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Quantum logic gates for superconducting resonator qudits
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We study quantum information processing using superpositions of Fock states in superconducting resonators
as quantum d-level systems (qudits). A universal set of single and coupled logic gates is theoretically proposed
for resonators coupled by superconducting circuits of Josephson junctions. These gates use experimentally
demonstrated interactions and provide an attractive route to quantum information processing using harmonic

oscillator modes.
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I. INTRODUCTION

Superconducting quantum bits (qubits) [1] are a leading
candidate for a solid-state quantum computer. However,
while coherence times are continually increasing, it remains
necessary to study how to maximize coherence while accessing
the large Hilbert space required by key applications in
quantum information processing. Examples include the rapid
controlled-phase gate using auxiliary states [2-5] and the
general framework to improve quantum logic gate synthesis
using multilevel systems [6]. An emerging pattern is that
resources outside of the traditional qubit states can lead to
improved control sequences with reductions in total time or
complexity.

Superconducting phase and transmon circuits are a natural
candidate to explore operations outside of the qubit subspace,
as these systems are in fact weakly anharmonic oscillators
with many levels. Control of multiple levels in these devices
has been demonstrated experimentally [7-10] and explored
theoretically [11-15]. Notably, a theoretical method [16]
incorporating multiple levels has led to improvements in qubit
logic operations [17,18].

Superconducting resonators can also be controlled at the
Fock-state level. By coupling such resonators to an auxiliary
nonlinear system, recent experiments have created Fock states
[19], observed their decay [20], and demonstrated the synthesis
of arbitrary superpositions of Fock states [21]. This last exper-
iment used the protocol of Law and Eberly [22] with linear
coupling of a phase qubit to a coplanar waveguide resonator.
A recent theoretical work [23] extended this approach to
the synthesis of entangled states of two (and possibly more)
resonators. Subsequently, an experimental synthesis [24] of a
“high” NOON state [25] was accomplished using an alternative
procedure [26].

While great progress has thus been made in the control
of superconducting resonators, these works leave open the
question of whether the larger state space of the resonator
can be used to process quantum information. While there are
certainly caveats to the question of “qubit or oscillator?” (see,
e.g., [27]), there is an established body of work demonstrating
that quantum systems with multiple states, known as qudits (for
d-level systems), can be as useful as qubits. Using the lowest
d levels of a harmonic oscillator would thus be a potential
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alternative to qubits. For superconducting circuits in particular,
it is clear that resonators can be fabricated with much greater
precision and coherence, and thus a central question is how
to compute using the additional resources present in harmonic
oscillator modes.

An important step in that direction was taken by Jacobs [28]
who showed that linear coupling of an oscillator to an auxiliary
qubit was sufficient to approximate any desired evolution of
the oscillator. This was based on the general Lie algebraic
result by Lloyd et al. [29], but applying this to quantum
logic on a discrete set of Fock states would require significant
overhead in complexity (to synthesize the desired interactions).
Inducing a nonlinearity perturbatively [30] is another route
to unitary control of the oscillator, although this may require
some compromise in timescales (to stay within the perturbative
limits). A scheme of this sort appropriate to atomic cavity-QED
or ion trap systems was proposed by Santos [31] and serves
as a primary inspiration for our proposal. Here we present
a detailed analysis of a circuit-QED approach in which a
three-level system, such as a phase or transmon qubit, is
used as an auxiliary to enable arbitrary unitary control of a
superconducting resonator.

In this work we combine two experimentally demonstrated
interactions to propose a simple procedure to perform an
arbitrary rotation between Fock states and, by composition,
an arbitrary unitary operation on the Fock states. The basic
idea is shown in Fig. 1. We devise a control sequence to
selectively move two states of the oscillator to auxiliary
levels. Here a rotation or swap S is performed between these
two auxiliary levels, and finally these levels are returned to
the original oscillator states. For convenience, we will call
the first step an encoding operation Ugpcoge and the final
step a decoding operation Ugecode, SO that the net rotation is
U 1,2 = Udecode S Uencode-

The first ingredient in our proposal is a quasi-dispersive
interaction between a qubit and the resonator to allow for
number-state-dependent rotations of the qubit. This was first
seen spectroscopically by Schuster et al. [32] and more
recently used to perform a nondemolition measurement of
a resonator memory by Johnson et al. [33]. We propose to
use this interaction to selectively address the Fock states of
interest as part of the encoding and decoding operations. This
approach was previously used in the entangled state synthesis
algorithm [23].

