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Decoherence and measurement-induced correlations
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Decoherence arises from the interaction of a quantum system with the environment or, more precisely, from
the measurement in which the environment “measures” the quantum system and establishes correlations with it.
In this work, we first quantify measurement-induced correlations from both classical and quantum perspectives.
Then we quantify decoherence via measurement-induced classical correlations. By virtue of an intrinsic and
powerful link between entanglement (as quantified by entanglement of formation) and classical correlations (as
quantified by the difference between the total correlations and quantum discord) in pure tripartite systems, we
present general analytical formulas for measurement-induced correlations and decoherence measures for qubit
systems and, furthermore, reveal a conservation relation for the information-disturbance tradeoff.
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I. INTRODUCTION

When a quantum system is coupled with the environment,
correlations are established between them, and decoherence is
essentially a manifestation of such correlations [1–3]. This can
be completely cast into the von Neumann scheme of quantum
measurement in which correlations are established between
a system and a measurement apparatus if we interpret the
environment as the measurement apparatus [4,5]. The funda-
mental question arises of how to characterize and quantify
such measurement-induced correlations. This primary issue is
of both theoretical significance and practical interest since
measurement plays a pivotal role in quantum theory. The
present work is devoted to an investigation of this problem
and its implications for decoherence. Several basic figures
of merit characterizing measurement-induced correlations are
proposed and their fundamental significance and properties are
illustrated.

For this purpose, recall that a general quantum measurement
M = {Mj } on a state ρ induces, in the selective case, an
ensemble {pj ,ρj } consisting of the outcome probabilities
pj := trMjρM

†
j and the corresponding post-measurement

states ρj := 1
pj

MjρM
†
j . In the nonselective case, the mea-

surement results are ignored and the overall post-measurement
state

M(ρ) :=
∑

j

pjρj =
∑

j

MjρM
†
j (1)

is the average of the ensemble {pj ,ρj }. The measurement
M defined by Eq. (1) is also usually called an operation
or a channel, and Mj are the so called Kraus operators,
which satisfy the normalization condition

∑
j M

†
jMj = 1. The

family {M†
jMj } constitutes a positive operator-valued measure

[6,7]. For a given measurement, there are two canonical ways
to embed it into bipartite states: The first is via the Jamiolkoski-
Choi isomorphism between an operation and a bipartite state
with the help of an ancilla which is a “ghost” copy of the initial
system (channel-state duality) [8], the second is to couple
the system with an apparatus (or environment) by virtue of a
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unitary operator. We will combine these two ways in order to
reveal and evaluate measurement-induced correlations.

Our approach is as follows: Consider a quantum system
with a Hilbert space Hb. Any measurement M as described
by Eq. (1) on this system has the following unitary-reduction
representation [6,7]:

M(ρ) = trcU (ρ ⊗ |c〉〈c|)U †.

Here trc denotes the partial trace over Hc, U is a unitary
operator on Hb ⊗ Hc with Hc interpreted as an apparatus
space, and |c〉 is an initial state of the apparatus. In the
conventional system-environment approach to decoherence,
Hc is usually interpreted as an environment, which, of course,
can also be regarded as a measurement apparatus. We call the
pair (U,|c〉) a unitary realization of the measurement M. In
general, a measurement has infinitely many different unitary
realizations, which are connected by local unitary operators
on the apparatus space [7].

Now the correlations established between the system and
the measurement apparatus are fully embodied in the unitary
operator U , and it is intuitive and natural to quantify the
correlations between the system and the apparatus induced
by the measurement in terms of correlations in the final
system-apparatus state U (ρ ⊗ |c〉〈c|)U †. We will exploit this
idea in order to capture measurement-induced correlations.
It turns out that such measurement-induced correlations are
intimately related to entanglement in the ancilla-system state
Ia ⊗ M(|�ab〉〈�ab|). Here, |�ab〉 is a purification of the
initial system state ρ, and Ia is the identity operation on
the ancilla space Ha = Hb used for purifying ρ. Before
embarking on this task, we recall the notions of classical
and quantum correlations [9–12] in Sec. II and employ these
notions to define measurement-induced correlations in Sec. III.
Several examples are worked out explicitly. As applications,
we quantify decoherence and information-disturbance tradeoff
in Sec. IV and Sec. V respectively. Finally, Sec. VI is devoted
to discussion, and the appendix is devoted to the proof of
Theorem 1 and detailed calculations for examples 1, 2, and 3.

II. CLASSICAL VERSUS QUANTUM CORRELATIONS

Given a bipartite state σbc shared by two parties b and c with
marginal states σb := trcσ bc and σ c := trbσ bc, respectively,
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its amount of total correlations is usually quantified by the
quantum mutual information [13–16]:

I (σbc) := S(σb) + S(σ c) − S(σbc).

Here, S(σb) := −trσblog2σ
b is the von Neumann entropy.

Following Henderson and Vedral [9], the amount of
classical correlations in σbc is well quantified by

C(σbc) := max
�

⎡
⎣S(σb) −

∑
j

qjS
(
σb

j

)⎤⎦ ,

where the max is over all measurements � = {�j } on system
c and qj := tr(1 ⊗ �j )σbc(1 ⊗ �

†
j ),

σ b
j := trc(1 ⊗ �j )σbc(1 ⊗ �

†
j )/qj .

