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Quantum superposition of massive objects and collapse models
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We analyze the requirements to test some of the most paradigmatic collapse models with a protocol that
prepares quantum superpositions of massive objects. This consists of coherently expanding the wave function of
a ground-state-cooled mechanical resonator, performing a squared position measurement that acts as a double
slit, and observing interference after further evolution. The analysis is performed in a general framework and
takes into account only unavoidable sources of decoherence: blackbody radiation and scattering of environmental
particles. We also discuss the limitations imposed by the experimental implementation of this protocol using
cavity quantum optomechanics with levitating dielectric nanospheres.

DOI: 10.1103/PhysRevA.84.052121

I. INTRODUCTION

In the past few decades, seminal experiments have demon-
strated that massive objects can be prepared in spatial su-
perpositions of the order of its size. This has been realized
with electrons [1], neutrons [2], atoms and dimers [3], small
van der Waals clusters [4], fullerenes [5], and even with
organic molecules containing up to 400 atoms [6]. These
experiments are designed to observe the interference of matter
waves after passing, in essence, through a Young’s double slit.
The possibility of observing these quantum pheonomena with
yet-larger objects is extremely challenging. This is due to the
great quantum control and isolation from the environment that
these experiments require.

More recently, the field of cavity quantum electro- and
optomechanics [7-11] has opened the pathway to bring
much more massive objects to the quantum regime, namely
objects containing billions of atoms, thereby improving the
previous benchmark by many orders of magnitude. This allows
us to explore the physics of a completely new parameter
regime. A first step toward this direction has been realized
in Refs. [12-14], where ground-state cooling of mechanical
resonators at the nano- and microscale has been achieved.
Additionally, various researchers have proposed to exploit the
coherent coupling of the mechanical resonator with single
photons or qubits to create quantum superpositions, see, for
instance, Refs. [15,16]. In these proposals, the superposition of
the mechanical motion state is, typically, of the form |0) + |1),
where |0) and |1) are, respectively, the ground state and the
first excited state of the harmonic potential. In these states,
the position is delocalized over distances of the order of the
Zero point motion, i.e., xo = +/h/(2mw), where m is the mass
of the object and w the frequency of the harmonic potential.
Within the megahertz regime, objects containing n,, atoms are
delocalized over distances of the order of 10’7n;1/ 2 m, which
is subatomic for objects containing billions of atoms. This is
in contrast with matter-wave experiments, where, despite the
fact that objects have “only” hundreds of atoms, they can be
delocalized over distances larger than their size.

Remarkably, these experiments might be applied to the
service of a very fundamental goal, namely the exploration of
the limits of quantum mechanics predicted by several collapse
models [17-26]. The common idea of these models is the
conjecture that the Schrodinger equation is an approximation
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of a more fundamental equation, which breaks down when
objects above a critical mass are delocalized over a critical
distance. This prediction is very difficult to confront because
of the following argument: standard decoherence [27,28],
described within quantum mechanics, also predicts the im-
possibility of delocalizing large objects due to the interaction
with the environment; thus, this masks the effects of collapse
models. This poses a major challenge to corroborate collapse
models, as the effects predicted by these must stand alone
from decoherence processes and be exposed to potential
falsification. This leads to the central questions of this work:
How challenging is it to test collapse models while also
taking into account unavoidable sources of decoherence? Is
it preferable to have small objects delocalized over large
distances, as in matter-wave experiments, or rather large
objects delocalized over small distances, as in experiments
with mechanical resonators?

The aim of this paper is to address the latter questions by
analyzing a prototypical experiment that bridges approaches
from quantum-mechanical-resonators and matter-wave in-
terferometry. This experiment relies, on the one hand, on
techniques of cavity electro-optomechanics to prepare a me-
chanical resonator in the ground state of its harmonic potential.
On the other hand, the experiment mimics matter-wave inter-
ferometry, as the ground-state-cooled mechanical resonator
is released from the harmonic trap in such a way that it
coherently delocalizes over distances much larger than its zero-
point motion x,. A subsequent measurement of the squared
position, which is to be realized using techniques of quantum-
mechanical resonators, collapses the state into a superposition
of different spatial locations, thereby acting as a Young’s
double slit. Finally, the subsequent free evolution generates
an interference pattern. We remark that the implementation
of this experiment using cavity quantum optomechanics with
optically levitating dielectric nanospheres [16,29-31] has been
recently proposed in Ref. [32]. The present article analyzes
this proposal with a broader scope, namely it studies the effect
of some of the most paradigmatic collapse models together
with unavoidable sources of decoherence. This allows us to
obtain the environmental conditions, masses of the objects,
and delocalization distances where collapse models can be
falsified. These conditions are general and will be common to
any physical implementation of the protocol.
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This article is organized as follows: in Sec. II we introduce
and analyze the quantum-mechanical resonator double slit
experiment in a general fashion, neglecting decoherence
and without specifying the experimental implementation.
The effect of unavoidable sources of decoherence, such as
blackbody radiation and scattering of environmental particles,
will be the subject of Sec. III. The effects of several collapse
models in this experiment are discussed in Sec. IV, where we
also obtain the parameter regime needed to confront them.
Finally, in Sec. V, we study the restrictions imposed by an
implementation of this experiment using cavity optomechanics
with optically levitating dielectric nanospheres. We draw our
conclusions and provide further directions in Sec. VI.

II. MECHANICAL RESONATOR INTERFERENCE IN A
DOUBLE SLIT

In this section we analyze a protocol that merges techniques
and insights from quantum-mechanical resonators and matter-
wave interferometry; we call it mechanical resonator interfer-
ence in a double slit (MERID). We analyze it without taking
into account standard decoherence (cf. Sec. III) and without
specifying its experimental implementation (cf. Sec. V).
MERID is realized by applying the following steps (see Fig. 1):

(a) Prepare a mechanical resonator. For instance, trap a
massive object of mass m, which is typically a sphere, into an
harmonic potential with trap frequency w.

(b) Cool the center-of-mass along one direction, say %, to,
ideally, the ground state of the harmonic potential.

(c) Switch off the harmonic trap and let the wave function
expand freely during some “time of flight” #;.

(d) Perform a measurement of £2, that is, of the squared
position of the cooled degree of freedom. This measurement
acts as a Young’s double slit since, given the outcome x2,
the state collapses into a superposition of being at +x and at
—x. The mechanical resonator is, thus, prepared in a spatial
superposition separated by a distance d = 2|x]|.

(e) Let the state evolve freely during a second time of
flight t,.

(f) Perform a measurement of
position %.

(g) Repeat the experiment and collect the data for each
double slit distance d, corresponding to the result of the
squared position measurement. An interference pattern in the
final position measurement is unveiled for each d.

the center-of-mass

A. Steps (a) and (b): Cooled initial state

These steps consist in preparing the object’s the center-
of-mass motion along x in the ground state of an harmonic
potential with a trapping frequency w [see Fig. 1(a)]. In the
ideal case, the wave function is given by

1 x?
o = e 3] v
0

where xo = /h/(2mw) is the ground-state size and m is the
mass of the object. In realistic situations, the initial state
is given by a thermal state with mean occupation number
il = (exp[Bhw] — 1)~' (where B! = kgT, where kp is the
Boltzmann constant and 7T is the effective one-dimensional
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FIG. 1. (Color online) Schematic illustration of MERID. (a) A
sphere of mass m is harmonically trapped, with frequency w, and
cooled into the ground state. The zero-point motion is given by xg. (b)
The trap is switched off and the wave function expands freely during
some time of flight #,. At this time, the width of the wave function is
given by o. (c) A squared position measurement is performed such
that the wave function collapses into a superposition of two wave
packets of size o, separated by a distance d. Both o, and d depend on
the measurement outcome. (d) The superposition state evolves freely
during a second time of flight #,. An interference pattern is formed
with peaks separated by x /.

center-of-mass temperature), which can be written in the Fock
basis as

0 ~n

PO= e rin ol )

n=0

This state has the following moments: (£2(0)) = (21 + 1)x3,
(p*(0)) = 2 + l)hz/(4x§), and ([£(0),p(0)],) = 0. We do
not discuss here how cooling is performed experimentally;
see, however, Refs. [16,29-31,33] for optomechanical cooling
techniques [34-36] applied to optically levitating nanospheres.

