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We characterize all maximally entangling bipartite unitary operators, acting on systems A and B of arbitrary
finite dimensions dA � dB , when ancillary systems are available to both parties. Several useful and interesting
consequences of this characterization are discussed, including an understanding of why the entangling and
disentangling capacities of a given (maximally entangling) unitary can differ and a proof that these capacities
must be equal when dA = dB .
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I. INTRODUCTION

A key question in quantum information theory is to under-
stand the communication capabilities of quantum channels,
wherein information is encoded in a quantum system that is
then sent through the channel, which will generally introduce
noise into the state of the transmitted system. A noisy quantum
channel can be modeled as a unitary interaction between the
system and its environment, and it is common to assume
that the environment starts out in a fixed pure state. One
can, however, imagine a more general scenario, where the
system and environment are allowed to have a completely
arbitrary initial state. Then, we are considering the action
of a unitary gate between two systems, and by varying
their initial state, we can seek to maximize the amount of
information communicated between the corresponding parties,
where this communication may be in the form of classical
information, quantum information, or both. In the case of
quantum information, there is a close relationship to the
amount of entanglement that can be produced by the given
unitary interaction, and this is the question of interest to us
here: What is the capacity of a bipartite unitary gate to generate
entanglement [1]?

We consider a unitary U acting on systems A and B held
by Alice and Bob, respectively, with system A described by
Hilbert space HA and B by HB and with these Hilbert spaces
having dimensions dA � dB . Alice and Bob are allowed the
use of ancillary systems, a held by Alice (Ha) and b held by
Bob (Hb). It is well known that the use of ancillary systems
increases the capacity of a unitary to generate entanglement
[2,3]. If the input state on AaBb is |�in〉 and the output is
then |�out〉 = Ia ⊗ Ib ⊗ U |�in〉, with Ia(b) being the identity
operator on a(b), the capacity to generate entanglement is
defined as

E(U) = sup
|�in〉

[E(�out) − E(�in)], (1)

where E(�) measures the entanglement of |�〉. The maximum
possible value of E(U) is 2 log dA (log will refer to the
logarithm to base 2 throughout this paper) since any U can
be simulated by local operations and classical communication
(LOCC) using this amount of entanglement as a resource (the
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state of Alice’s system can then be teleported to Bob and
back) and LOCC cannot increase entanglement [4]. In this
paper, we will only be interested in those U that are maximally
entangling, that is, those that can increase entanglement by
2 log dA ebits with some choice of |�in〉.

In general, it is not known how large the ancillae need
to be to maximize the generation of entanglement for a
given U , a significant barrier to understanding the entangling
capacity of unitary interactions. However, in the case that U is
maximally entangling, it has been shown that one can restrict
consideration to da = dA and db = dB [5]. It was also shown
that in this case, one may use an initial state that is a product,

|�in〉AaBb = |�〉Aa ⊗ |�〉Bb, (2)

with |�〉Aa = ∑dA

k=1 |k〉a|k〉A/
√

dA being a maximally en-
tangled state. In the next section, we use these results
to characterize all maximally entangling unitaries for any
dimensions dA and dB . Then, in Sec. III, we deduce several
consequences of this characterization. Note that two separate
examples appear in this section, one being the general case of
two-qubit unitaries (see consequence 3) and the other being
the example from [5] of a unitary that has unequal entangling
and disentangling capacities (see consequence 6). Finally, in
Sec. IV, we summarize what has been accomplished.

II. CHARACTERIZATION OF MAXIMALLY
ENTANGLING UNITARIES

Our goal is to establish a characterization of maximally
entangling bipartite unitaries. To that end, we will find it
convenient to expand U , which is assumed to be unitary and
maximally entangling, in terms of a finite group G, with
elements f,g ∈ G, and group multiplication represented by
fg. Thus, we have

U =
∑

f ∈G

�(f ) ⊗ W (f ), (3)

where W (f ) act onHB and {�(f )} are a set of unitary matrices
acting on HA and representing group G up to phases, which
means that the product of two of the � matrices is another �

multiplied by a phase factor: �(f )�(g) = μ(f,g)�(fg), with
|μ(f,g)| = 1∀f,g [6].