Since I (σbc) quantifies the total correlations, the amount of
quantum correlations can be defined as

Q(σbc) := I (σbc) − C(σbc).

In particular, if the measurements are restricted to the von
Neumann measurements (orthogonal, one-dimensional pro-
jections) in the above definition, then one gets the quantum
discord introduced by Ollivier and Zurek [10], which has oper-
ational interpretations and interesting applications in quantum
information theory [17–22]. Except for some particular states
such as the Bell-diagonal states [12], it is usually difficult to
evaluate the classical correlations and the quantum discord,
even for two-qubit states [23,24]. Some other measures of
correlations are also introduced and studied, such as the
information deficit [25], the measurement-induced disturbance
[11], the geometric discord [26,27], the measurement-induced
nonlocality [28], etc.

Another important and by far the best-studied measure of a
particular kind of quantum correlations (entanglement) is the
entanglement of formation [29]:

E(σbc) := min
∑

k

rkE
(∣∣�bc

k

〉〈
�bc

k

∣∣).
Here, the min is over all pure state decompositions σbc =∑

k rk|�bc
k 〉〈�bc

k |, and E(|�bc
k 〉〈�bc

k |) = S(trc|�bc
k 〉〈�bc

k |) is
the entanglement entropy of the pure state |�bc

k 〉. In particular,
for any two-qubit state σbc, its entanglement of formation can
be explicitly evaluated as [30]

E(σbc) = H

(
1 − √

1 − λ2

2

)
. (2)

Here, H (x) := −xlog2x − (1 − x)log2(1 − x) is the Shannon
entropy function, λ := max{0,

√
λ1 − √

λ2 − √
λ3 − √

λ4} is
the concurrence of σbc, λj are the eigenvalues of σbcσ̃ bc in
decreasing order, σ̃ bc := (σy ⊗ σy)σ̄ bc(σy ⊗ σy) is the time-
reversed version of σbc, while σ̄ bc is the complex conjugate of
σbc (in matrix form), and σy is the Pauli spin matrix. With the
above preparation, we are now ready to quantify measurement-
induced correlations.

III. MEASUREMENT-INDUCED CORRELATIONS

By virtue of the classical correlations and quantum corre-
lations of the final system-apparatus state

σbc := U (ρ ⊗ |c〉〈c|)U †,

arising from the unitary realization (U,|c〉) of the measurement
M on the system b, we define measurement-induced total,
classical, and quantum correlations as

Iρ(M) := I (σbc), Cρ(M) := C(σbc),

Qρ(M) := Q(σbc),

respectively. When ρ = 1/dimHb is the maximally mixed
state, we denote the corresponding measurement-induced
correlations as I (M), C(M), and Q(M), respectively.

Theorem 1.The measurement-induced correlations Iρ(M),
Cρ(M), and Qρ(M) are all independent of the unitary
realizations (U,|c〉) of M, and thus are intrinsic properties
of ρ and M.

This follows from the local unitary freedom of unitary
realizations of a measurement which is implied by Theorem 8.2
in Ref. [7], page 372. For the detailed proof, see the appendix.

In general, if the number of the Kraus operators of the
measurement M is large, it will be impossible to evaluate
the classical correlations and quantum correlations between
the system and the apparatus. Fortunately, in this circumstance,
by exploiting the elegant Koashi-Winter relation [31,32]

S(σb) = C(σbc) + E(σab) (3)

between the classical correlations in the bc system and the
entanglement of formation in the ab system for any pure
tripartite state σabc, we can derive the following alternative
expressions for the measurement-induced correlations, which
link the measurement-induced correlations to the entangle-
ment between the system and the ancilla.

Theorem 2. Let |�ab〉 be a purification of ρ in the space
Ha ⊗ Hb with Ha = Hb being an ancilla, and σab := Ia ⊗
M(|�ab〉〈�ab|) with Ia being the identity measurement on
Ha , then

Iρ(M) = S(M(ρ)) + S(σab) − S(ρ), (4)

Cρ(M) = S(M(ρ)) − E(σab), (5)

Qρ(M) = S(σab) − S(ρ) + E(σab). (6)

In particular, if M is a measurement on a qubit system, then
all the above quantities can be evaluated explicitly in view of
Eq. (2).

For the proof, consider the overall initial ancilla-system-
apparatus tripartite state |�abc〉 := |�ab〉 ⊗ |c〉 and the final
state |�abc〉 := (Ia ⊗ U )(|�ab〉 ⊗ |c〉) where (U,|c〉) is a
unitary realization of M. This constitutes in some sense a
tripartite purification of both the initial system state ρ and the
measurement M; see Fig. 1. Noting that σabc := |�abc〉〈�abc|
is a pure tripartite state, σb = M(ρ), S(σ c) = S(σab), and
S(σbc) = S(σa) = S(ρa) = S(ρb) = S(ρ), we obtain Eq. (4)
from the definition Iρ(M) = I (σbc). Moreover, Eq. (5) fol-
lows from Eq. (3), and Eq. (6) follows from a combination of
Eqs. (4) and (5).
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FIG. 1. Combination of purification of the system state ρ and
unitary representation of the measurement M yields a tripartite joint
purification of both ρ and M. The overall initial state is ρabc :=
|�abc〉〈�abc|, and the overall final state is σabc := |�abc〉〈�abc| with
|�abc〉 := Ia ⊗ U (|�abc〉). Here Ia is the identity operation on Ha ,
and U is a unitary operator on Hb ⊗ Hc. Furthermore, noting that
ρ = ρb,ρc = |c〉〈c| and σ b = M(ρ).