B. Step (c): Expansion

This step [see Fig. 1(b)] consists in switching off the trap
and letting the wave function evolve freely, that is, it evolves
with the unitary time evolution Uo(t) = exp[—i ﬁot /h], where
Ay = p?/(2m). Considering the initial state to be the pure
ground state, the state after some time #; is given by

x2 x2
vy + l¢tof;i| ., (3

N 1
(x|Up(#]0) = Dro?]I/t exp [
where 0% = xJ(1 + t{w?) is the size of the expanded wave
function and ¢¢ = wt; /4 is the global phase accumulated
during the free evolution.

C. Step (d): Double slit

In this step a squared position measurement of the state
at time t = #; is performed, see Eq. (3), such that the state
collapses into

MaUp(11)]0)

V) = Koo

“4)
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TABLE I. Summary of the restrictions on the expansion time #,, the superposition size d, and the evolution time forming the interference
pattern #, of the MERID experiment. Conditions (i)—(iv) are discussed in Sec. II and depend on the measurement strength. Conditions
(v)—(viii) depend on the position-localization decoherence and are derived in Sec. III. Finally, condition (ix) is given by the optomechanical
implementation of MERID, which is the subject of Sec. V. Recall the definitions of 7, in Eq. (19), of £,,.x in Eq. (20), and of &,(#,) in Eq. (18).

I3 d 12}
(i) Highly probably outcome - <80 -
(i1) Superposition peaks resolved - >o//X -
(iii) Wave packets overlap SV20 ) w - -
(iv) Fringes can be resolved - <2mht, /(mdx) -
(v) Decoh. expansion if d < 2a Optimal: fax <€(t)) < Emax -
(vi) Decoh. expansion if d > 2a <1/y <&(t) -
(vii) Decoh. interference if d < 2a - </3/(Aty) -
(viii) Decoh. interference if d > 2a - - <1/y
(ix) Optomechanical implementation < min{+/x/g0,480/ FSC} J <&(t) -

The measurement operator, M, is assumed to have the
following form:

My = expligus(£/0)*]

s g 2 ~ g 2
X {exp [—%} + exp [—%]] N G))
d d

This measurement has the potential to prepare a quantum
superposition of Gaussian wave functions of width o, sep-
arated by a distance d, with an added global phase that
we discuss below. The state |y) presents a well-resolved
spatial superposition provided thatd > 20,. Also, one requires
V80 >d in order to have a non-negligible probability
to obtain the result d, that is, in order to ensure that
1d/2100(11)1d/2) */1(0100(11)|0)* > exp[—1]. We have sum-
marized in Table I all the conditions required to successfully
realize MERID that will be obtained throughout the article.
These two obtained here are included as conditions (i) and (ii)
by using the definition given below in Eq. (6). Motivated by
the optomechanical implementation of this measurement [see
Sec. V where we derive Eq. (5)], let us define a dimensionless
parameter independent of the measurement result, which
characterizes the strength of the measurement and relates d
with o, as

o2

X= 20dd.

(6)

For a given outcome d, the larger the value of x, the
more resolved the superposition. Figure 2 shows the position
probability distribution of the state of Eq. (4) with d = o/2
for different measurement strengths x.

Finally, note that a global phase ¢4 is added during the
measurement. This phase, as well as the one accumulated
during the time of flight, ¢f in Eq. (3), plays an important role.
The condition |¢gs + Prof|d?/(40?) < 1 needs to be fulfilled
in order to build the interference of the two wave packets
centered at x = d/2 and x = —d /2. This can be shown by
analyzing (p|y), that is, Eq. (4) in momentum space, for
different global phases; see Fig. 3. Recall that within free
evolution, the probability momentum distribution of a wave
function at #;, has the same form as the position probability
distribution at much later times since X(¢; + 1) = p(t))t»/m.

More intuitively, the global phase adds some momentum to
the wave packets. Depending on the sign of this phase, the
two wave packets either move apart or toward each other. If
the momentum given is too large, for the former case they
will separate with a velocity faster than their expansion rate,
and, thus, they will never overlap. For the latter case, they
overlap only during the “collision”; however, at this time, the
wave packets have nearly not expanded and the fringes in
the interference pattern cannot be resolved, see the discussion
below.

D. Steps (e) and (f): Interference

These steps consist in measuring the position distribution of
the state obtained after letting the system evolve freely during
a second time of flight #,; this reads

Uo(12)MaUo(11)10)
[1Uo(12)MaUp(11)0}|]
The state |/,) presents interference peaks separated by a
distance x ; = 2mht, /(md) as long as |¢qs + ¢t0f|d2/(402) <

1. The peaks are clearly visible when the two wave packets
overlap, that is, when d = t,h/(20,m). Using Eq. (6) and

)

(7

IP(x)|?

-1.0

FIG. 2. (Color online) [y(x)|?> = [{x|¥)|?, see Eq. (4), is plotted
for d = 0/2 and measurement strength x = 6 (dotted gray), x = 10
(dashed red), and x = 20 (solid blue).
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FIG. 3. (Color online) |(p)|* = |(p|¥)|?, see Eq. (4), is plotted
in arbitrary units for d = o/2, measurement strength x = 50, and
o = |Pas + dor| equal to o = 0 (dotted gray), @ = 50 (dashed red),
o = 100 (dot-dashed blue), and @ = 150 (solid purple).

0% ~ x3t}? (valid at t;w > 1), one obtains an upper bound
for #; given by t; < /2t x /w; this corresponds to condition
(iii) in Table I. Another condition is given by the requirement
to resolve the interference fringes. Assuming a position
resolution of dx, one requires x > §x, which provides an
upper bound for the slit distance d given by d < 2mht,/(méx);
this sets condition (iv) in Table I. MERID is finished in step (g)
where the protocol is repeated to obtain a different interference
pattern for each double slit length d.

III. DECOHERENCE

In the previous section we obtained conditions (i)—(iv) in
Table I for a successful realization of MERID. Note that, since
t; and r, are unbounded, conditions (i)—(iv) do, in principle,
allow for the preparation of arbitrarily large superpositions.
This is the stage when one has to take into account the effect
of decoherence, which is the subject of this section. We will
concentrate on unavoidable sources of decoherence, that is, on
the decoherence caused by the interaction with environmental
massive particles (cf. Sec. III B 1), and the effects of blackbody
radiation (cf. Sec. III B 2). We start in Sec. III A by analyzing
a general form of decoherence called position localization.
We derive the limitations that this imposes on the expansion
time #; (and, therefore, the superposition size d), as well as to
the visibility of the interference pattern. This form of decoher-
ence includes the standard sources of decoherence mentioned
above as well as the effect of collapse models, which we
discuss in Sec. I'V.

A. Position-localization decoherence
1. Master equation

The main feature of a position-localization decoher-
ence is the exponential decay of position correlations, i.e.,
(x|p@)|x"y o< e (x|p(0)|x’), where I usually depends on
|x —x’|. This form is common both to the decoherence
caused by interaction with the environment [27,28] and to the
exotic one caused by collapse models [17-26]. The qualitative
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behavior of this source of decoherence is very well described
by the following master equation given in the position basis:

(x[p(D)lx") = ;—(Xl[ﬁﬁllx’> =T =x){xlp@®Ix"), (®)

where we assume one dimension for simplicity. The decoher-
ence rate function is defined by

¥2
I'x)= y(l —exp|:— @jD )]

This function depends on two parameters: the localization
strength y > 0, which has dimensions of frequency, and the
localization distance a > 0, which has dimensions of length.
The value of these parameters depends on the particular source
of decoherence, such as gas scattering, blackbody radiation,
or the one given by collapse models. This simple master
equation captures the important feature of position localization
decoherence, namely after the saturation behavior (see Fig. 4)

2
M) ~ {Ax , X XK 2a, (10)
Y, x> 2a,

where we have defined the localization parameter A =
y/(4a*). That is, in the short-distance limit, |x — x'| <
2a, the position correlations decay (ignoring the coher-
ent evolution given by the Hamiltonian) as (x|p(¢)|x")
e~ A= (x1 5(0)]x’), such that the decoherence rate depends
quadratically on |x — x'|. In this limit, Eq. (8) reads

p(t) = ;;[ﬁ(t)ﬁ] — ALX[xp0)]]. (1)

The decoherence rate saturates in the long-distance limit
|x — x| > 2a. In this regime, the rate is independent of
|x — x’| and the position correlations decay as (x|p(¢)|x") o
e 7" (x|p(0)|x’). For instance, in Sec. III B 1, we will see that
this is the limit where the wavelength of the particles impinging
the object is smaller than the separation of a superposition state,
such that a single scattering event resolves the position of the
object and provides which-path information.