The second ingredient is a resonant swapping interaction
between the resonator and the higher levels of a superconduct-
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FIG. 1. General approach to quantum logic using harmonic
oscillator states. Encoding and decoding operations transfer two
oscillator states (here n = 1 and n = 2) to a pair of auxiliary states
which can be swapped by S. Here the total single-qudit rotation is
Ui, = Ulgecode S Uencode-

ing phase or transmon qubit. This was used in the NOON-state
synthesis experiment [24] and affects the qudit rotation by
swapping the auxiliary levels, as shown in Fig. 1.

This paper is organized as follows: In Sec. II we briefly
review existing qudit theory and outline how our scheme can
be used for qudit logic operations. In Sec. III, the basic system
of a three-level system coupled to an oscillator is presented and
analyzed. In Sec. IV the time-dependent control sequences are
described and verified by numerical simulations. In Sec. V
we show how this can be extended to a two-qudit logic gate.
In Sec. VI we analyze the effects of decoherence and discuss
resonator measurement. Finally, we conclude in Sec. VII with
a discussion of open topics for study.

II. QUDIT LOGIC

Multilevel quantum logic has been explored as an alter-
native to the traditional qubit constructions by many authors
[34-37]. We follow the discussion by Brennen et al. [38].
They show, using the Q R decomposition from linear algebra,
that arbitrary single-qudit unitaries can be constructed from a
family of two-component rotations

Ujk(x.9) = R (@R QMR (— ), (D

where we have defined two operations in the qudit subspace

{10
+(6) = exp [—ig (1) (k] + |k><j|>] @)

and
RE4(0) = exp [—ig A1 - 1K) <k|)} NG

In addition to these single-qudit rotations, we also need a
two-qudit operation to generalize the controlled-NOT gate
commonly used in qubit circuits. We shall synthesize the
controlled-phase gate

Uk (0) = exp (—if|j.k){j.k]), “4)

where |j,k) = |j) ® |k) is the state in which the first qudit is
in state | j) and the second qudit is in state |k). This gate set is
sufficient to perform an arbitrary two-qudit unitary operation
[38] and, by extension to multiple qudits, universal quantum
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computation [36]. Explicit constructions for circuit synthesis
can be found in [39,40].

In the implementation we will present shortly, the rotations
will be between neighboring oscillator states j and k =
J + 1. That is, we will construct U; ;i from the sequence
Ugecode S Uencodes as illustrated in Fig. 1, where S performs a
swapping interaction between the amplitudes for states |j)
and |j + 1). Note that this limitation to neighboring oscillator
states does not present a true obstacle to general qudit logic.
As shown in Lemma II.1 of [38], the important requirement
is that there is a connected coupling graph between the qudit
states. Rotations between neighboring states leads to a linear
coupling graph:

0 lw2---<d-—1. )
Finally, the single-qudit phase rotations Rz  can be per-

formed as in current experiments [2,3] by short detunlng pulses
that can be incorporated in the single-qudit rotations.

III. SUPERCONDUCTING IMPLEMENTATION

We extend the framework of [23], in which two supercon-
ducting resonators are coupled by a tunable circuit, as shown
in Fig. 2. Letting a and a' be the ladder operators for resonator
A, and b and b be those for resonator B, we model the system
as

H = Ha +ha)aaTa +hga(acrf + aTaf)
+ Hp + hapb'b +hg,,(bof +biaB)
+hgah(a+o +o4 oy By. (6)

Here Ha and Hp are the single-qubit Hamiltonians for the
A B

auxiliary, and of and o) are the corresponding raising
and lowering operators (see below). We will assume the
coupling g,, between the two auxiliaries can be turned on
and off at will by using the tunable coupling circuits recently
demonstrated [41,42], and that the auxiliaries can be controlled
by microwave and flux pulses.