In order to gain an intuitive understanding of measurement-
induced correlations, let us illustrate them by several funda-
mental and important examples.

Example 0. Consider a system state with nondegenerate
spectral decomposition ρ = ∑

k λk|k〉〈k| on Hb. For the von
Neumann measurement M = {|k〉〈k|} along the eigenbase of
ρ, we have a unitary realization (U,|c〉) with U |k〉 ⊗ |c〉 =
|k〉 ⊗ |k〉 and |c〉 any pure state of the measurement apparatus
space Hc = Hb. Consequently,

σbc = U (ρ ⊗ |c〉〈c|)U † =
∑

k

λk|k〉〈k| ⊗ |k〉〈k|,

and we readily (or directly from Theorem 2) get Iρ(M) =
Cρ(M) = S(ρ), Qρ(M) = 0, which means that here the
measurement-induced correlations are purely classical.

Example 1. For the measurement (phase-damping channel)
Mphase(ρ) := M0ρM

†
0 + M1ρM

†
1 with

M0 =
(

1 0

0
√

1 − γ

)
, M1 =

(
0 0

0
√

γ

)
,

(7)
0 � γ � 1,

it can be evaluated that (see the appendix)

I (Mphase) = H

(
1 − √

1 − γ

2

)
,

C(Mphase) = 1 − H

(
1 − √

γ

2

)
,

Q(Mphase) = H

(
1 − √

1 − γ

2

)
+ H

(
1 − √

γ

2

)
− 1.

Example 2. For the measurement (amplitude-damping
channel) Mamplitude(ρ) = M0ρM

†
0 + M1ρM

†
1 with

M0 =
(

1 0
0

√
1 − γ

)
, M1 =

(
0

√
γ

0 0

)
,

(8)
0 � γ � 1,

it can be evaluated that (see the appendix)

I (Mamplitude) = H

(
1 − γ

2

)
+ H

(γ

2

)
− 1,

C(Mamplitude) = H

(
1 − γ

2

)
− H

(
1 − √

γ

2

)
,

Q(Mamplitude) = H
(γ

2

)
+ H

(
1 − √

γ

2

)
− 1.

The explicit expressions for measurement-induced corre-
lations in examples 1 and 2 can be readily derived from
Theorem 2 with the help of Eq. (2), as well as from the original
definitions. It is interesting to compare the measurement-
induced correlations for the phase and the amplitude-damping
channels, as illustrated in Fig 2. Since the phase-damping
channel is actually the complete decoherent channel, with
γ characterizing the intensity of decoherence, it is just
natural that C(Mphase) is increasing with respect to γ . On
the other hand, it is interesting to observe that, for the
amplitude-damping channel, when γ = 1, it transforms any
state into a pure state, and there are no measurement-induced
correlations at all. In particular, there is no decoherence in this
instance. Thus the measurement-induced correlations reveal
some deeper insight concerning the difference between the
phase-damping and amplitude-damping channels.

Example 3. Consider the measurement (Pauli channel)
MPauli(ρ) = ∑3

j=0 MjρM
†
j = p0ρ + ∑3

j=1 pjσjρσj , with
M0 = √

p01, Mj = √
pjσj for j = 1,2,3 and (p0,p1,p2,p3)

being a probability distribution, {σj } are the Pauli spin
matrices. In this case, the system-apparatus space is 2 × 4
dimensional and it is difficult to calculate the measurement-
induced correlations directly from the final system-apparatus
state σbc. However, in view of Theorem 2, we may calculate
these quantities indirectly by using the explicit formula for
the entanglement of formation in σab, which is a 2 × 2
dimensional state. By this method, we get (see the appendix)

I (MPauli) = −
∑

j

pj log2pj ,

C(MPauli) = 1 − H

(
1 − √

1 − λ2

2

)
,

Q(MPauli) = −
∑

j

pj log2pj + H

(
1 − √

1 − λ2

2

)
− 1.