We know that such an expansion is always possible since
there exist groups of order |G| = d2

A that have representations
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forming a complete basis of the space of dA × dA matrices,
and then any operator acting on HA ⊗ HB (not just our
unitary U) can be written in the form of (3) (see [7] for
further discussion and extensive application of this type of
expansion); the generalized Pauli operators provide one such
complete basis. However, for many unitaries, smaller groups
are certainly possible, so we need to address the question of
how to choose G. In [7], we used this type of expansion of
bipartite unitaries to develop protocols for implementing U
using LOCC with prior shared entanglement as a resource.
For a given U and any G with which such an expansion of
U is possible, we showed how to deterministically simulate
U by LOCC with a resource state having entanglement equal
to log |G|. Since LOCC cannot increase the entanglement,
we see that log |G| must be at least as large as the amount
of entanglement that U can generate. This means that for the
maximally entangling unitaries we are considering here, which
have the ability to generate 2 log dA ebits, we need a group of
order |G| � d2

A .
Writing the (to this point unknown) initial state on Bb as

|�〉Bb =
dB∑

m,n=1

Mmn|n〉b|m〉B, (4)

the action of U on the input state |�in〉 of (2) yields

|�out〉 =
∑

f ∈G

[Ia ⊗ �(f )]|�〉Aa ⊗ [Ib ⊗ W (f )]|�〉Bb

= 1√
dA

dA∑

j,k=1

|k〉a|j 〉A
∑

f ∈G

[�(f )]jk

×
dB∑

m,n=1

Mmn|n〉bW (f )|m〉B

= 1

dA

dA∑

j,k=1

|k〉a|j 〉A ⊗ |bjk〉, (5)

where [�(f )]jk is the jk matrix element of �(f ), and this basis
is chosen for convenience to be that which completely reduces
the �(f ) matrices into irreducible representations (the finest
block-diagonal form of these matrices). We have defined

|bjk〉 =
√

dA

∑

f ∈G

[�(f )]jk

dB∑

m,n=1

Mmn|n〉bW (f )|m〉B. (6)

Assuming that |�in〉 is an optimal input, achieving the maximal
entanglement generation of 2 log dA ebits, we see immediately
from (5) that the states |bjk〉 must form an orthonormal
set, δjj ′δkk′ = 〈bj ′k′ |bjk〉. This implies, first of all, that for
each fixed j,k, ∃f such that [�(f )]jk 
= 0. Recalling that
we have chosen the j,k basis to be that which completely
decomposes matrices �(f ) into irreducible representations,
we see that these matrices are themselves an irreducible
representation for G of dimension dA. Therefore, the choice
of G is restricted to one that has an irreducible representation
of this dimension. Since the sum of the squared dimensions
of all irreducible representations of G is equal to |G|, we
here have another (related) way of seeing that |G| � d2

A . As
mentioned previously, we can always choose a representation

by the generalized Pauli matrices, for which |G| = d2
A , and

we will assume this choice has been made throughout the
remainder of this paper [8].

It is shown in Appendix A that as a consequence of Schur’s
orthogonality relations for group representations [9,10], the
orthonormality condition on states |bjk〉 is equivalent to a
corresponding orthonormality condition on operators W (f ),

Tr[W (f )MM†W (g)†] = 1

d2
A

δ(f,g),∀f,g ∈ G, (7)

where δ(f,g) = 1 when f = g and otherwise is equal to zero.
Thus we have our main result.

Theorem 1. The bipartite unitary U is maximally entangling
iff there exists a positive semidefinite “metric” MM† such that
(7) is satisfied ∀f,g ∈ G, where operators W (f ) are obtained
from an expansion of U as in (3), with the �(f ) taken to be
the generalized Pauli operators. The operator M defines an
optimal input state on systems bB through (4).

In the next section, we discuss the consequences of this
result.

III. CONSEQUENCES OF THEOREM 1

Consequence 1. Method to check if U is maximally
entangling.

Given bipartite unitary U , Theorem 1 provides a method
of determining whether or not U is maximally entangling.
One need only expand U in terms of the generalized Pauli
operators, identify the set of operators {W (f )}, and then check
to see if there exists a positive semidefinite operator to play
the role of MM† such that (7) is satisfied. One way to do
this is to form all products, W (g)†W (f ),f 
= g, to reshape
each into a column vector (such as by stacking individual
columns of each product one on top of the other), and to
collect all these columns into a matrix. The null-space of this
matrix corresponds (by reshaping vectors in this null-space
back into matrices) to the space of all operators orthogonal to
the W (g)†W (f ),f 
= g, as is required to satisfy (7). One then
needs to search, perhaps numerically, for positive operators in
this null-space. This is relatively easy to do, at least for small
enough null-spaces. Note that if operators W (f ) are mutu-
ally orthogonal and normalized properly [according to (7)],
then the null-space will obviously contain IB , and U is
immediately seen to be maximally entangling. In general,
however, we are not aware of an easy way to determine when
a subspace (our null-space here) contains at least one positive
operator.