In the rest of the article, our strategy will be to approximate
each source of position localization decoherence by the simple

1.0

0.8+

0.6 -

[lx]/y

0.4+

02+

0.0 L s s s s s

FIG. 4. (Color online) The correlation function I'(x), see Eq. (9),
is plotted (solid blue line). The short-limit approximation I'(x) = Ax?
is also plotted for comparison (dashed gray line).
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master equation of the form (9), obtaining the localization
strength y and distance a. Let us, therefore, analyze the
restrictions that the master Eq. (9) impose on MERID.

2. Solution of the master equation

In MERID, different steps assume the free evolution given
by the Hamiltonian Hy = p? /(2m). Hence, we need to obtain
the solution of Eq. (8) for the free-dynamics case. This is given
by [17]

> dpdy _,;
b(t N — ipy/h
(x[p(0)]x7) /_OO Era
xF(p.x —x" .0 +ylps0lx +y), (12)

where p,(#) denotes the evolution of the density matrix with
the Schrodinger equation only, that is, when I'(x) = 0. The
function

t
F(p,x,t) =e " exp |:y/ dte_[(x_”’/m)/ea)]z] (13)
0

takes into account the effects of decoherence. We will use
this solution in the following to obtain different restrictions on
MERID.

3. Free evolution: coherence length

We have seen that step (d) of MERID implements a
double slit. It is crucial to ensure that the squared position
measurement prepares a quantum superposition instead of a
statistical mixture. For this to happen, the coherence length
of the state before the measurement has to be larger than
the slit separation d. The coherence length is obtained by
analyzing the decay of the position correlation function
C(x,t) = (x/2]|p(t)] — x/2) as a function of the distance.

Let us begin by using the solution Eq. (12) to obtain
the time evolution of the mean values and moments of
X and p. It is straightforward to observe that the mean
values are not perturbed by the position localization decoher-
ence, thatis, (£()) = (X(1)); = (£(0)) +1(p(0))/m, (p(1)) =
(p(t))s = (p(0)). However, decoherence does modify the time
evolution of the second-order moments

2 2
(B0) = (PO + g,
3m
(1)) = (P*(1))s + 2AR%t, (14)

o o 2 AR 2
([X@), pO],) = (@), pO] ) + .

Here,  (£2(n)); = (£%(0) + (p*(0)r*/(2m),  (p*(1))s =
(p*(0)), and ([£(1), p(1)],) = 2(p*(0))t/m. We remark that
the extra diffusive term ~¢3 found in Eq. (14) for the position
fluctuations is a clear signature of a random force without
damping, which is the case of the position-localization
decoherence. It is also interesting to note that Egs. (14)
depend only on A and, therefore, could have been obtained
with the simpler master equation Eq. (11) which is, however,
only valid in the short-distance limit.

The position correlation function C(x,t) can be now
computed using Eq. (12) and Eq. (14). In particular, by taking
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into account that p,(¢) is a Gaussian state, one can perform the
integration over y in Eq. (12) and obtain

% g4

Clx,t) = / %]—"(p,x,t)

(ﬁz)sxz + <)22)Sp2 - <[£’ﬁ]+)sxl7
2h?

Note that we do not explicitly write the time dependence of
the moments in order to ease the notation. A simpler formula
of C(x,t) for the short-(long-) distance limit can be derived
by using the corresponding approximation in F(p,x,t). This
leads to

X exp [— i| . (15)

Clx,t) _ exp[—x2/£2(1)], x K 2a, (16)
C(0,1) - exp[—xz/ész(t) —yt], x> 2a.
We have defined the coherence lengths
2 8h*(£7(1))
= 17
TO= 1Eoeo) - coson: )
and
2 802(1)
§ () = 1 (13)

&, is obtained by evaluating Eq. (17) with the unitary evolution
given by the Schrodinger equation alone. Recall the definition
of 0%(t) = x3(1 + t*»?) and that for an initial thermal state,
(£2(0)) = 2 + l)xg. While &,(¢) increases monotonically in
time, £(¢) has a maximum at

B [3m(2ﬁ + 113 (19)
max 2Aha) 9
which yields
2hw 176
=2 | 20
Sma f|:3mA2(2ﬁ + 1)} (20)

See Fig. 5 for a particular example. Notice that the maximum
coherence distance, according to Eq. (16), depends crucially
on the saturation distance a of the position-localization
decoherence.

As mentioned, the coherence distance imposes some
conditions on MERID. In particular, the superposition size
d has to be smaller than the coherence distance, namely one
requires C(d,t;)/C(0,t;) ~ 1 in order to prepare a coherent
superposition instead of a statistical mixture. This gives rise
to conditions (v) and (vi) in Table I depending on the ratio
d/(2a).

4. Visibility of the interference pattern

The position-localization decoherence can also compro-
mise the visibility of the interference pattern in steps (e) and (f)
of MERID. Using Eq. (12), one obtains that the time evolution
of the position distribution P(x,t) = (x|0(¢)|x) is given by

l o0 ipx ipx!
Pet) = — dpdx'e’™ F(p)e™ & Py(x',1)
—00
1 food T F(p)By(p.1) 1)
== en A ’ ’
e 4 p)rs(p
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FIG. 5. (Color online) As an example, the coherence distance
&(1), see Eq. (17), is plotted for a sphere of R = 50 nm at a bulk
temperature of 200 K, taking into account the decoherence given by
blackbody radiation; see Sec. III B 2. Other experimental parameters
are taken from Table II.

where Py(p,t) = [dxe "P*/"Py(x,t)/~/2xh. The position
distribution without decoherence Pq(x,t) oscillates with a
wavelength given by x; = 2rhit /(md), which corresponds to
the distances between the interference maxima. Thus, P( p,t)
has peaks at py = &2nh/x; = md/t. Hence, the reduction
of the interference peaks, which we use as a figure of merit
for the visibility of the interference pattern, is given by
V(t) = FQ2rh/xf) = exp[—t®], where

@=y—y‘/§“erf[%] (22)

Note that ©® ~ Ad?/3 in the limit d < 2a and ©® = y in the
limitd > 2a. Therefore, the requirement @, < 1 establishes
the conditions (vii) and (viii) in Table I depending on the ratio
d/Q2a).