IV. QUANTIFYING DECOHERENCE VIA
MEASUREMENT-INDUCED CORRELATIONS

The decoherent effect of a measurement (channel) is
directly related to the measurement-induced classical corre-
lations because only the classical correlations can be “read
out” from the apparatus (information gain). Thus we define
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FIG. 2. (Color online) Solid lines depict the measurement-
induced total (black), classical (red), and quantum (blue) correlations
for the amplitude-damping channel. The dashed lines depict those for
the phase-damping channel. We see that the amount of measurement-
induced classical correlations C(Mphase) for the phase-damping chan-
nel is larger than C(Mamplitude), which is the amount of measurement-
induced classical correlations for the amplitude-damping channel.

the decoherence caused by a measurement M on a state ρ

as De(M,ρ) := Cρ(M). This decoherence measure captures
nicely our intuition about decoherence exemplified by the
decay of off-diagonal elements of density matrices, and goes
much beyond. In general, this quantity synthesizes two effects
related to coherence and decoherence whenever mixed states
are involved: The first is the “local” decoherent effect of M
on ρ itself arising from the transformation ρ → M(ρ), and
the second is the “global” decoherent effect of M on the pu-
rification |�ab〉 of ρ arising from the transformation |�ab〉 →
Ia ⊗ M(|�ab〉〈�ab|) (e.g., destruction of the entanglement
in |�ab〉). If ρ is a pure state, then De(M,ρ) = S(M(ρ)) is
the increase of entropy [since S(ρ) = 0]. On the other hand,
consider Example 0; the “local” decoherent effect of M on
ρ should be regarded as zero since the measurement does not
change the state. However, if we regarded ρ as the marginal
state of a pure bipartite state |�ab〉, then the entanglement
loss between the system and the ancilla (used for purifying ρ)
caused by the measurement is exactly the entropy of ρ, which
should be regarded as some kind of “global” decoherent effect.
Thus the overall decoherence is S(ρ), which is in accordance
with the calculation result of Example 0.

From Examples 1 and 2 we also see that the decoherent
effect of the phase-damping channel is indeed stronger
than that of the amplitude-damping channel. It should be
emphasized that here it is the amount of measurement-induced
classical correlations, rather than that of the measurement-
induced quantum correlations, that captures the decoherence.
It would be interesting to further investigate the role of
measurement-induced quantum correlations in decoherence
and measurement.

V. INFORMATION-DISTURBANCE TRADEOFF

Theorem 2 has interesting implications for information-
disturbance tradeoff in quantum measurements [33–40]. The
measurement-induced classical correlations Cρ(M) can be
interpreted as the information gained by the measurement M
[41]. How to quantify the disturbance on ρ caused byM? First,
there is the entropy change S(M(ρ)) − S(ρ). Second, there
is the ancilla-system entanglement loss E(ρab) − E(σab) =

S(ρ) − E(σab). If we combine the two effects and define the
disturbance

Dρ(M) := S(M(ρ)) − S(ρ) + E(ρab) − E(σab),

then Eq. (5) may be interpreted as an information-disturbance
tradeoff identity; that is,

Cρ(M) = Dρ(M),

which of course is a particular manifestation of information
conservation. Another intrinsic interpretation of Eq. (5) is as
follows: Since S(M(ρ)) = E(σac:b) is precisely the entan-
glement of the pure state σabc with the partition ac : b, the
quantity

S(M(ρ)) − E(σab) = E(σac:b) − E(σab),

which represents the difference between the entanglement in
the partition ac : b and a : b, respectively, may be roughly re-
garded as some kind of “virtual entanglement” between system
b and measurement apparatus c caused by the measurement.
Equation (5) states that this “virtual entanglement” coincides
with the measurement-induced classical correlations!

VI. DISCUSSION

By analyzing and separating the correlations in the system-
apparatus state after a measurement, we have proposed three
notions to characterize and quantify measurement-induced
correlations. These quantities reveal more precisely the nature
and characteristics of information transfer from a system to
a measurement apparatus. This framework also encapsulates
naturally the decoherence scheme when we interpret the
environment as an apparatus measuring the quantum system.
The notion of measurement-induced classical correlations can
be used for quantifying decoherence and has fundamental
implications for information-disturbance tradeoff.
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APPENDIX

Here we present the proof of Theorem 1, as well as the
detailed calculations for examples 1, 2 and 3.

Proof of Theorem 1. Assume that there exist two different
unitary realizations (U1,|c1〉) and (U2,|c2〉) for a given mea-
surement M, with corresponding apparatus spaces Hc1 and
Hc1 , respectively, then for any state ρ on Hb,

M(ρ) = trc1U1(ρ ⊗ |c1〉〈c1|)U †
1 = trc2U2(ρ ⊗ |c2〉〈c2|)U †

2 .

Without loss of generality, we assume dimHc1 � dimHc2 and
embed Hc2 into Hc1 . Let {|ej 〉} be an orthonormal basis of
Hc1 which is formed by an extension of an orthonormal basis
{|ek〉} of Hc2 . Let Mj := 〈ej |U1|c1〉, Nk := 〈ek|U2|c2〉, then
{Mj } and {Nk} are two different Kraus operator representations
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for the same measurement M; namely,

M(ρ) =
∑

j

MjρM
†
j =

∑
k

NkρN
†
k .

Moreover, for any state ρ on Hb,

U1(ρ ⊗ |c1〉〈c1|)U †
1 =

∑
jj ′

MjρM
†
j ′ ⊗ |ej 〉〈ej ′ |,

U2(ρ ⊗ |c2〉〈c2|)U †
2 =

∑
kk′

NkρN
†
k′ ⊗ |ek〉〈ek′ |.

