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Tracking an open quantum system using a finite state machine: Stability analysis
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A finite-dimensional Markovian open quantum system will undergo quantum jumps between pure states,
if we can monitor the bath to which it is coupled with sufficient precision. In general these jumps, plus the
between-jump evolution, create a trajectory which passes through infinitely many different pure states, even
for ergodic systems. However, as shown recently by us [Phys. Rev. Lett. 106, 020406 (2011)], it is possible to
construct adaptive monitorings which restrict the system to jumping between a finite number of states. That is, it
is possible to track the system using a finite state machine as the apparatus. In this paper we consider the question
of the stability of these monitoring schemes. Restricting to cyclic jumps for a qubit, we give a strong analytical
argument that these schemes are always stable and supporting analytical and numerical evidence for the example
of resonance fluorescence. This example also enables us to explore a range of behaviors in the evolution of
individual trajectories, for several different monitoring schemes.
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I. INTRODUCTION

An open system is one which continuously exchanges
information with its environment [1–3]. For a Markovian
(memoryless) system, this amounts to a loss of information
from the system into the environment. By monitoring the
environment, it is possible to regain this lost information and
hence to track the system. If the monitoring process is perfect,
then one can expect to perfectly track the system, that is, to
know as much as is possible to know about the system, as
would be the case were it a closed system prepared at will.

These very general considerations apply equally to classical
and quantum systems. However, there are some very signifi-
cant differences between the two cases. In the classical case,
there is only one (best) way to monitor the environment. Also,
if the classical system has only finitely many possible states—
this is known as a finite state machine [4]—then obviously
it is possible to keep track of its state using only a finite
classical memory—another finite state machine of the same
dimension. In the quantum case, by contrast, there are infinitely
many inequivalent ways of monitoring the environment that
enable the experimenter to deduce what pure state the system
is in [1,3,5]. This is because of the entanglement between the
system and its environment. But in almost all cases, an infinite
classical memory is required to store that pure state, even for
a finite-dimensional quantum system.

This last point can perhaps only be understood by introduc-
ing a little formalism. We consider finite-dimensional systems
that undergo Markovian open quantum system dynamics,
described by a Lindblad-form master equation [2,3]:

ρ̇ = Lρ ≡ −i[Ĥeffρ − ρĤ
†
eff] +

L∑
l=1

ĉlρĉ
†
l , (1)

where Ĥeff ≡ Ĥ − i
∑

l ĉ
†
l ĉl/2. Here Ĥ is Hermitian (it is the

Hamiltonian) but the jump operators {ĉl : l} are completely
arbitrary. This decomposition defines the evolution of the
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system conditioned on a perfect monitoring of the bath quanta.
If a quantum in channel l is observed at time tn, the system state
jumps from the prejump state |ψ(t−n )〉 to the postjump state
|ψ(tn)〉 ∝ ĉl|ψ(t−n )〉. Then until the next jump its subsequent
evolution would be generated by the effective (non-Hermitian)
Hamiltonian Ĥeff appearing in Eq. (1).

In general, the postjump state will depend on the prejump
state |ψ(t−n )〉, and it will not remain stationary until the next
jump, unless it happens to be an eigenstate of Ĥeff . It is thus
not at all obvious whether for a general open quantum system
it would be possible to keep track of its pure state, even in
principle, with a finite classical memory. On the face of it,
it would seem necessary to store the nature and exact times
of each jump—requiring a sequence of real numbers {tn : n}
each of which would require, in principle, an infinite memory
to store. Alternately one could store the conditioned quantum
state |ψ(t)〉 itself, but this (a finite vector of complex numbers)
would also require an infinite memory.

In Ref. [6] we showed that, for an arbitrary D-dimensional
quantum system obeying a Markovian master equation with a
unique stationary (mixed) state, one can expect there to exist
a monitoring such that it is possible to track the system’s
conditional (pure) state with a K-state machine as apparatus,
with some K � (D − 1)2 + 1. For a qubit we proved that this
is indeed always the case: a two-state apparatus can be found
that ensures the qubit jumps between just two states. This
apparatus must implement an adaptive monitoring, choosing
how to measure the environment depending on its own internal
state. This result shows that the infinite amount of information
required to track a quantum system under a generic monitoring
scheme arises from the poor choice of scheme and is not
intrinsic to the coupling between the quantum system and its
environment.

The goal of this paper is to investigate the stability of
such finite-state monitoring and provide details on how such
schemes can be identified and constructed. The first goal is
necessary to establish that the schemes introduced in Ref. [6]
are not just mathematical constructions, but are physically
realizable. For this purpose we restrict to qubit evolution and
cyclic-jump schemes. All the schemes we study are stable in a
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mean-square sense, and we give a strong analytical argument
plus supporting numerical evidence (for two- and three-state
machines) that such schemes are always stable.