B. Unavoidable sources of standard decoherence

Let us now focus on the unavoidable decoherence given
by scattering of air molecules and blackbody radiation.
Decoherence due to environmental scattering is a well-studied
topic triggered by the work of Joos and Zeh [37]. For
an extensive review on these topics, we refer the reader
to Refs. [27,28]. Here we review the results needed for
our analysis. Localization due to environmental scattering is
described by a master equation of the type

(xIp(IX) = ;;<x|[ﬁ,m|x/> — Fx—-x)pxx),  (23)

where the decoherence function F(x — x) depends on the
distance |x — x'| and can be expressed as [28]

o0 d d /

F(x) = / dap(@)v(q) / —
0 Tt

x(1 — 1O=MX/My| £ (gm,qm’)|. (24)

The derivation assumes an infinitely massive object and the
fact that the incoming particles are isotropically distributed
in space. Here, p(q) denotes the number density of incoming
particles with magnitude of momentum equal to g, v(g) =
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q/m, [v(g) = c] is the velocity of massive (massless) par-
ticles, |In| = |n’'| = 1, and f(gn,gn’) is the elastic-scattering
amplitude. For further details, see Chapter 3 of Ref. [28].
The behavior of the function differs substantially depending
on the ratio between |x — X'| and the thermal wavelength
of the scattering particles Ay,. In the long-wavelength limit,
A > |x — X/, F(x — X') ~ A|x — X|?, whereas in the short-
wavelength limit, Ay < |Xx — X'|, one obtains the saturation
of F(x —x') ~ y. That is, above some critical distance each
scattering event resolves the separation |x — x| and thereby
provides which path information. This allows us to relate
qualitatively and quantitatively the master equation (23) with
the simpler one (8) discussed in the previous subsections.
This connection, which has been discussed previously in
Refs. [38,39], is given by the following relations:

a=2An/2 and y =2A3A. (25)

In the analysis of decoherence due to environmental scat-
tering one typically employs the long-wavelength limit since
it always provides upper bounds on decoherence rates, even
when one is in the short-wavelength limit. This was the case,
for instance, in the analysis performed in the optomechanical
double slit proposal in Ref. [32]. As shown below, the upper
bounds for the case of scattering of air molecules were too
loose, since one is in the saturation regime. This yielded the
requirement of very low pressures. The analysis performed
in the following takes into account the saturation effect and
yields much more feasible vacuum conditions.

1. Air molecules

The thermal wavelength of a typical air molecule, which is
assumed to be in thermal equilibrium with an environment
at temperature T, is given by AL =2xh//2nmqk,T, =
2a,;, where m, is its mass. Using m, ~ 28.97 amu and
T, ~ 4.5 K, one obtains 2a,;; ~ 0.15 nm. The localization
parameter associated with scattering of air molecules in the
long-wavelength limit is given by [28]

_ 8v2mwm, v PR? 6

Aair - —3 \/§h2 ’ ( )

where v is the mean velocity of the air molecules, P the
pressure of the gas, and R the radius of the sphere. Thus,
using Eqs. (25) and (26) and the expression of Aj}', one obtains

167+/27 PR*

Vair \/g

In the following, we will consider superpositions which are,
at least, in the nanometer scale. Therefore, we will use the
short-wavelength limit d >> 2a to account for the decoherence
effect of air molecules. The effect of this decoherence is
shown in Fig. 6, where the coherence time y_' and the
corresponding coherence distance &(y,;') are plotted as a
function of the diameter of the sphere and for different
pressures. Note that these quantities define the conditions (vi)
and (viii) in Table I. In particular, for sufficiently low pressures,
large superpositions of the order of the size of the object are
permitted. We remark, again, that in Ref. [32] the saturation
effect was not taken into account, and this gave rise to pressures
of 1076 Torr for spheres of 40 nm, which turns out to be a

27)

vmyg
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FIG. 6. (Color online) Coherence time 1/y,; (upper panel) and
the corresponding coherence distance &(1/y,;) (lower panel) taking
into account the decoherence of air molecules as a function of the
sphere’s diameter and for environmental pressures of P = 10~!! Torr
(solid blue line), 10~!2 Torr (dashed red line), 10~'3 Torr (dotted
orange line), 10~'* Torr (dot-dashed green line), and 10~!3 Torr (large
dashed purple line). Other experimental parameters are taken from
Table II. In the lower panel, the thinner dashed gray line corresponds
to the line &(1/yu) = D.

very loose upper bound when taking into account the saturation
effect. We will come back to this point in the optomechanical
implementation of MERID in Sec. V.

2. Blackbody radiation

The thermal wavelength for massless particles is given
by A = 7n*3hc/(kpT,) = 2ay,, which at temperatures T ~
4.5 K takes the value of )L:’hb ~ 1 mm. In this case, the long-
wavelength limit can be employed since the superpositions
considered will be always smaller than A%". Recall that in
this limit the relevant quantity is the localization parameter.
This parameter has three contributions given by scattering,
emission, and absorption of thermal photons, namely Ay, =
Abb,sc + Abb,e + Abb,a, which are giVCH by

8! x 82(9)cRS [kzT,7" . [ew —17°
Abpsc = R 28
B¢ O hic N €pp + 2 (28)
and
167TSCR3 kBT,‘(e) 6 €pp — 1
A = Im| =—1]. (29
Phe@ = Tg9 [Iw} mL%+J 29)
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FIG. 7. (Color online) #,,,x taking into account blackbody radia-

tion is plotted as a function of the internal temperature of the sphere.

We used a sphere of radius of 50 nm although the dependence on the

radius is negligible. Other experimental parameters are taken from
Table II.

We refer the reader to Refs. [28,29] for further details.
Here, ¢(x) is the ¢ Riemmann function, €y is the average
dielectric constant, which is assumed to be time independent
and relatively constant across the relevant blackbody spectrum
and 7; is the bulk temperature of the object, which might differ
from T,.

From the three contributions, the emission localization
parameter is usually the dominant one since the internal
temperature is usually larger than the external one, for instance,
due to laser absorption during the optical manipulation of
the sphere. In Fig. 7 we plot the optimal time fy.x, see
Eq. (19), as a function of the internal temperature of the
object. The dependence of #,,x on the size of the sphere is
negligible. Comparing Fig. 7 with the upper panel of Fig. 6,
one concludes that, for low pressure, the decoherence due to
blackbody radiation will be dominant, especially when the
internal temperature differs from the external one which is
supposed to be cryogenic (a few Kelvins).

3. Limitations on the superposition size

Let us now summarize the operational parameter regime of
MERID, taking into account standard sources of decoherence.
We compute the lower and upper bounds for d for allowed
values of #; and t, according to Table I. We will use two
sets of experimental parameters for the pressure, the internal
temperature, the measurement strength, and the common ones
given in Table II. The first set, which is assumed to be
feasible, assumes an environmental pressure of P = 107!2
Torr, internal temperature of the object 7; =200 K, and
measurement strength y = 1000, whereas the challenging set
assumes P = 107! Torr, 7; = 4.5 K, and x = 10°.

Figure 8 shows the upper bounds for #; given by conditions
(iii), (v), and (vi) in Table I, considering #, = 0.1/y,;. For
the feasible set, #; in the few milliseconds are possible for
spheres up to a diameter of 250 nm. For the challenging set,
much larger timescales of the order of seconds are possible
for objects in the micrometer regime. In both cases, pressure
is the limiting factor for the internal temperatures considered.
Note that, in both cases, these values correspond to very long
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TABLE II. Experimental parameters used in this article.

0 € w nl T, mg €pp Sx F L A W,

2201Kg/m* 2.1+i107° 27 x 100KHz 0.1 45K 2897amu 2.1+i0.57 0.lnm 13x10° 2um 1064nm 1.5um

coherence times comparing to typical quantum-mechanical
experiments.

In Fig. 9 we plot the superposition size that fulfills
conditions (ii), (iv), (v), and (vii) in Table I for #, = 0.1/ Vi
and t; = min{y/26 X /®,tmax,0.05/Vair}, Which ensures the
fulfillment of the restrictions imposed into #; and #,. Hereafter,
we will call this plot a “d vs. D’ diagram. For the feasible set,
superpositions larger than the size of the sphere are in principle
possible for objects of the order of 50 nm with much lower
pressures than those used in Ref. [32]. For the challenging
set, larger objects and larger superpositions are obtained (note
the different scale in the plot). It is important to remark that
in both cases the limitation is given by condition (iv), which
reads d < 2mht,/(méx) and is related to the resolution of the
interference fringes. This shows that while coherence times
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FIG. 8. (Color online) Upper bounds for #; due to blackbody
radiation and scattering of air molecules as a function of the diameter
of the sphere for P = 107'2 Torr, T; = 200 K, and x = 1000 (P =
10716 Torr, T, = 4.5 K, and x = 10%) in the upper (lower line) panel.
tmax (dashed red line), see Eq. (19), is condition (v) in Table I, 0.05/
(dotted brown line) is condition (vi), and /2%, x /w (dot-dashed blue
line) is condition (iii). We used #, = 0.1/y4;, and the other parameters
given in Table II. The shadowed region corresponds to #;, fulfilling
all three conditions.

are very large, the dynamics resulting in the spreading of the
wave function are very slow for large masses. This hints at
possible improvements of MERID using more efficiently the
long coherence times allowed by the unavoidable sources of
decoherence considered here.