Consequence 2. Design of maximally entangling unitaries.
Theorem 1 also allows us to design unitaries that are

maximally entangling. This amounts to choosing operator M

and a set of d2
A linearly independent operators W (f ) that satisfy

(7). In addition, there is also the necessity that the chosen set
of W (f ) are such that U is unitary. When the dimensions
are not too large, it is straightforward and reasonably fast to
numerically generate a maximally entangling unitary in this
way (for dA = 4,dB = 8 it takes less than 10 min with a 2.53
GHz processor). Note that since dA � dB , it is always possible
to choose d2

A mutually orthogonal W (f ), in which case M

unitary (input state on Bb maximally entangled) will satisfy (7)
as long as the W (f ) are also chosen to be suitably normalized.
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Actually, when dA < dB , there exist mutually orthogonal sets
of W (f ) that are not full rank, in which case M need not be
full rank, either. Then, it would be sufficient (though certainly
not necessary) that there exists a projector (identified as MM†)
satisfying W (f )MM† = W (f ),∀f . Nonetheless, one also has
to be sure that the chosen (orthogonal) W (f ) yield unitary U
via (3), so we are still left with a nontrivial task in designing
maximally entangling unitaries.

Consequence 3. Characterizing maximally entangling in-
teraction Hamiltonians for two-qubit systems.

A characterization of two-qubit maximally entangling
Hamiltonians H has been given in [11]. Using the well-known
result [2] that, up to local unitaries, every two-qubit unitary
may be written as U = e−iH (the usual factor t/h̄ is here
absorbed into the definition of H for notational convenience)
with

H =
∑

j=x,y,z

αjσj ⊗ σj , (8)

Hu and Di [11] showed that for U to be maximally entangling,
it must be that cos2 αx = 1/2 = cos2 αy , with the value of αz

being unconstrained (permutations of {x,y,z} are also allowed,
of course). In Appendix B, we provide an alternative proof
of this result based on (7). This means there is a continuum
of maximally entangling two-qubit unitaries ranging from the
double controlled-NOT (CNOT) (αz = 0) to the SWAP (cos2 αz =
1/2).

Consequence 4. Operators W (f ) must form a linearly
independent set.

This is easily proven, as shown at the end of Appendix
A. Notice also that by Theorem 4 of [7] and for whatever
group G and representation � are chosen for the expansion of
maximally entangling U , the number of linearly independent
operators in the collection {�(f )} is d2

A because only the
single dA-dimensional irreducible representation appears in
these matrices. This is consistent with the fact that the Schmidt
rank of U must be at least as large as the ratio of the Schmidt
rank of the output state to that of the input state. That is, since
our input state has a Schmidt rank of 1 and the output state has
a Schmidt rank of d2

A , U must have a Schmidt rank of d2
A as

well.
Consequence 5. Input state on Bb is uniquely determined

up to local unitaries when dA = dB and must be a maximally
entangled state.

This was proven in [5]; we provide an alternative proof
based on (7) in Appendix A.

Consequence 6. Why the entangling and disentangling
powers can be unequal.

It is now easy to see for a maximally entangling unitary
how the entangling and disentangling powers can be unequal
[5]. Recall that the disentangling power of U is just the
entangling power of U†. Therefore, for the disentangling
power, we must replace the set {W (f )} by {W (f )†} in (7).
Then, for U to be maximally disentangling, we require the
existence of an M ′M ′† orthogonal to the set of operators
{W (g)W (f )†},∀f 
= g ∈ G, whereas for U to be maximally
entangling, the orthogonality requirement applies to the gen-
erally different set {W (g)†W (f )},∀f 
= g ∈ G. In addition,
there is the normalization condition for f = g, and this again
applies to a generally different set of operators in the two

cases. As an example, [5] provided the original demonstration
that the entangling and disentangling powers can be unequal
by constructing a specific maximally entangling U and then
showing that U† has strictly less than the maximum entangling
power. We have calculated W (f ) for their U and find that it
is easy to satisfy (7) with these W (f ) (set MM† = [|1〉B〈1| +
|3〉B〈3|]/2), but we find (numerically) that it is not possible to
do so when the set {W (f )} is replaced by {W (f )†} [one choice
that almost works is to set M ′M ′† = c0|1〉B〈1| + c(|2〉B〈2| +
|3〉B〈3|), which satisfies orthogonality, but the normalizations
cannot all be the same no matter how c0 and c are chosen].