Resonator A

|l QutitA

Control Lines
I - Qutrit B

Resonator B

FIG. 2. (Color online) Schematic superconducting circuit to
implement single and two-qudit operations on resonators A and B.
Each resonator is coupled to an auxiliary qutrit (A or B), which are
themselves coupled to each other. Control lines allow manipulation
of the qutrits.
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A. Single-resonator model
We begin by focusing on a single qubit-resonator system
(i.e., A or B), described by the following Hamiltonian:
H ="Hq +hwyala +hglaoy + alo.), 7

where the auxiliary quantum system is taken as a three-level
qutrit:

0 O 0
Ho=h|0 wu O ®)
0 0 owp
and
010
o-=10 0 A»|[, 9)
0 0 0

witho, = o . Note that this auxiliary system could be either a
phase or transmon qubit, as each have a similar level structure,
in that w, = wey — wo1 < wp1, and A ~ V2. In addition, they
are both tunable by external flux pulses, which we will use in
our construction.

An energy level diagram is shown in Fig. 3(a), where we
have used the convention to label the system by |g,n), were
g = 0,1,2 is the state of auxiliary qutrit and »n is the photon
number (or Fock state). This is a generalization of the classic
Jaynes-Cummings Hamiltonian to a three-level artificial atom
coupled to a resonator.

This Hamiltonian above conserves the excitation number

N =dla+ (D] +212)2]), (10)

so that we can break the problem into an infinite set of (up
to) 3 x 3 blocks. Using the notation |g,n) for qubit states
g = 0,1,2 and Fock states n, the ground state |g = 0,n =
0) is unique and set to have zero energy. The first excited
subspace of |g = 0,n = 1) and |g = 1,n = 0) is governed by

the Hamiltonian
on
H =h( $ ) )
g ol

(a) (b)

n=2 — Ia}lz n=2 —------F~ o
Y Wy
n:]_ n:]_ _——__..__O_
wa Wy (l):,‘J
n=0 4~ ----Y---—--- n=0 —----%---
g=0 g=1 qg=2 q=0 g=1

FIG. 3. (a) Energy level diagram for a three-level artificial atom
coupled to a resonator. The artificial atom has level spacings wy; and
w2 < wo1, While the resonator has frequency w,. (b) Approximate
energy level diagram in the dispersive regime, in which the second
excited state of the atom has been eliminated. The dressed states have
number-state-dependent level spacings w(()']).
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The remaining states involve 3 x 3 matrices for the states
|0,n), |1,n — 1), and |2,n — 2):

no;, N 0
Ho=nh| gs/n (n— Do, + o ghiv/n—1
0 ghv/n—1 (n — 2w, + wp2
(12)

Assuming that we are away from the avoided crossings
Wy = Wy, W2 = Wy, OF Wy = 2w,, We can apply perturbation

theory to H, to find the following for the energies E, ,:
g2
Eyn/h ~ nw, + n—————, (13)
Wy — Wo]

2
Eyn/h ~ nw, + wo1 + (n + 1)8—

wo1 — Wr
2)\’2
+nSt (14)
Wy — W12
gZAZ
Eyn/h ~ no, +wpp +(n+ 1) ———— (15)

w12 — Wy

The shift of the eigenvalues is the ac Stark shift and have been
seen for coupling of a qubit to both quantum and classical
fields. In the dispersive regime, we can effectively eliminate
state ¢ =2 to have the modified level diagram shown in
Fig. 3(b).

As a consequence of this shift, the transition between qubit
states depends on the photon number. We define

E n_E n 2
off) = T = g+ ——n+ 1)
h wo1 — Wy
2)\2
. S (16)
@y — W12

This shift of the qubit transition is indicated in Fig. 3(b). This
Stark shift can be used to provided a number-state-dependent
transition—effectively a controlled-rotation of the qubit based
on the Fock state of the resonator—by applying an additional
microwave field to the qubit of the form Hyrive = R2(0+ +
o_)coswt.

The frequency shift a)(()"l) — wo; is shown in Fig. 4, with
typical experimental parameters. As described in Koch et al.
[43], there are three special regions in this figure: w, < w2,
w2 < W, < woy, and wy; < w,. This is different from what
would be expected for a resonator coupled to a two-level
system, which would have only two regions, one with positive
shift and one with negative shift. The middle region with
positive shift is known as the “straddling” regime and has
the largest value, while the negative regions have smaller
shifts. The divergences in Fig. 4 are at the resonant conditions
W, = wo1 Or w, = wyp. These are in fact avoided crossings
where the states (and transitions between them) are more
complicated.