IV. COLLAPSE MODELS

In this section we discuss the possibility of using MERID
to test some of the most paradigmatic collapse models.
Remark that any experimental evidence of these would imply a
breakdown of the theory of quantum mechanics. In the
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\\ \\
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= P=10"'° Torr™.
T=45K M
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0 200 400 600 800 1000 1200 1400
D (nm)

FIG. 9. (Color online) Superposition distance d as a function of
the diameter D = 2R of the sphere, taking into account blackbody
radiation and scattering of air molecules with P = 107! Torr, T; =
200K, and x = 1000 (P = 107! Torr, T; = 4.5 K, and x = 10°) in
the upper (lower) panel and the others parameters given in Table II.
Note the different scales for the upper and lower panels. According
to Table I, we plotted condition (ii) d > o/,/x (solid black line),
condition (iv) d < 27ht,/(méx) (dot-dashed blue line), condition (v)
d < &(t;) (dashed red line), and condition (vii) d < +/3/(At,) (dotted
orange line). The shadowed region corresponds to d, fulfilling all four
conditions and thin dashed gray linetod = D. We used t, = 0.1/ Y,

and t; = min{y/21, x /®,tmax,0.05/ Vair }-
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following, we consider the unavoidable sources of decoher-
ence discussed in the previous section and, on these grounds,
we determine the experimental parameters required to falsify
a given collapse model by the observation of the interference
pattern. We note that the corroboration of the collapse model is
more challenging than its falsification, since one must discard
that standard decoherence, in any of its forms, is responsible
for the disappearance of the interference pattern.

We shall not review the extensive literature on collapse
models; instead, we will focus on some of the most discussed
ones in the literature, and, for each of them, we will provide
a brief summary of their prediction. In particular, we shall
express them in a common form, namely as a master equation
describing position-localization decoherence; this will allow
us to apply the results of Sec. IIT A and, thereby, to discuss the
possibility to test them using MERID.

A. Continuous spontaneous localization

We start with the continuous spontaneous localization
(CSL) model [18,40], which is the best developed collapse
model at present [19]. This model builds on the previous works
of Ghirardi, Rimini, and Weber (GRW) [17]; Pearle [41];
and Gisin [42], and it bears some similarity to the works of
Gisin [43] and Di6si [44,45]. The model is constructed by
adding a nonlinear stochastic term to the Schrédinger equation.
This term predicts a localization whose strength is directly
proportional to the mass of the object. At the same time, it is
constrained by the fact that the equation must reproduce all
phenomenology of quantum mechanics for small objects. This
introduces two phenomenological constants that are bounded
by experimental evidence.

More specifically, within the CSL model, the master
equation describing the wave function of N particles is given
in the position representation |Xy, . .. ,Xy) = |X) by [18,40,46]

xlpMIx') = %(Xl[ﬁ,ﬁ]IX') — FesL(x.x)(x[p(DIX),  (30)

where

0 N
Y, m;m;
Fesp(x,x) = —-S& E -
2 mg

ij=1
x[D(x; — x;) + D(x; — x/j) —2d(x; — x/j)].
(31

Here, m is the mass of a nucleon, ygSL is the single nucleon
collapse rate, and

(r) Ll (32)

r)=exp|—
b dats;

is the localization function with acsy being the localization

distance. Note that for the single-nucleon case, Eq. (31) reads

, 0 |X _ X/|2
Pest(x.X) =yesp (L —exp| ———— ). (33)

2
4ace

which has the same form as Eq. (9). The parameters yé’SL
and acsy are the two phenomenological constants of the
model. Their value is bounded by both experimental data and
“philosophical” reasons; see Ref. [47] for a recent discussion.

PHYSICAL REVIEW A 84, 052121 (2011)

The standard values originally proposed in the GRW model
[17] are acs;, = 100 nm and yé’SL = 10~'% Hz. However, the
value of ygSL has been recently reconsidered by Adler and is
predicted to be 8 to 10 orders of magnitude larger [20,48] than
the original one of 10~'° Hz, a prediction not yet confronted
by up-to-date experiments [20]. We will, however, consider
here the original values for the sake of comparison.

The decoherence factor of the CSL model, Eq. (31) can be
obtained for the center of mass of a solid sphere of mass m,
volume V, and homogeneous mass density. We use the results
given in Ref. [46] where an analysis of the CSL model for the
free propagation of a solid mass is discussed. In this case, the
decoherence factor [cf. Eq. (31)] takes the form

CesL(x,x')
o m* [ drdr ) ) /
=—Yoso 5 | 57 [Pr—r)—®r—r +x-Xx)]
my Jv \%
(34)

In order to approximate Eq. (34) to (9), we can extract the
localization parameter in the expression given for the free
evolution of the position fluctuation, which is given by [46]

0 72 3
. . Yestt” f(R/acsy)t
(£2(0) = (£2(1))s + ] : (35)
6macs,
By comparing it with Eq. (14), one obtains
m? 2
AcsL = —5—5= f(R/acsL), (36)
mg 4ags

where the function f(x) is given by

6 2 2\ _p
fo=Z1-S+(1+5)e . 6D
and has the following limits f(x — 0) =1, f(1) = 0.62, and
f(x = o0) = 6/x* Thus, recalling that A = y/(4a?), one
obtains the collapse rate
2
m- o
YesL = WVCSLf(R/aCSL)- (38)
0

Note that the rate ycg;, grows quadratically with the number
of nucleons for spheres smaller than 2acgy .

To grasp the strength of the exotic decoherence by this
model, we plot in Fig. 10 the value of the coherence time
1/(AcsLd?) of a superposition of size d < 2acs, as a function
of the sphere’s diameter D and the superposition distance d.
Coherence times of the order of milliseconds are obtained for
objects of 300 nm and superpositions of tens of nanometers.
Note that these coherence times would be strongly reduced by
using the enhancement of the localization rate y’g, predicted
by Adler [20,48].

B. Quantum gravity

Ellis, Mohanty, Mavromatos, and Nanopoulos suggested
in Refs. [24,49] that quantum gravity (QG) can induce the
collapse of the wave function of sufficiently massive objects.
They argue that the collapse is induced by the interaction of
the massive object with topologically nontrivial space-time
configurations (wormholes) which are small compared to
physical scales but much larger than the Planck scale. From the
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FIG. 10. (Color online) Different values of the coherence time
1/(AcsLd?) as a function of the sphere’s diameter D and the
superposition distance d. Other physical parameters, such as the
density of the sphere, are taken from Table II.

point of view of quantum information theory, this decoherence
mechanism can be understood as the result of the center of
mass of the object becoming entangled with some degrees of
freedom belonging to these wormholes which are unaccessible
and, therefore, have to be traced out. Indeed, this provides
a localization effect analogous to the one induced by the
interaction with the environment.

In this model, the quantum wormholes are assumed to
be in a Gaussian state in momentum space and have zero
mean momentum with a spread given by A ~ cmé /(hmp) ~
1073 m, where my is the mass of a nucleon and mp is
the Planck mass. For distances smaller than 1/A, the off-
diagonal elements of the density matrix in position basis decay
as (x|p@)|x’) exp[—A%G(x — xY?t1{x|p(0)|x"), where the
localization parameter is given by

4.6
¢ o
3.3°
h' myp

Adg = (39)
Note that the localization distance is very large since it is
givenby agg = 1/(2A) ~ 10° m, hence, the decoherence does
not saturate within the typical wave-function spreadings. The
collapse rate for the single nucleon is thus given by V((Q)G =
4aéGA%G. It is remarkable that this model [24,49], which is
based on quantum gravity, converts the CSL model into a
parameter-free model. The extension of the single nucleon
case to the solid sphere can be obtained by retrieving the result
given in Eq. (38). Based on this, the localization parameter of
a solid sphere predicted by this model is given by

A c
G = T3 ;
< nomd

where we have used f(R/aqg) =1 since R < aqg for the
spheres considered here.