Consequence 7. Entangling and disentangling powers are
equal for maximally entangling unitaries on d × d systems.

It was shown in [12] that the entangling and disentangling
powers of any U are equal when dA = 2 = dB . We can
now extend this result to arbitrary dimensions dA = dB

when restricting to maximally entangling unitaries. From
Consequence 5, we have that MM† must be proportional to
IB . Therefore, a replacement {W (f )} → {W (f )†} makes no
difference whatsoever in (7), from which this claim follows
immediately. That is, when dA = dB and U is maximally
entangling, then U† is also maximally entangling.

Consequence 8. If dB is large enough compared to dA, it
can be that no ancillary system is needed on Bob’s side.

We here provide a construction of operators W (f ) cor-
responding to U for which system b is not needed. This
requires only that the first columns of the different W (f )
operators are mutually orthogonal and have a norm equal to
1/dA [the remaining part of each W (f ) is unconstrained apart
from the requirement that U is unitary]. Then we have that
the matrix element 〈1|W (g)†W (f )|1〉 = δ(f,g)/d2

A. Choosing
MM† = |1〉B〈1| shows that (7) is satisfied ∀f,g. This choice
of MM† corresponds to a product state across B/b, so system
b never plays a role and may be discarded. Recalling that there
are d2

A different W (f ) operators, the mutual orthogonality of
their first columns is possible only when the length dB of those
columns is at least d2

A. Hence, this construction is only possible
when dB � d2

A. Then there is a d2
A-dimensional subspace of

HB that becomes maximally entangled with systems Aa, with
the remaining space not being involved in the process. Thus,
it is almost as if system B has the ancillary system already
embedded within itself, which is most clearly understood
when dB = d2

A = dA × dA. In this case, B can be thought of as
consisting of two dA-dimensional systems, one of which plays
the role of ancillary b.

IV. CONCLUSIONS

We have given a characterization of all maximally entan-
gling bipartite unitaries for any dimensions dA � dB . This
allows us to check if a given unitary is maximally entangling,
to construct maximally entangling unitaries, and to determine
optimal input states that achieve the maximal generation of
entanglement. It also provides an understanding of why the
entangling and disentangling capacities can differ, as well as
a proof that this can only happen when dB > dA. We also
saw that for dB � d2

A, it is possible that no ancillary system
is needed on Bob’s side. Finally, we have given an alternative
method of characterizing maximally entangling Hamiltonians
for two-qubit systems [11]. An interesting open question is to
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determine what Hamiltonians can be maximally entangling in
higher-dimensional systems.
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APPENDIX A: PROOF OF THEOREM 1

Here we show that the orthonormality of the states |bjk〉
defined in (6) is equivalent to condition (7) on operators W (f ),
which appear in an expansion of U of the form (3) with |G| =
d2

A. From (6), we have

〈bj ′k′ |bjk〉 = dA

∑

f,g∈G

[�(g)]∗j ′k′[�(f )]jk

dB∑

m,n=1

dB∑

m′,n′=1

×M∗
m′n′Mmn〈n′|n〉〈m′|W (g)†W (f )|m〉

= dA

∑

f,g∈G

[�(g)]∗j ′k′[�(f )]jk

dB∑

m′,m=1

[MM†]mm′

× 〈m′|W (g)†W (f )|m〉
= dA

∑

f,g∈G

[�(g)]∗j ′k′[�(f )]jk

× Tr[MM†W (g)†W (f )]. (A1)

First, notice that if Tr[W (f )MM†W (g)†] = δ(f,g)/d2
A ,

the right-hand side of this equation becomes∑
f [�(f )]∗j ′k′[�(f )]jk/dA. However, considering the d2

A

vectors 
γjk,j,k = 1, . . . ,dA, whose components (labeled by
f ∈ G) are given by

( 
γjk)f = 1√
dA

[�(f )]jk, (A2)

then by Schur’s orthogonality relations for irreducible repre-
sentations [10] and the fact that the �(f ) representation is
irreducible, these vectors form a complete orthonormal basis
for the d2

