entering in the evolution of the mechanical
variables then takes the form

i
√

γ

∫ τ

0
ds e−iωmsf (τ − s) =:

√
γ τ

2
(Fs + iFc), (20)

where we introduced (co)sine components F(c)s of the Brow-
nian force. We can therefore write am(τ ) ≈ am(τ )|γ=0 +√

ε/2 (Fs + iFc), and consequently

Xout
m ≈ Xout

m

∣∣
γ=0 + √

ε Fs, (21a)

P out
m ≈ P out

m

∣∣
γ=0 + √

ε Fc, (21b)

while we neglect the mechanical noise contribution to the opti-
cal mode, i.e., Aout ≈ Aout|γ=0. Note that, from the commuta-
tion relation of the Brownian noise term, [f (t + s),f (t)] =
i

ωm
δ′(s) [50], it follows that [Fs,Fc] = i + O(1/ωmτ ) and

[Fi,Fi] = O(1/ωmτ ). The perturbed variables (21) there-
fore approximately obey canonical commutation relations
[Xout

m ,P out
m ] ≈ i(1 + ε). Using Eq. (21) together with the

correlation functions 〈FiFi〉 = n̄ + 1
2 leads to Eq. (14). As

we have separated the mechanical noise terms from the other
dynamics, we will always assume that M ≈ M|γ=0 and drop
the γ dependence for the rest of this section.

We now use Eq. (19) together with the definitions of Aout

[Eq. (6b)] and Bout to obtain input-output equations similar
to Eq. (7), but for the full system dynamics. The resulting
expressions are of the form

Bout = c1Bin + c2B
†
in + c3ac(0) + c4a

†
c(0)

+ c5

∫ τ

0
ds αin,1(s)ain(s) + c6

∫ τ

0
ds α∗

in,2(s)a†
in(s),

with a similar expression for Aout. The coefficients ci as well
as the light modes αin,i are determined by the system dynamics
[given by M(t)] and the light mode αout which is selected from
the output field. Note that these expressions are valid for γ = 0
only and thus have to be used in conjunction with Eq. (21) to
account for mechanical noise.

Following the treatment in Sec. II A 2 one easily finds the
corresponding EPR variance, which now includes noise terms
from the initial intracavity field and the extra light modes (both
assumed to be in vacuum). The latter contributions are given
by the overlap of the different light modes

∫ τ

0dt αin,i(t) α∗
in,j (t).

The resulting expression is an involved function of ε,η,
and ξ and is not presented here. Numerical minimization with
respect to those three variables for fixed values of n̄ and Qm

yields the results presented in Fig. 2.

IV. CONCLUSIONS

We have developed a scheme to create and—due to its
pump-probe operation—unambiguously verify EPR entangle-
ment in optomechanical systems. Additionally, its application
as an entanglement resource in quantum teleportation was
discussed. Finally, by optimizing the experimental parameters
we showed that the suggested protocol is feasible with state-
of-the-art optomechanical devices.
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APPENDIX: TRANSFORMED HAMILTONIAN

Starting from the Hamiltonian Eq. (15) we write down the
standard quantum-optical master equation for a damped cavity
mode:

ρ̇ = −i[H,ρ] + κ(2acρa†
c − aca

†
cρ − ρaca

†
c), (A1)

while we neglected the mechanical decoherence terms, as we
are only interested in times far within the coherence time of
the oscillator. In order to eliminate the driving field E(t) we
go into a displaced picture:

ρ̄ = Dc(α)Dm(β)ρD†
c(α)D†

m(β), (A2)

with displacement operators Di(α) = exp(αa
†
i + α∗ai). The

time-dependent, complex amplitudes α = α(t) and β = β(t)
give the mean displacements due to the laser drive and will be
determined in the following.

The transformed master equation can again be written in
the form of Eq. (A1) by substituting ρ → ρ̄ and H → H̄ . The
Hamiltonian H̄ is then given by

H̄ = ωma†
mam + [�0 + g0(β + β∗)]a†

cac

+ g0(α∗ac + αa†
c)(am + a†

m) + g0a
†
cac(am + a†

m)

+{[iα̇ + (iκ + �0)α + g0(β + β∗)α − iE]a†
c + H.c.}

+ [(iβ̇ + ωmβ + g0|α|2)a†
m + H.c.]. (A3)

The first two lines constitute the new Hamiltonian of the
system, and the last two lines describe the mean (classical)
cavity and mirror amplitude, respectively. We can make these
terms disappear by choosing α and β such that they fulfill the
following set of coupled, nonlinear differential equations:

α̇ = {i[�0 + g0(β + β∗)] − κ}α + E, (A4a)

β̇ = iωmβ + ig0|α|2. (A4b)

We seek solutions to these equations for initial conditions
α(0) = β(0) = 0 in terms of the driving field E(t). Due to their
nonlinear nature, no exact closed-form solution will exist in
general and we will therefore look for approximate solutions
under the assumptions we made in Sec. II B. We formally
integrate Eq. (A4b) to find

β(t) = ig0

∫ t

0
ds eiωms |α(t − s)|2 . (A5)

Under the assumption that κ � ωm and given that E(t) varies
sufficiently slowly, we also expect |α(t)|2 to be a slowly
varying function on the time scale of 1/ωm. We will check
this for consistency at the end of this section. For this case we
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can use the adiabatic solution

β(t) ≈ − g0

ωm
|α(t)|2 . (A6)

Plugging this into Eq. (A4a) and introducing the effective
detuning

�c(t) = �0 − g0[β(t) + β∗(t)]

= �0 − 2g2
0

ωm
|α(t)|2 , (A7)

we find the solution

α(t) ≈ 1 − e−(i�c+κ)t

i�c + κ
E(t) (1 + δ) ≈ E(t)

i�c + κ
, (A8)

where δ is a correction, which is small if E(t) varies slowly
on a time scale of 1/κ . More precisely, one can show that a
crude upper bound is given by |δ(t)| < sups∈(0,t)

1
κ

|Ė(s)|
|E(t)| , which

must be much smaller than unity. Also, as we assume that
κτ � 1, we neglect the term e−κt , as this only contributes at
the very beginning of the pulse. The approximations made in
Eq. (A7) amount to assuming that the slope of the pulse is small
enough (with respect to κ) that it does not experience distortion
due to the finite cavity linewidth. Throughout this derivation
we have assumed that �c(t) ≈ �c is approximately constant
in time, which is well fulfilled for the parameter regime
O(g/ωm)2 � 1 that we are concerned with. This can be made
exact if we assume the laser detuning to be locked with respect
to the effective cavity resonance frequency. Having obtained
a solution for α(t), we can go back to test the self-consistency
of our derivation of Eq. (A5), where we required d|α|2

dt
� ωm.

In the case g � κ � ωm we find that d|α|2
dt

≈ 1
ω2

m

d|E|2
dt

� ωm,
giving an additional condition on the pulse shape. Taking all
these considerations into account we arrive at the linearized
Hamiltonian Eq. (16).
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