(40)
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FIG. 11. (Color online) Different values of the coherence time
1 /(AQGdZ) as a function of the sphere’s diameter D and the

superposition distance d. Other physical parameters are taken from
Table II.

As previously, we plot in Fig. 11 different values of the
coherence time 1 /(Adiz) as a function of D and d. By
comparing these results with the ones given by the CSL model
in Fig. 10, we notice that the decoherence effect is slightly
stronger but, nonetheless, very similar.

C. von Neumann-Newton equation

In the past 30 years, many authors have investigated the
possible role of the Newtonian gravity in the collapse of the
wave function. From these, the independent but similar works
of Didsi and Penrose (DP) are the most famous ones [22,23,
25,44,50-52]. The prediction of the model can be casted into

the so-called von Neumann-Newton equation, which can be
expressed as [23,44,50]

(xlp(MIx) = ;—l(Xl[ﬁ,ﬁ]IX') — Ppp(x,x)(x|p()IX")  (41)

where

Ipp(x,X) =

Uy(x,X) — Ug(X',X') + 2U,(x,X)

42
7 (42)
Here U,(x,x’) is the Newtonian interaction between two mass

densities corresponding to two spheres centered at position x
and x/, respectively. This reads

f(rIX)f(r’IX’)d

Uy(x,x') = -G T rdr’,

(43)

where f(r|x) is the mass density at location r for the sphere
centered at x. For a rigid homogeneous ball, the mass density

is uniform and equals f = 3M/(4m R?). In this case, the
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decoherence function of Eq. (42) depends on the relative
distance |x — x'| and presents the following limits [50]:

Gm?/2R*)x%, x < R,
6Gm?/(5Rh), x> R.

The quadratic dependence at short distances allows us to
identify the localization parameter of the model

Ipp(x) = { (44)

Gm?
2R’
as well as the saturation distance at 2app = R.

The strength of this model is much weaker than the CSL and
the QG; see Fig. 12, where 1/(Appd?) is plotted as a function of
D and d. Coherence times of the order of milliseconds are only
obtained for objects of few microns prepared in superpositions
within the micrometer scale.

Let us point out that the decoherence rate given by this
collapse model can be strongly enhanced by considering the
mass density at the microscopic level [23]. For instance, by
modeling the fine structure beyond the constant average mass
as a conglomerate of identical small balls of mass m( and
radius ry, the parameters of the model are given by [23] 2dpp =

ro and
N R\’
App=|—] App.
ro

Thus, since ry is typically chosen much smaller than R,
the localization parameter is greatly enhanced. This is used,
for instance, in the Marshall proposal to test the Penrose
model using the small delocalization of a micromirror [15,53].
However, this choice is controversial since it not only converts
the parameter-free model into a one-parameter (1) model, but

App (45)

(46)

5000
\ DP
4000

3000

d(nm)

2000

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
1 \
1
1
)
1
1
)
\
1
1
\
)
\

1000

-~
S m—
e i e g e

2000 3000 4000 5000

D (nm)

0 1000

FIG. 12. (Color online) Different values of the coherence time
1/(Appd?) as a function of the sphere’s diameter D and the
superposition distance d. The dashed gray line marks the limit where
the coherence time is not longer valid since, for d > 2app, it would

then be given by 1/ypp. Other physical parameters are taken from
Table II.

PHYSICAL REVIEW A 84, 052121 (2011)

the von-Neumann-Newton equation also becomes divergent
for pointlike particles [23,52,54]. This yields unphysical
results such as the nonconservation of energy, especially when
ro < 100 nm (see Refs. [23,54]). For this reason, while it is
not clear how to choose the mass distribution, in this article we
assume the well-behaved case of a solid homogeneous density;
this comes at the price of making formidable the possibility of
falsifying the model, as shown below.

D. Imprecise space-time

Finally, we also consider the K model, named after
Karolyhazy, who introduced one of the first collapse models as
early as the 1960s [55,56]. The model builds on the insight that
the sharply determined structure of space-time is incompatible
with quantum mechanics and general relativity: According to
quantum mechanics, the position and the velocity of an object
cannot have deterministic values simultaneously, while general
relativity states that the space-time structure is determined by
the positions and velocities of the masses.

We base our approach on the article of Frenkel [21], who
provides a very clear review of the K model and its relation to
the CSL model. The prediction of the K model in the so-called

“no-breathing limit” [21] is given by the following master
equation:

i A are A
p(1) = 2 1p(1). H] — Ag[X[Xp@)]]. (47)
This corresponds to a position-localization decoherence with
a localization distance 2ax — 00, a localization rate yx — 0,
and a localization parameter yx / (4af<) — Ag. The localiza-
tion parameter for a solid sphere of mass m is given by [21]

h
Ag = St (48)
where
32
_ (%) / Ilc, R > ag,
c=10, (49)
(ﬁ) lc, R < ag.

Here Ip = \/Gh/c3 is the Planck length and [ = i /(mc) the
Compton wavelength. Note that this model is also parameter
free.

As shown in Fig. 13, the strength of this model is also
weaker than the CSL and the QG and only slightly stronger
than the DP. Coherence times of the order of milliseconds
are obtained for spheres with diameter between one and

two micrometers prepared in superpositions smaller than one
micrometer.

E. Experimental test

Let us now address the possibility of testing these col-
lapse models using MERID. The localization parameter and
the localization distance of each model are summarized
in Table III.

For the sake of comparison, we plot the ratio between
their localization parameter with the localization parameter
provided by blackbody radiation in Fig. 14, where we have
assumed a bulk temperature of 7; = 4.5 K (recall Sec. III B 2).
While all collapse models provide a stronger localization rate
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FIG. 13. (Color online) Different values of the coherence time
1/(Axd?) as a function of the sphere’s diameter D and the
superposition distance d. Other physical parameters are taken from
Table II.

than the blackbody radiation, the CSL and QG model are
many orders of magnitude stronger than the DP and the K
model. Actually, the standard decoherence given by blackbody
radiation is comparable to the one predicted by the DP and
K model for a bulk temperature of 20 K. Since standard
decoherence will limit the superpositions to be smaller than
the localization distance, the localization parameter A is the
only relevant parameter.

We start with the stronger collapse models: the CSL and
the QG. We will use the d vs. D diagram (Fig. 9) to determine
how they can be falsified using MERID. From the bounds
listed in Table I, the decoherence given by the collapse
model contributes only to conditions (v) d < &(#;) and (vii)
d < /3/(At). Hence, we recalculate these two bounds using
A = Ap, + Acm, Where Acy is the contribution given by the
collapse model; this is summarized in Table III. The times
t; and t, depend only on the standard decoherence and are,
thus, chosen as described in the caption of Fig. 9. Figure 15
shows the d vs. D diagram, including either the CSL or the QG
collapse model. As explained in the caption of the figure, the
green region is the parameter regime where the collapse model
can be falsified. This shows that both the CSL and the QG
collapse model can be tested, for instance, at P = 10~ Torr,

TABLE III. Summary of the decoherence parameters predicted
by different collapse models. Recall that for the CSL model we take
the original value of 5, ~ 107'¢ Hz.

2a A
CSL ~200 nm Yo m? f(R Jacs)/(dakg m2)
QG /A ~10°m cctmPmd ) (nPms,
DP R Gm?/(2R%h)
K 00 h/(Smaf)
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FIG. 14. (Color online) Localization parameter A for the different
collapse models (CSL, QG, K, and DP) in units of the localization
parameter provided by blackbody radiation, assuming a bulk temper-
ature of 7; = 4.5 K, as a function of the diameter of the sphere. Other
parameters are taken from Table II.