By Theorem 8.2 in Ref. [7] (page 372), we know that
there exists a unitary matrix W = {wjj ′ } on Hc1 such that
Mj = ∑

k wjkNk. Since {|fk〉 := ∑
j wjk|ej 〉} constitutes an

orthonormal base, there exists a unitary operator X such that
|fk〉 = X|ek〉, and we have

U1(ρ ⊗ |c1〉〈c1|)U †
1

=
∑
jj ′

MjρM
†
j ′ ⊗ |ej 〉〈ej ′ |

=
∑
jj ′

(∑
k

wjkNk

)
ρ

(∑
k′

w̄j ′k′N
†
k′

)
⊗ |ej 〉〈ej ′ |

=
∑
kk′

NkρN
†
k′ ⊗

∑
j

wjk|ej 〉
∑
j ′

w̄j ′k′ 〈ej ′ |

=
∑
kk′

NkρN
†
k′ ⊗ |fk〉〈fk′ |

=
∑
kk′

NkρN
†
k′ ⊗ X|ek〉〈ek′ |X†

= (1 ⊗ X) U2(ρ ⊗ |c2〉〈c2|)U †
2 (1 ⊗ X†).

Since quantum mutual information is invariant under local
unitary operations, we conclude that Iρ(M) is independent of
the unitary realizations of M. Similarly, from the definition of
classical correlations, we see that Cρ(M) is also invariant
under local unitary operations. This implies that Cρ(M)
and Qρ(M) are independent of the unitary realizations
of M. �

For examples 1 and 2, we will present two methods to
evaluate the measurement-induced correlations: The first is by
direct calculations; the second is by use of Theorem 2, which
is much easier.

Example 1. For the measurement (phase-damping channel)

Mphase(ρ) := M0ρM
†
0 + M1ρM

†
1,

with

M0 =
(

1 0

0
√

1 − γ

)
, M1 =

(
0 0

0
√

γ

)
,

(A1)
0 � γ � 1,

one of its unitary realizations (U,|c〉) can be represented as
|c〉 := |0〉 and

U :=

⎛
⎜⎜⎜⎝

1 0 0 0

0 i 0 0

0 0
√

1 − γ −i
√

γ

0 0
√

γ i
√

1 − γ

⎞
⎟⎟⎟⎠ ,

in the standard base {|00〉,|01〉,|10〉,|11〉}. Clearly, U satisfies

Mj = 〈j |U |c〉, j = 0,1.

After performing the measurement Mphase on the system state
ρ = ρb = 1/2, the final system-apparatus state

σbc := U (ρ ⊗ |0〉〈0|)U †

can be expressed as

σbc = 1

2

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 0 0

0 0 1 − γ
√

γ (1 − γ )

0 0
√

γ (1 − γ ) γ

⎞
⎟⎟⎟⎠ .

Therefore,

σb = 1
2
, σ c = 1

2

(
2 − γ

√
γ (1 − γ )√

γ (1 − γ ) γ

)
,

and

S(σb) = 1, S(σ c) = H

(
1 − √

1 − γ

2

)
, S(σbc) = 1,

from which we obtain

I (Mphase) = H

(
1 − √

1 − γ

2

)
.

To evaluate C(Mphase), we consider another unitary real-
ization ((1 ⊗ Z)U,|0〉) of M with

Z =
⎛
⎝

√
1+√

1−γ

2

√
1−√

1−γ

2

−
√

1−√
1−γ

2

√
1+√

1−γ

2

⎞
⎠ .

Note that Z diagonalizes σ c; namely,

ZσcZ† =
(

1+√
1−γ

2 0

0 1−√
1−γ

2

)
.

Let

τ bc := (1 ⊗ Z)σbc(1 ⊗ Z†) = 1

4

⎛
⎜⎜⎜⎝

1 + √
1 − γ −√

γ 0 0

−√
γ 1 − √

1 − γ 0 0

0 0 1 + √
1 − γ

√
γ

0 0
√

γ 1 − √
1 − γ

⎞
⎟⎟⎟⎠ ,

then C(Mphase) = C(τ bc).
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By the results in Refs. [32,42] for Bell-diagonal states or
two-qubit states of rank 2, it can be shown that the amount
of classical correlations can be evaluated by restricting the
measurements on the apparatus space Hc to the von Neumann
measurements � := {�j }. Noting that τ bc is of rank 2, thus,
in this case,

C(τ bc) := max
�

⎡
⎣S(τ b) −

∑
j

qjS
(
τ b
j

)⎤⎦
= S(τ b) − min

�

∑
j

qjS
(
τ b
j

)
,

with

qj := tr(1 ⊗ �j )τ bc, τ b
j := 1

qj

trc(1 ⊗ �j )τ bc(1 ⊗ �j ).