These avoided crossings can also be used for control. By
rapidly shifting the qubit frequency to one of these anticross-
ings by a “shift” pulse, swapping between the hybridized states
occurs [5]. This has been used to swap excitations from the
qubit to the oscillator [44] and to prepare Fock states and
their superpositions [19,21]. We will consider the anticrossing
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FIG. 4. Number-state-dependent Stark shift wg;, —wo; as a
function of the resonator frequency w,. The perturbative Stark shift
is shown for n =0 — 5 as a function of the resonator frequency
w, /21, for typical qubit parameters wy, /(2w) = 7 GHz, w;,/(27) =
6.58 GHz, A = 1.46, and coupling g/(27) = 35 MHz.

at wyp = w, (see the next section), as was recently used for
NOON state preparation [24].

B. Qudit operation

Having defined the quantum system, we now illustrate
how the dispersive and resonant interactions can be used for
arbitrary single-qudit operation. Consider a quantum state:

d—1
o) =10)® Y culn). (17)
n=0

We begin by performing a rotation between neighboring
Fock states j and j+ 1. To do this, we first apply a
number-state-dependent 7 pulse, conditioned on the photon
state n = j, performing the transformation |0,n) — |6, ;,h);
this will be called R(()jl). This is followed by a m pulse on
the ¢ =1 — 2 transition, called Rj,, after which another
number-state-selective 7 pulse is performed, conditioned on
the photon state n = j + 1. The net result of these operations
is to transform |1/) into

|¢1 > = Uencode|1//0>

cjl2. i) +einllj+ 1)+ Y clln),  (18)
n#j,j+1

where Uegncode = R(()jlﬂ)R lzR(()’l). This has selected out the
[7),]j + 1) subspace of the resonator; this sequence is illus-
trated in Fig. 5(a) for j = 1.

The system is now configured to the resonant regime, with
the resonator frequency w, equal to the ¢ = 1 — 2 transition
frequency wjy, as shown in Fig. 5(b). This can be done by
dynamically tuning the qubit frequency and was the key step
in the NOON state experiment [24]. The subsequent evolution
is a two-state oscillation between |1, j + 1) and |2, j), so that

[¥2) = S@)I¥)

=12 ) +Emllj+ 1)+ D cl0m), (19)
n#j,j+1
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FIG. 5. (a) Encoding and decoding sequence for resonator logic
gate. The number-state-dependent qubit rotations R(()'l) and R((,zl), in the
dispersive regime, select out the Fock states n = 1 and n = 2, while
the R, transition prepares the state for the logic gate. (b) The swap
gate S performs the logic gate in the resonant regime w2 = w,.

where 6 = Agt and the new amplitudes are

¢j =cosfc;—isinfcjy,

Cjt1 =cosfcjy —isinfc;. (20)

To remove the entanglement between the qubit and the
oscillator, we reverse the encoding step. That is, we perform
the number-state-dependent 7w pulse R((){H), the g =2 — 1
transition Ry, and finally Ré’i). The netresultistomap |2, j) —

|0,j) and |1, + 1) — 10,/ + 1), so that

|1//3) = Udecode|1//2)
=&l0./) +&nl0.j+ 1)+ Y clon), @)
n#j,j+1
where Ugecode = Ré’i)RlzRé{H). This achieves the desired
rotation, R ; j4((#). In short, we found

R;.110) = R RaRYTVSORSTVRLRY).  (22)

As alluded to above, any Fock-state rotation R ;(0)
can be implemented by using the nearest-neighbor rotations
R;,j+1(0). This is done by swapping state amplitudes along
paths in a “coupling graph,” as described in [38]. For example,
we can extend our construction to the rotations

Rjj42(0) = R RiS(O)R12 RS T S(0)
x RSP RpS(T)RRE) (23)
and
Rj.j13(0) = RG RinSGr)Ri2S(r)
x RiRITVS@ORY™ Ry
x S(T)R12S(T)R12 RG] (24)

Note that each of these has the form Ugecode S(0)Uencode: W€
first transform the state by encoding it into a particular set of
qudit states (suitably entangled with the auxiliary), perform
a swap, and then decode the state so that the net result is a
transformation of the qudit state alone.

IV. NUMERICAL SIMULATION

We solved the Schrodinger equation for a four-level system
coupled to a resonator. The lowest few energy levels E,,
n=0,1,2,..., for this system are shown in Figs. 6 and 7.
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FIG. 6. Energy levels E| and E, for the coupled qubit-resonator
system as a function of the qubit frequency wg;. These levels
correspond to the single-excitation subspace, with eigenstates |¥;) &
[0,1) and |W¥,) ~ |1,0) for wg, /(27) > 7.3 GHz.