T; = 100K, and y = 1000 for spheres with a diameter ranging
from 100 to 500 nm approximately. As expected, this region
is larger for the QG model than for the CSL model with
V((Z)SL = 107" Hz. The appearance of the green region is
mainly due to the tighter bound given by condition (vii)
d < /3/(Aty), which is imposed in order to preserve the
visibility of the interference pattern. A simulation of the
interference pattern is also plotted in Fig. 15 for a particular
point in the diagram; see the figure’s caption. The simula-
tion is done by numerically solving the master equation at
the different steps of MERID. Therefore, both the CSL (with
the conservative value of yé)SL =10"'% Hz) and the QG
collapse model can be falsified with the successful observation
of the interference pattern if MERID were implemented at the
the green region of the parameter regime.

These results are in strong contrast with the ones obtained
for the much weaker exotic decoherence given by the DP
and K collapse models. Indeed, the green region is zero for
both cases even at much higher vacuum conditions and low
bulk temperatures. However, we have shown in Fig. 14 that
the localization parameter of these collapse models is larger
than the one given by blackbody radiation at 7; = 4.5 K, and,
thus, their additional exotic decoherence should be observable.
However, the problem in this case is that the time required to
observe this decoherence using MERID is longer than the
coherence time allowed by the scattering of air molecules
1/vair (see Fig. 6). More specifically, the reduction in the
visibility for d < 2acm and t, < 1/yy; is given by

V(1) = exp[—(Apy + Acm)d’12/3]. (50)

Assuming Ap, << Acm, the visibility can be approximated to
V(t,) ~ exp[—Acmd>ta/3], and, thus, it will be reduced at
times

1
—, (51)

where we added the second inequality to emphasize that #, has
to be smaller than the coherence time allowed by scattering of
air molecules. By inspection of Figs. 6, 12, and 13, one realizes
that these two conditions are extremely challenging to be
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FIG. 15. (Color online) Operational parameter regime of MERID
where the CSL and the QG collapse model can be tested. The upper
two panels show the d vs. D diagram as in Fig. 9 with P = 10~'* Torr,
T; = 100 K, and x = 1000. The green region is the nonoverlapping
allowed region, taking into account only standard decoherence and
the CSL (first panel) or QG (second panel) collapse model. The dot is
at d = 30 nm and D = 100 nm. For this value, the third lower panel
plots the simulated interference pattern, taking into account standard
decoherence only (dotted gray line), the CSL model (dashed blue
line), and the QG model (solid red line).

fulfilled for the DP and K model. Therefore, we conclude that
the DP and the K model cannot be tested using the present form
of MERID. However, the fact that the localization parameter of
these collapse models is larger than the one given by blackbody
radiation at cryogenic bulk temperatures hints at the fact that
an improved version of MERID, in which, for instance, the
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free dynamics are accelerated by using repulsive potentials,
could meet this challenge.

V. OPTOMECHANICAL DOUBLE SLIT

The last section of this article is devoted to the analysis
of the restrictions that an optomechanical implementation of
the squared position measurement imposes on MERID. The
implementation of MERID using cavity optomechanics with
levitating dielectric spheres has been recently proposed in
Ref. [32]. Here, we provide a thorough derivation and we better
remark the conditions that need to be fulfilled. For further
literature on cavity optomechanics with levitating dielectrics,
we refer the reader to Refs. [16,29,31,32].

In the following we focus on step (d) of the protocol, where
the sphere is assumed to enter a small cavity, ideally aligned
such that the mean position along the cavity axis (X) of the
sphere is at the node of a cavity mode. In this configuration,
the optomechanical coupling is quadratic with £. This implies
that the output light of the cavity contains information about
%2, and therefore, this can be measured by homodyning the
light. The optomechanical Hamiltonian reads [31]

A2
ﬂuy=§;+hgmﬁ2+MEaxa—aU (52)

The first term describes the kinetic energy of the sphere along
the cavity axis (note that that there is no harmonic potential
since the particle does not need to be trapped during the short
interaction required to measure £2). The third term describes
a time-dependent driving at frequency w; which equals to the
cavity resonant frequency w,., which is used to parametrize
the short light pulse. Finally, the second one is the important
term describing the optomechanical coupling when the sphere
is placed at the node of the cavity mode. We have defined
the creation (annihilation) operators of the cavity modes af
(a), the dimensionless position operator ¥ = X/o, and the
optomechanical coupling rate given by g = goo > /xg, where

8o = ecx§k3_c (53)

4V,

in the case of a nanosphere [16,29,31,32]. Here, €. =
3Re[(e, — 1)/(e, + 2)] depends on the relative dielectric
constant €,, k. = w./c, and V. = W?L/4 is the cavity
volume, where W is the waist of the cavity mode and L
the length of the cavity. As discussed in Ref. [32], note
that § enhances g by a potentially very large factor o?/x3,
depending on the size of the wave packet. The interaction
time is assumed to be very small so the interaction is in
the regime of pulsed optomechanics [57]. We do not take
into account the optimization of the pulse shape [57] and
simply consider a time-dependent driving frequency given by
E(t) = /2knypé (1), where &(¢) is a flat-top function of length
T and amplitude ~ 1/+/T such that fOT £2(t)dt = 1, k is the
decay rate of the cavity, and npy, is the total number of photons
that the light pulse carries. The decay rate of the cavity has a
contribution given by the finesse F of the empty cavity and by
light scattering, and it reads [29,32]

2w ce2V2k?

K=—— . (54)
2FL 167V,
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A. Measurement operator and strength

Let us show here that after a short interaction with the
light pulse, the measurement of the phase quadrature of the
output light realizes a measurement of £> with some given
measurement strength x. Pulsed optomechanics [57] consists
in implementing a very short interaction time 7 ~ «~' such
that

(PH)T  (Qa+ DT
2m h 4
This allows us to neglect the kinetic term in Eq. (52), which
yields

< L (55)

H(r) ~hgatax? —inE@) @' — a). (56)

In order to obtain the output light quadrature we make use
of the input-output formalism [58]. The Langevin equation
associated to d is given by

a(t) = —(igx* + K)at) + E@) + V2kan@),  (57)

where d;j is the input cavity noise operator. We further assume
that ¥ > g, such that one can adiabatically eliminate the cavity
mode by setting a(#) = 0. This leads to

. . 1 ig#?
at) = [E(t) + v 2kain(1)] ST ) (58)

K2

By using the input output relation dogy(f) = ~/2ka(t) —
din(¢) and defining the phase quadrature ﬁ(h]t(t) = i[&lut(t) —
dout(1)]/ /2, one obtains the relation

PL (1) ~ PL(1) + x ()72, (59)

where x(¢) = 2g E(t)/(x 4/x), and we have neglected the small
term ~2g%2X L /ic. A balanced homodyne measurement of the
output field performs a quantum measurement of the time-
integrated output quadrature given by [32]

R 1T . 3
Pt = Nia fo PL (Hdt = PL + x5 (60)

An important result is the value of the measurement strength,
which is given by
g./n
x ~ 225V 1)
K
An optimization of the pulse shape provides a different pref-
actor which slightly increases the measurement strength (see
Refs. [57,59]). If the measurement of the optical phase yields
the measurement outcome p;, the measurement operator

describing the collapse of the center-of-mass state of the sphere
is given by [32,57,59]

M =exp[igad® — (pr — x5)]. (62)

As a result of the measurement operator of Eq. (62), a
superposition of two wave packets, separated by a distance
d =20+/pL/x and a width given by approximately o; ~
o/(4/prx) = 02/(2dY), is prepared. This is, thus, in full
agreement with the treatment of Sec. II C. Furthermore, the
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global phase accumulated during the interaction with the
classical part of the field is given by

T
dos = — f glai(Dam)dr
0
T -2/ ~4 _
—/ EX(1) (iz+ i <f ))dt ~ 28 6a)
0 K K K

where the second term can be neglected in the regime x > 2.