A generic von Neumann measurement on Hc in this context
can be parametrized by a unitary operator

V =
(

u −v

v̄ ū

)
, u,v ∈ C, |u|2 + |v|2 = 1,

as

� = {�0 := V |0〉〈0|V †, �1 := V |1〉〈1|V †}.
Now straightforward calculations lead to

q0 = tr(1 ⊗ �0)τ bc = 1 + √
1 − γ (|u|2 − |v|2)

2
,

q1 = tr(1 ⊗ �1)τ bc = 1 − √
1 − γ (|u|2 − |v|2)

2
,

and

τ b
0 = 1

q0
trc(1 ⊗ �0)τ bc(1 ⊗ �0)

= 1

4q0

(
1 + √

1 − γ (|u|2 − |v|2) − √
γ (uv + ūv̄) 0

0 1 + √
1 − γ (|u|2 − |v|2) + √

γ (uv + ūv̄)

)
,

τ b
1 = 1

q1
trc(1 ⊗ �1)τ bc(1 ⊗ �1)

= 1

4q1

(
1 − √

1 − γ (|u|2 − |v|2) + √
γ (uv + ūv̄) 0

0 1 − √
1 − γ (|u|2 − |v|2) − √

γ (uv + ūv̄)

)
.

Consequently, q0S(τ b
0 ) + q1S(τ b

1 ) is a symmetric function of u

and v, and it can be shown by elementary but tedious analysis
that its minimum value is H ( 1−√

γ

2 ), which can be achieved
when u = v = 1/

√
2. From this we conclude that

C(Mphase) = 1 − H

(
1 − √

γ

2

)
,

and

Q(Mphase) = H

(
1 − √

1 − γ

2

)
+ H

(
1 − √

γ

2

)
− 1.

An alternative, indirect, and yet easier way to get the
measurement-induced correlations C(Mphase) and Q(Mphase)
is to invoke Theorem 2. Let |�ab〉 = 1√

2
(|00〉 + |11〉) be a

purification of the system state ρ = ρb = 1/2, then the final
ancilla-system state is

σab := Ia ⊗ Mphase(|�ab〉〈�ab|)

= 1

2

⎛
⎜⎜⎜⎝

1 0 0
√

1 − γ

0 0 0 0

0 0 0 0√
1 − γ 0 0 1

⎞
⎟⎟⎟⎠ .

The entanglement of formation of this state is

E(σab) = H

(
1 − √

γ

2

)
.

Now by Theorem 2, we readily get

C(Mphase) = 1 − H

(
1 − √

γ

2

)
,

Q(Mphase) = H

(
1 − √

1 − γ

2

)
+ H

(
1 − √

γ

2

)
− 1.

We see that the two methods lead to the same results.
Example 2. For the measurement (amplitude-damping

channel)

Mamplitude(ρ) = M0ρM
†
0 + M1ρM

†
1,

with M0 =
(

1 0

0
√

1 − γ

)
, M1 =

(
0

√
γ

0 0

)
,

(A2)
0 � γ � 1,

one of its unitary realizations (U,|c〉) can be represented as
|c〉 := |0〉, and

U :=

⎛
⎜⎜⎜⎝

1 0 0 0

0
√

1 − γ
√

γ 0

0 −√
γ

√
1 − γ 0

0 0 0 1

⎞
⎟⎟⎟⎠ ,

in the standard basis. After performing the measurement
Mamplitude on the system state ρ = 1/2, the final system-
apparatus state

σbc := U (ρ ⊗ |0〉〈0|)U †
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can be expressed as

σbc = 1

2

⎛
⎜⎜⎜⎝

1 0 0 0

0 γ
√

γ (1 − γ ) 0

0
√

γ (1 − γ ) 1 − γ 0

0 0 0 0

⎞
⎟⎟⎟⎠ ,

from which we obtain

σb = 1

2

(
1 + γ 0

0 1 − γ

)
, σ c = 1

2

(
2 − γ 0

0 γ

)
,

and

S(σb) = H

(
1 − γ

2

)
, S(σ c) = H

(γ

2

)
, S(σbc) = 1.

Consequently,

I (Mamplitude) = H

(
1 − γ

2

)
+ H

(γ

2

)
− 1.

To evaluate the classical correlations C(Mamplitude), we can
restrict the measurements to von Neumann measurements by
the same reason as in Example 1 since σbc is of rank 2. Now
by direct use of Theorem 1 in Ref. [43], we readily get

C(Mamplitude) = H

(
1 − γ

2

)
− H

(
1 − √

γ

2

)
,

Q(Mamplitude) = H
(γ

2

)
+ H

(
1 − √

γ

2

)
− 1.

We can also derive the above results more easily by use of
Theorem 2. Let |�ab〉 = 1√

2
(|00〉 + |11〉) be a purification of

the system state ρ = ρb = 1/2, then the final ancilla-system
state is

σab := Ia ⊗ Mamplitude(|�ab〉〈�ab|)

= 1

2

⎛
⎜⎜⎜⎝

1 0 0
√

1 − γ

0 0 0 0

0 0 γ 0√
1 − γ 0 0 1 − γ

⎞
⎟⎟⎟⎠ ,

with entanglement of formation

E(σab) = H

(
1 − √

γ

2

)
.

Consequently,

C(Mamplitude) = H

(
1 − γ

2

)
− H

(
1 − √

γ

2

)
,

Q(Mamplitude) = H
(γ

2

)
+ H

(
1 − √

γ

2

)
− 1,

which are the same as those obtained by the direct method.