A-dimensional space in which they lie (recall that
|G| = d2

A is the dimension of these vectors). That is,
∑

f

[�(f )]∗j ′k′[�(f )]jk/dA = δjj ′δkk′, (A3)

which yields one of the implications we sought to prove.
To prove the converse, define d2

A × d2
A matrixO, with matrix

elements labeled by f,g ∈ G given by

[O]gf = Tr[W (f )MM†W (g)†]. (A4)

Then, if 〈bj ′k′ |bjk〉 = δjj ′δkk′ , (A1) can be written as

1

d2
A

δjj ′δkk′ = 
γ †
j ′k′ · O · 
γjk. (A5)

By (A5), O · 
γjk is orthogonal to every vector in the complete
basis of the 
γ vectors except for one, that being 
γjk . Therefore,
∀j,k, O · 
γjk is proportional to 
γjk , and the proportionality
constant is equal to 1/d2

A , independent of j,k, again by (A5).

Thus, we have that O = I/d2
A , where I is the d2

A × d2
A identity

matrix. Finally, recalling the definition of O in (A4), we have

1

d2
A

δ(f,g) = Tr[W (f )MM†W (g)†], (A6)

which completes the proof. �
A necessary condition for (A6) to be satisfied is that the

collection of |G| = d2
A operators W (f ) are linearly indepen-

dent. This is easily seen by contradiction, so assume they are
linearly dependent. Then,

0 =
∑

f ∈G

c(f )W (f ) (A7)

for some coefficients c(f ) not all equal to 0. Multiply this
expression by MM†W (g)† for each fixed g ∈ G and then take
the trace to obtain from (A6) that

0 =
∑

f ∈G

c(f )Tr[W (f )MM†W (g)†] = c(g)

d2
A

, (A8)

assuming (A6). This says that c(g) = 0∀g ∈ G, which con-
tradicts the assumption of linear dependence and proves the
claim.

We now give an alternate proof (see also [5]) that ρ = MM†

is uniquely determined when U is maximally entangling and
dA = dB . Indeed, by contradiction, assume both ρ and ρ ′ serve
our purpose. Then from (A6),

0 = Tr[W (f )(ρ − ρ ′)W (g)†]∀f,g ∈ G, (A9)

which must hold even when f = g. This says that for
each f,g ∈ G, W (f )(ρ − ρ ′) is orthogonal to W (g). How-
ever, as we have just seen, the d2

A = d2
B operators W (g)

are linearly independent and hence span the entire space
B(HB) of operators acting on HB . Therefore, it must be
that

W (f )(ρ − ρ ′) = 0 (A10)

for every f ∈ G. Now, choose coefficients e(f ) such that IB =∑
f e(f )W (f ), which can always be done since W (f ) are a

basis of B(HB). Multiplying (A10) by e(f ) and summing over
f , we obtain 0 = ρ − ρ ′, proving the claim.

APPENDIX B: TWO-QUBIT MAXIMALLY
ENTANGLING HAMILTONIANS

Using (8) gives U = e−iH = ∑
f kf σf ⊗ σf with f =

e,x,y,z labeling the group element (e is the identity element).
From this we identify Wf = kf σf (σe = I , the 2 × 2 identity
matrix), where

ke = cxcycz − isxsysz,

kx = cxsysz − isxcycz,
(B1)

ky = sxcysz − icxsycz,

kz = sxsycz − icxcysz,

and we have used the abbreviations cf = cos αf and
sf = sin αf . Applying condition (7) with MM† = I/2 (be-
cause dA = dB), the orthogonality conditions (f 
= g) are
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automatically satisfied because the Pauli operators are them-
selves mutually orthogonal. Therefore, we only need to worry
about normalizations [f = g in (7)], which give

c2
xc

2
yc

2
z + s2

xs
2
ys

2
z = 1/4,

c2
xs

2
ys

2
z + s2

xc
2
yc

2
z = 1/4,

s2
xc

2
ys

2
z + c2

xs
2
yc

2
z = 1/4,

s2
xs

2
yc

2
z + c2

xc
2
ys

2
z = 1/4. (B2)

It not too difficult to show that these lead to the necessary
and sufficient condition that two of the α’s must have squared
cosines equal to 1/2, with the third α being unconstrained,
which is what we set out to prove.
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