We have used four levels for the auxiliary and ten for
the resonator, with parameters similar to transmon-style
qubits: (wg; — w12)/(2m) = 420 MHz, (wo; — w23)/(2r) =
910 MHz, w,/(2n) = 7 GHz, and g/(27) = 35 MHz. These
are similar to recent experiments, and the resulting levels are
very similar to the energy levels for coupled-phase qubits
[5,45].

Three avoided crossings are indicated in Fig. 7. The first
has wg; = w,, while the second, wyp = 2w,, is a second-
order crossing. The gate described above uses the third
avoided crossing at wj; = w,. Away from these crossings,
we can define a Stark shift for transitions between states
predominantly composed of the uncoupled eigenstates |g,n).
In the following, we will use these “dressed” eigenstates to
characterize our logic gate. The Stark shift a)(()"l) —wp) as a
function of qubit frequency for the various Fock states is shown
in Fig. 8; the additional structure in the straddling regime is
due to the second-order crossing.

To illustrate the logic gate sequence described above, we
start in the straddling regime with wg;/(27) = 7.28GHz and
implement the control sequence shown in Fig. 9. The longer
microwave pulses implement the number-state-dependent ro-
tations, the shorter pulses implementtheg = 1 — 2 transition,

15
145 I1,1)
N
I
c
S 14
5 10,2)
(0]
c
W35
wWo1 = Wy
13 : :
5 7 7.5 8
(001/2n (GHz)

FIG. 7. Energy levels E3, E4, and Es for the coupled qubit-
resonator system as a function of the qubit frequency wy;. These levels
correspond to the two-excitation subspace, with eigenstates |W3) &
[0,2), [Wy) ~ |1,1), and |Ws) = |2,0) for wy,/(27) > 7.6 GHz.
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FIG. 8. Number-state-dependent Stark shift a)(()';) — wop; as a func-

tion of the qubit frequency wy,. The numerically calculated Stark shift
is shown forn =0 — 7.

while the upper shift pulse implements the swap operation. All
of the microwave pulses use a truncated Gaussian profile [16].
Here the qubit frequency is shifted from wg,/(27) = 7.28 —
7.49 GHz and back, causing the exchange |1,1) — |0,2). The
amplitude or the timing of this shift pulse can be adjusted for
an arbitrary rotation; here we have chosen to perform a full
swap n =0 — 1 or n =1 — 0. For this choice of system
parameters, the complete sequence takes 346 ns. In terms
of the dressed eigenstates, this swap is between the energy
eigenstates |W;) and |W;). This sequence can be extended to
perform swaps between any neighboring Fock states with a
similar control pulse.

Solving the time-dependent Schrodinger equation, the
probabilities p; = [(W;|W(¢))|* (for the first few eigenstates)
are shown in Figs. 10 and 11, using initial conditions appro-
priate to n = 0 and n = 1, respectively. The swap probability
for these states is ~0.99, while the higher Fock states are
unaffected (with fidelity >0.95).

V. TWO-QUDIT GATE

An extension of this scheme to two-qudit, and hence
arbitrary quantum computation, will now be described. To

Control pulse

0 50 100 150 200 250 300 350
Time (ns)

FIG. 9. Control sequence for resonator logic gate Uy ;. The upper
line indicates the qubit frequency as a function of time, while the
lower curve indicates the microwave pulses required to encode and
decode the appropriate Fock states. The various steps of the sequence
are labeled.
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FIG. 10. Time-dependent probabilities p, = |{W|W(t))|? for the
swap n = 0 — 1. The solid black lines are for k = 1 and 2, while
the dashed and gray lines are for k = 3 — 6. In this simulation, the
initial state |W(0)) = |\¥,) is evolved using the control sequence of
Fig. 9.

perform the two-qudit operation {{; ;, we return to the circuit
of Fig. 2, with an auxiliary qutrit for each qudit, and the qudits
are coupled together. We denote the states by |q.,qp,74,p)-
We again use the number-state-dependent rotations to encode
and decode the Fock state | j,k) to be coupled. Starting with