Example 3. For the measurement (Pauli channel)

MPauli(ρ) =
3∑

j=0

MjρM
†
j = p0ρ +

3∑
j=1

pjσjρσj ,

with M0 = √
p01, Mj = √

pjσj for j = 1,2,3 and
(p0,p1,p2,p3) is a probability distribution, {σj } are
the Pauli spin matrices, the system-apparatus space is
2 × 4 dimensional, and it is difficult to calculate the
measurement-induced correlations directly from the final
system-apparatus state σbc. However, in view of Theorem 2,
we may calculate these quantities indirectly by using
the explicit formula for the entanglement of formation
in σab, which is 2 × 2 dimensional. To do this, let
|�ab〉 = 1√

2
(|00〉 + |11〉) be a purification of the system state

ρ = ρb = 1/2, then the final ancilla-system state is

σab := Ia ⊗ MPauli(|�ab〉〈�ab|)

= 1

2

⎛
⎜⎜⎜⎝

p0 + p3 0 0 p0 − p3

0 p1 + p2 p1 − p2 0

0 p1 − p2 p1 + p2 0

p0 − p3 0 0 p0 + p3

⎞
⎟⎟⎟⎠ .

The entanglement of formation of this state is

E(σab) = H

(
1 − √

1 − λ2

2

)
,

with λ := max{0,2pmax − 1} being the concurrence, and
pmax := max{p0,p1,p2,p3}.

The final states of the ancilla, the system and the ap-
paratus after the measurement Mpauli are σa = 1/2, σ b =
1/2, and σ c = diag(p0,p1,p2,p3), respectively. The marginal
entropies are given by S(σa) = 1, S(σb) = 1, and S(σ c) =
−∑3

j=0 pj log2pj . By Theorem 2, we have

C(σbc) = S(ρb) − E(σab) = 1 − H

(
1 − √

1 − λ2

2

)
.

Consequently, the measurement-induced correlations are

I (MPauli) = −
3∑

j=0

pj log2pj ,

C(MPauli) = 1 − H

(
1 − √

1 − λ2

2

)
,

Q(MPauli) = −
3∑

j=0

pj log2pj + H

(
1 − √

1 − λ2

2

)
− 1.

[1] W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).
[2] E. Joos et al., Decoherence and the Appearance of a

Classical World in Quantum Theory (Springer, New York,
1996).

[3] M. Schlosshauer, Decoherence and the Quantum-to-Classical
Transition (Springer, New York, 2007).

[4] J. von Neuman, Mathematical Foundations of Quantum Me-
chanics (Princeton University Press, New Jersey, 1953).

052309-7

http://dx.doi.org/10.1103/RevModPhys.75.715


SHUNLONG LUO AND NAN LI PHYSICAL REVIEW A 84, 052309 (2011)

[5] J. A. Wheeler and W. H. Zurek, Quantum Theory and Measure-
ment (Princeton University Press, New Jersey, 1984).

[6] K. Kraus, States, Effects and Operations: Fundamental Notions
of Quantum Theory (Springer-Verlag, Berlin, 1983).

[7] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, UK, 2000).

[8] A. Jamiolkowski, Rep. Math. Phys. 3, 275 (1972).
[9] L. Henderson and V. Vedral, J. Phys. A 34, 6899 (2001).

[10] H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901
(2001).

[11] S. Luo, Phys. Rev. A 77, 022301 (2008).
[12] S. Luo, Phys. Rev. A 77, 042303 (2008).
[13] V. Vedral, Rev. Mod. Phys. 74, 197 (2002).
[14] B. Groisman, S. Popescu, and A. Winter, Phys. Rev. A 72,

032317 (2005).
[15] B. Schumacher and M. D. Westmoreland, Phys. Rev. A 74,

042305 (2006).
[16] N. Li and S. Luo, Phys. Rev. A 76, 032327 (2007).
[17] V. Madhok and A. Datta, Phys. Rev. A 83, 032323

(2011).
[18] D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, and

A. Winter, Phys. Rev. A 83, 032324 (2011).
[19] A. Streltsov, H. Kampermann, and D. Bruß, Phys. Rev. Lett.

106, 160401 (2011).
[20] A. Datta, A. Shaji, and C. M. Caves, Phys. Rev. Lett. 100, 050502

(2008).
[21] S. Luo, S. Fu, and N. Li, Phys. Rev. A 82, 052122

(2010).
[22] T. Werlang, C. Trippe, G. A. P. Ribeiro, and G. Rigolin, Phys.

Rev. Lett. 105, 095702 (2010).
[23] D. Girolami and G. Adesso, Phys. Rev. A 83, 052108 (2011).

[24] S. Yu, C. Zhang, Q. Chen, and C. H. Oh, e-print arXiv:1102.1301
(to be published); Q. Chen, C. Zhang, S. Yu, X. X. Yi, and C. H.
Oh, Phys. Rev. A 84, 042313 (2011).

[25] J. Oppenheim, M. Horodecki, P. Horodecki, and R. Horodecki,
Phys. Rev. Lett. 89, 180402 (2002).

[26] B. Dakic, V. Vedral, and C. Brukner, Phys. Rev. Lett. 105,
190502 (2010).