B. Restrictions to MERID

The double slit implementation imposes the following
restriction on MERID. First, recall that the phase [Eq. (63)]
needs to be compensated by the phase accumulated during the
time of flight ¢wr = tiw/4. Thus, ¢or + ¢gs ~ 0 is fulfilled
when the total number of photons in the light pulse is

whK xg K

Nph = . 64
P 8g0 02  8gotw ©4)
Here we have used again that o ~ x3tiw? at times

fiw > 1. Inserting equality Eq. (64) into the definition of the
measurement strength Eq. (69) leads to

x ~ (ho)’? \/% (65)

Additionally, standard decoherence due to light scattering
during the light-mechanics interaction [29,32] is prevented
if the following conditions are met. This decoherence is also
of the localization type, with a decoherence rate given by
[y(t) = ASCEz(t)a2 /K for distances smaller than the optical
wavelength, where the localization parameter is [29,32]

2
L= e VR (66)

This form of decoherence is prevented as long as

fOT Iy (t)dt <« 1, which gives rise to the following condition
on fq

4go0

) 67
ol'd, ©7)

<

where we have used Eq. (64) and we have defined 'Y, = A% x2.
Bear in mind that the adiabatic elimination used in the
derivation is valid as long as ¥ > g = gotlza)z, which leads
to a further constraint, namely #; <« w~'\/k/go. Thus, the
optomechanical implementation of step (d) of MERID yields

an additional upper bound on #; given by

1 . Kk 4go oM
t — [—, ==t =1 68
1 K< wmm{ 2 FSC} 1 (68)

This is incorporated in Table I as condition (ix). Also, by
inserting Eq. (68) into Eq. (65) we obtain an upper bound for
the measurement strength given by

P 1/4 Sgg
«mn{ (L) 28 toy . ()
X (80) N

These conditions give a strong limitation for the overall
performance of MERID which crucially depend on the quality
of the optical cavity employed. In Ref. [32], it was suggested
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FIG. 16. (Color online) In the upper panel, #; [see Eq. (68)] is
plotted as a function of the diameter of the sphere. The solid blue
line is the upper bound 4go/(wI'2) and the dashed red line the
@~ (x/go)"/*, which is the bound given by the adiabatic condition.
The gray region shows allowed #; values. In the lower panel, xmax
[see Eq. (69)] is plotted. We used a fiber-based Fabry-Perot optical
cavity; see the main text and Table II.

to use the recently developed fiber-based Fabry-Perot cavities
of length of 2 ym and finesse F &~ 1.3 x 10° [60]. As shown
in Fig. 16, for this cavity, upper bounds for #; of the order
of milliseconds and a corresponding xm.x of several tens
are obtained for spheres smaller than 100 nm. To see the
implications for the realization of MERID, we plot in Fig. 17
the d vs. D diagram for a pressure of P = 107" Torr
and a bulk temperature of 7; = 200 K (which is reasonable
considering the heating produced by laser absorption [29,32]).
For these parameters, #; = t°M /4 guarantees the fulfillment
of the bounds on #; given in Table II. It is remarkable that
even taking into account the restrictions imposed by the
optomechanical implementation, spheres with a diameter of
tens of nanometers that contain of the order of 107 atoms
can be prepared in superpositions of the order of their size.
Moreover, even the CSL model with a localization rate
frequency given by 104)/85L, which is orders of magnitudes
lower than the enhancement predicted by Adler [20,48], can
be falsified. The result shown in Fig. 17 is very similar to
the one given in Ref. [32]. Note, however, that here we
have used a pressure three orders of magnitude larger due
to the saturation effect omitted in Ref. [31]. This renders
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100

D (nm)

FIG. 17. (Color online) The d vs. D diagram (see Fig. 9) is
plotted, taking into account the additional limitations imposed by
an optomechanical implementation of the squared position measure-
ment. We used the experimental parameters of Table II, a pressure
of P =10~" Torr, an internal bulk temperature of 7; = 200 K,
= t|OM/4, and 1, = 1072/)/;,&.

the implementation of MERID using cavity optomechanics
with levitating spheres less challenging. Finally, we remark
the recent proposal given in Ref. [61] to test the CSL model
using an all-optical time-domain Talbot-Lau interferometer for
clusters with masses exceeding 10° amu.

VI. CONCLUSIONS

In summary, we have shown that by combining techniques
and insights from quantum-mechanical resonators and matter-
wave interferometry, one can prepare large spatial quantum
superpositions of massive objects comparable to their size.
The protocol consists of cooling a mechanical resonator to
its ground state, switching off the harmonic potential to let
the wave function coherently expand, preparing a spatial
quantum superposition by performing a measurement of the
squared position observable, and observing interference by
measuring the position after further free evolution. We have
focused on solid spheres with diameters ranging from tens of
nanometers to few micrometers. We have taken into account
unavoidable sources of decoherence such as the scattering of
environmental massive particles and the emission, absorption,
and scattering of blackbody radiation. Both sources provide
coherence times of the order of milliseconds within reasonable
values for pressures and temperatures. At low pressures,
decoherence due to blackbody radiation is dominant when the
bulk temperature is larger than the cryogenic environmental
temperature. Additional limitations are given by the slow
free dynamics involved for these massive objects. For larger
masses, the wave function takes longer to coherently expand
and to build a visible interference pattern after a superposition
has been prepared.

We have also argued that this protocol can be applied to test
some of the most paradigmatic collapse models. In particular,
we have analyzed the continuous spontaneous localization
model (CSL), a model based on quantum gravity (QG), the
Diési-Penrose model (DP), and the Karolyhdzy model (K). The
CSL and the DP are much stronger than the DP and K model
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and can be falsified using reasonable experimental parameters.
In particular, the famous continuous spontaneous localization
model can be tested using the original and conservative choice
of parameters. However, the DP and K models are much
more challenging to falsify despite the fact that they predict
a decoherence which is stronger than the one provided by
standard decoherence at low bulk temperatures. Nevertheless,
these models are strongly limited by the fact that the free
dynamics of the large masses required is too slow. We remark
that for the Didsi-Penrose model we did not consider the strong
enhancement provided by taking into account the mass density
at the microscopic level. The latter, in addition to being a
controversial choice, turns the model into a one-parameter
model given by the mass resolution parameter ry. Note that
if this parameter is taken into account, the protocol proposed
here provides unprecedented lower bounds to its value. See
Ref. [62] as a possible future development to test the DP and
the K models in a medium-sized space mission.

We have also addressed the optomechanical implementa-
tion of the protocol presented, namely MERID. We focused
on the squared position measurement required to perform
the double slit experiment, and we have considered cavity
optomechanics with optically levitating nanospheres. We have
shown that the overall performance of the protocol is limited by
this implementation, since both the global phase added during
the interaction and light scattering set upper bounds on the
expansion time and the measurement strength. Nevertheless,
with recently developed fiber-based cavities and for spheres
of the order of tens of nanometers, superpositions of the order
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of their size could be prepared. This provides unprecedented
bounds to the continuous spontaneous localization model that
can be used to falsify the enhancement of the localization rate
predicted by Adler.

There are various directions to further pursue the work
presented here. First, the study of the implementation of
MERID using cavity optomechanics with suspended disks
[63]. In this setup, the mechanical frequency can also be
varied since the tight harmonic potential is achieved by optical
trapping, but the scattering of light is strongly reduced when
the laser waist is smaller than the disk. This comes at the price
of inducing decoherence due to the coupling with internal
elastic modes. Second, the possibility of using repulsive
potentials to exponentially increase the time scales of the free
dynamics and, thus, to efficiently use the long coherence times
given by scattering of air molecules and blackbody radiation.
Naturally, this has to be done without incorporating additional
sources of decoherence. In any case, we believe that the
synergy between the fields of quantum-mechanical resonators
and matter-wave interferometry will allow to explore in the
near future the limits of quantum mechanics at unprecedented
scales, an exciting possibility indeed.
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