Y0) =10.0) ® Y _ comln.m),

n,m

(25)

the encoding operation Uencode = RX,)()le(,)(n prepares the
system in the state

[¥1) = Uencode|¥0) = cjill,1,j.k) + [6¢), (26)
where
189) =Y ciml1,0,j,m) + Y carl0,1,n,k)
m#k n#j
+ Y caml0,0,n,m). (27)
n#j,m#k
1 ,
038 R ()
206
3 ‘ ! !
S ‘
(e} ' | [\
a 0.4 } : '
02
% 150 200 250 300 350

Time (ns)

FIG. 11. Time-dependent probabilities p; = |(W;|W(?))|* for the
swap n = 1 — 0. The solid black lines are for k = 1 and 2, while
the dashed and gray lines are for k = 3 — 6. In this simulation, the
initial state |W(0)) = |W¥,) is evolved using the control sequence of
Fig. 9.
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Control pulse

0 50 100 150 7

Time (ns)

FIG. 12. Control sequence for resonator two-qudit logic gate 4, ,,.
The upper two curves indicates the microwave pulses and qubit
frequency as a function of time for system B, while the lower two
indicate the qubit frequency for system B. The various steps of the
sequence are labeled, with C corresponding to the controlled-phase
gate operated at w4 01 = wgp 12 (see text).

This operation has selected out the oscillator states withn, = j
and n, = k.

A quantum logic operation can now be performed on the
qutrits; specifically, a controlled-phase gate C(6) of the form
9a-q5) = €'%"|qa,q5), Where ¢, =6 for g, =g, =1 and
zero otherwise. This generates the transformation

[¥2) = COYn1) = ecjxl1,1,j.k) + [8%).

Finally, by using Ugecode = Ri\j’)()l Rg{,)m’ we find

(28)

Ws) = Udecode|w2>

¢c;110,0,j.k) + Y caml0,0,n,m), (29)
n,m#(j.k)

returning the encoded states to the resonator. In summary, we
have shown that

(30)

Combining logic gates of this form with single-qudit op-
erations allows for universal quantum computation over an
arbitrary number of qudits [38].

The controlled-phase gate C(6) between the two qutrits can
be implemented by shifting their frequencies so that w4 o1 =
wg,12. The interaction hg.(cfo® + 046 f) now leads to
the resonant exchange |1,1) — —i|0,2) — —|1,1) [5]. This
m-phase shift can be adjusted to any value by using a nonzero
detuning w4 01 — wp 12 [46], or by an adiabatic implementa-
tion [2]. The full control pulse, assuming g,,/(27) = 35 MHz,
is shown in Fig. 12, taking a total time of 150 ns.

Ui x(0) = Ry o1 Ry o1 COR o Ry

VI. DECOHERENCE AND MEASUREMENT

Resonators have very attractive coherence properties, with
the potential for more complex qudit operations than their qubit
counterparts. Resonators have shown nearly ideal decoherence
dynamics [20], described mainly by energy loss. On-chip
resonators typically have coherence times greater than 1 us,
while recent three-dimensional cavities have shown qubit
coherence times T, greater than 10 us and resonator coherence
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Swap Probability
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(o] ©

°
3

0 1 2

3 4
Fock State #

FIG. 13. Swap probabilities for the single-qudit rotations
U, n+1(), for n = 0 — 7. The upper dots are for coherence times
T, =10 us,T, =50 us, while the lower squares are for coher-
ence times 7, =1 us,T, = 10 us. Other relevant parameters are
Q,/(2n) =6.67 MHz, Q2,/(27) = 25 MHz,and g/(27) = 35 MHz.
The curves are guides for the eye.

times 7, greater than 50 us [47]. However, the nth excited state
of the resonator decays with a rate n/T,, proportional to the
Fock state number. A reasonable conclusion is that a “good”
resonator qudit could haved < 1+ T, /T, ~ 6 to 10. We will
numerically simulate the gate sequences described above to
verify this conclusion.

Resonator qudits will also require require a means to
readout the resonator state. The simplest method would use the
quantum Rabi oscillations for wg; = w,, as in the experiments
of Hofheinz et al. [19,21]. Here the exchange of energy
between qubit-resonator states |0,n) and |1,n — 1) occurs with
(angular) frequency g./n. This allows the populations of the
various Fock states to be found by collecting a suitably long
time-series and Fourier analysis. An alternative method would
use the number-state-dependent Rabi transitions to implement
the nondemolition method of Johnson et al. [33]. A sequence
of such transitions applied to a qubit initially in its ground state
would allow the populations of the various Fock states to be
determined, one by one. Both methods would require repeated
qubit measurements to estimate the Fock-state probabilities.