[27] S. Luo and S. Fu, Phys. Rev. A 82, 034302 (2010).
[28] S. Luo and S. Fu, Phys. Rev. Lett. 106, 120401 (2011).
[29] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.

Wootters, Phys. Rev. A 54, 3824 (1996).
[30] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
[31] M. Koashi and A. Winter, Phys. Rev. A 69, 022309 (2004).
[32] L. X. Cen, X. Q. Li, J. S. Shao, and Y. J. Yan, Phys. Rev. A 83,

054101 (2011).
[33] K. Banaszek, Phys. Rev. Lett. 86, 1366 (2001).
[34] H. Barnum, e-print quant-ph/0205155v1 (to be published).
[35] L. Maccone, Europhys. Lett. 77, 40002 (2007).
[36] F. Buscemi, Phys. Rev. Lett. 99, 180501 (2007).
[37] D. Kretschmann, D. Schlingemann, and R. F. Werner, IEEE

Trans. Inf. Theory 54, 1708 (2008).
[38] F. Buscemi, M. Hayashi, and M. Horodecki, Phys. Rev. Lett.

100, 210504 (2008).
[39] S.-L. Zhang, X.-B. Zou, C.-F. Li, C.-H. Jin, and G.-C. Guo, J.

Phys. A 43, 235301 (2010).
[40] S. Luo, Phys. Rev. A 82, 052103 (2010).
[41] V. Vedral, Phys. Rev. Lett. 90, 050401 (2003).
[42] M. D. Lang and C. M. Caves, Phys. Rev. Lett. 105, 150501

(2010).
[43] B. Li, Z.-X. Wang, and S.-M. Fei, Phys. Rev. A 83, 022321

(2011).

052309-8

http://dx.doi.org/10.1016/0034-4877(72)90011-0
http://dx.doi.org/10.1088/0305-4470/34/35/315
http://dx.doi.org/10.1103/PhysRevLett.88.017901
http://dx.doi.org/10.1103/PhysRevLett.88.017901
http://dx.doi.org/10.1103/PhysRevA.77.022301
http://dx.doi.org/10.1103/PhysRevA.77.042303
http://dx.doi.org/10.1103/RevModPhys.74.197
http://dx.doi.org/10.1103/PhysRevA.72.032317
http://dx.doi.org/10.1103/PhysRevA.72.032317
http://dx.doi.org/10.1103/PhysRevA.74.042305
http://dx.doi.org/10.1103/PhysRevA.74.042305
http://dx.doi.org/10.1103/PhysRevA.76.032327
http://dx.doi.org/10.1103/PhysRevA.83.032323
http://dx.doi.org/10.1103/PhysRevA.83.032323
http://dx.doi.org/10.1103/PhysRevA.83.032324
http://dx.doi.org/10.1103/PhysRevLett.106.160401
http://dx.doi.org/10.1103/PhysRevLett.106.160401
http://dx.doi.org/10.1103/PhysRevLett.100.050502
http://dx.doi.org/10.1103/PhysRevLett.100.050502
http://dx.doi.org/10.1103/PhysRevA.82.052122
http://dx.doi.org/10.1103/PhysRevA.82.052122
http://dx.doi.org/10.1103/PhysRevLett.105.095702
http://dx.doi.org/10.1103/PhysRevLett.105.095702
http://dx.doi.org/10.1103/PhysRevA.83.052108
http://arXiv.org/abs/arXiv:1102.1301
http://dx.doi.org/10.1103/PhysRevA.84.042313
http://dx.doi.org/10.1103/PhysRevLett.89.180402
http://dx.doi.org/10.1103/PhysRevLett.105.190502
http://dx.doi.org/10.1103/PhysRevLett.105.190502
http://dx.doi.org/10.1103/PhysRevA.82.034302
http://dx.doi.org/10.1103/PhysRevLett.106.120401
http://dx.doi.org/10.1103/PhysRevA.54.3824
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevA.69.022309
http://dx.doi.org/10.1103/PhysRevA.83.054101
http://dx.doi.org/10.1103/PhysRevA.83.054101
http://dx.doi.org/10.1103/PhysRevLett.86.1366
http://arXiv.org/abs/quant-ph/0205155v1
http://dx.doi.org/10.1209/0295-5075/77/40002
http://dx.doi.org/10.1103/PhysRevLett.99.180501
http://dx.doi.org/10.1109/TIT.2008.917696
http://dx.doi.org/10.1109/TIT.2008.917696
http://dx.doi.org/10.1103/PhysRevLett.100.210504
http://dx.doi.org/10.1103/PhysRevLett.100.210504
http://dx.doi.org/10.1088/1751-8113/43/23/235301
http://dx.doi.org/10.1088/1751-8113/43/23/235301
http://dx.doi.org/10.1103/PhysRevA.82.052103
http://dx.doi.org/10.1103/PhysRevLett.90.050401
http://dx.doi.org/10.1103/PhysRevLett.105.150501
http://dx.doi.org/10.1103/PhysRevLett.105.150501
http://dx.doi.org/10.1103/PhysRevA.83.022321
http://dx.doi.org/10.1103/PhysRevA.83.022321