A. Decoherence simulation
We model decoherence using the Lindblad master equation
— =yl + > (Lj,oLj—ELijp—EpL_'].Lj ,
J

(3D

with up to four Lindblad operators L; = 04, L, = o2, L3 =

a,Ly=b,andrates Ay = Ay =1/T and A3 = Ay = 1/T,. To

simplify the calculation, we transform to an interaction picture

and keep only the resonant terms in H for each step of the logic

gate.

For the single-qudit logic gate, this entails the sequence of

interactions

Hin/Tt = £Q21(10)(1] 4+ [1)(OD) ® | j)(j| for
=101 Q2I+12(1)® I for Ry,
5), (32)

()
RO] ’

glaoy +a'o_) for
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FIG. 14. Gate fidelities for the two-qudit phase gate U, ,(;r) for
n =0 — 7. The upper dots are for coherence times T, = 10 us,T, =
50 s, while the lower squares are for coherence times 7T, =
1 us, T, = 10 us. Other relevant parameters are Q2/(27) = 6.67 MHz
and g,,/(2m) = 35 MHz. The curves are guides for the eye.

where [ is the identity operator for the resonator. The resulting
swap probabilities for the single-qudit rotations U, ,4+1(7)
are shown in Fig. 13 for Fock states n =0 — 7. These
simulations use a quantum trajectories approach to integrate
the master equation, with 1024 trajectories. The upper curve
is for state-of-the-art coherence times, while the lower is for
typical on-chip circuits. These results are consistent with a
loss of coherence proportional to e~007/Tue=nT/T: = where
T = 342 — 346 ns is the total time for the single-qudit gate.
As discussed above, the resonator Fock states withn < T, /T,
will have errors of about the same order as a single-qubit gate
of the same duration.

For the two-qudit controlled-phase gate, the interaction
Hamiltonians are

Hu/h = 100, @ I ® j)(jl @ for RY).
=len @0 0l )ijl for R,

V2g(IT1)(02] +102)(11) @ I ® I for C(H),
(33)

where 14, Ip, and I are the identity operators for the auxiliaries
A, B, and a resonator, respectively. The resulting (worst-case)
fidelities for the two-qudit gate U4, ,(;r) are shown in Fig. 14,
again calculated using the quantum trajectories method for the
master equation. These results are somewhat better than the
single-qudit gate, proportional to e~7/T1e=2"T/T: here with a
smaller overall time 7 = 160 ns.

VII. CONCLUSION

We have presented an approach to quantum computation
using the multilevel Hilbert space of a resonator as a qudit. This
approach is based on resonant and dispersive interactions that
have been demonstrated experimentally and can be extended to
multiresonator logic gates. Thus, a successful demonstration
of this scheme will open up a number of interesting questions
in quantum information processing.

First, while there is a great deal known about the theory of
quantum circuits and algorithms for qubits [27], much remains
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to be learned about qudit algorithms. While the asymptotic
complexity should be identical [39], these results indicate that
an arbitrary unitary gate on n qudits requires d" elementary
gates (exponential in n). Efficient quantum algorithms that
use specific gates such as the quantum Fourier transform
can be implemented using a polynomial number of qubit
gates. An interesting problem would be to determine if qudit
constructions for the Fourier transform can be more efficient
than the qubit constructions.

Second, our analytical approach leaves open questions
about optimization of operations in this larger Hilbert space.
There may be interesting approaches to construct a given
unitary of interest that is more efficient than the two-level
reduction used here. In particular, the number-state-dependent
transitions dominate the operation time. While this time
can likely be decreased by using larger couplings or more
sophisticated microwave pulses, perhaps using multiple fre-
quencies [15] or multiple quadratures [16], other approaches

PHYSICAL REVIEW A 84, 052313 (2011)

may be necessary. Optimal control methods [48] for this
system may lead to such alternative approaches, and would
be important for operations in the presence of decoherence.

Finally, the two measurement approaches presented both
use qubit measurements to read out the resonator states. Either
approach should allow for full tomography of the resonator
logic gates, at the expense of having to perform a large number
of experiments to determine the state of the resonator. An
open question is how to extract this information in the most
direct and efficient manner. These and other issues will be
fruitful tests of our understanding of quantum control and
measurement of multilevel quantum systems.
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