The paper is organized as follows. In Sec. II we review the
background for this paper and summarize relevant results from
Ref. [6]. In Sec. III we develop our main results for stability.
We discuss these results in the context of specific examples
of resonance fluorescence in Sec. IV. We conclude with a
summary and a statement of open problems in this area.

II. THE PREFERRED ENSEMBLE

The idea of tracking the system with finite classical memory
is closely related to the concept of a preferred ensemble. To
explain the latter notion, we consider an evolution generated
by a Markovian master equation with a unique steady state
defined by Lρss = 0 and we assume that ρss is a mixed state.
This mixed state can be decomposed in terms of an ensemble
of pure states |ve

k〉 with some positive weights ℘k such that

ρss =
K∑

k=1

℘k

∣∣ve
k

〉〈
ve

k

∣∣. (2)

Note that there are infinitely many such decompositions as
the states |ve

k〉 need not be orthogonal. A valid interpretation
for any such decomposition of a mixed state is that in the
long time limit a measurement performed on the environment
will collapse the system into one of the possible states |ve

k〉
and this will happen with probability ℘k . Such a measurement
will, in general, require simultaneously measuring parts of the
environment that interacted with the system at different times
in the past.

A different question arises if we require the measurements
on the environment to be continuous in time, so that the system
state is continually being collapsed, and so (in the long time
limit) will be in a stochastically evolving pure state. Because
the system evolution is Markovian, this can be done while
leaving unchanged the average evolution of the system (1).
Now the natural interpretation for the ensemble {℘k,|ve

k〉} is
that the system will only ever be in one of the states |ve

k〉 and
will spend a proportion of time in that state equal to ℘k . In
this case, this interpretation is not valid for most ensembles.
Decompositions {℘k,|ve

k〉} that can be realized through an
experiment via continuous measurement are called physically
realizable (PR). The fact that some ensembles are not PR is
known as the preferred ensemble fact [7]. We note here that
if we know of a PR ensemble with K finite, then if at some
time t the system is a pure state from the PR ensemble, |ve

k〉,
and is subject to the continuous monitoring that realizes this
PR ensemble, then in its subsequent conditional evolution the
system will only occupy states from the PR ensemble and we
can therefore track such evolution with a classical register with
only K states. Such a classical device is known as a finite state
machine.

From Ref. [7] we know that the ensemble {℘k, |ve
k〉} is PR

if and only if (iff) there exists rates κjk > 0 such that

∀k,L
∣∣ve

k

〉 〈
ve

k

∣∣ =
K∑

k=1

κjk

(∣∣ve
j

〉 〈
ve

j

∣∣ − ∣∣ve
k

〉 〈
ve

k

∣∣), (3)

where the system jumps between K different states. Typically,
most ensembles {℘k, |ve

k〉} representing ρss are not PR, includ-
ing the K = D ensemble composed from the diagonal basis
for ρss [3].

For a qubit, the conditions in Eq. (3) can be simplified
further. Using the Bloch representation, Eq. (1) becomes

�̇r = A�r + �b, (4)

where A is a 3 × 3 matrix that dictates the evolution of the
state and �b, a three-vector, determines the steady state of the
system, �rss = −A−1 �b. This equation has a unique steady state
iff (if and only if) the real parts of all eigenvalues of A are
negative. We can track this system with a K-state memory iff
there exists an ensemble {℘k, �rk} and rates κjk � 0 such that

�rk · �rk = 1 ∀k, (5)

A�rj + �b =
K∑

k=1

κjk(�rk − �rj ) ∀j. (6)

These equations are better than conditions from Eq. (3) for nu-
merical search for PR ensembles because they generically re-
duce the number of different equations, the number of different
variables, and the maximal degree of this system of equations.
Thus the search for PR ensembles reduces to finding a real solu-
tion to a system of quadratic polynomials with real coefficients.
Unfortunately, this is still a hard problem, which in general is
known to be NP complete [8]. Here NP stands for nondetermin-
istic polynomial time algorithm. Equations (5) and (6) are used
in Sec. IV C to analyze a PR ensemble for K = 3 for a qubit.

For the moment, we concentrate on a K = 2 PR ensemble.
In Ref. [6], we showed that such an ensemble always exists
for a qubit. This can be easily deduced from Eqs. (5) and (6),
which for K = 2 imply that A(�r1 − �r2) = (κ12 + κ21)(�r2 − �r1).
This is an eigenvalue equation and we can conclude that

�r1 = �rss + η1û, (7)

�r2 = �rss − η2û, (8)

where û is the normalized eigenvector of matrix A and
parameters η1 and η2 relate to probabilities ℘1 and ℘2 for
occupying states �r1 and �r2, respectively, and ℘j = ηj/(η1 +
η2). Detailed expressions for η1 and η2 can be found in Ref. [6],
but are not relevant to this paper. Here we just need the general
structure of the solutions. Because the Bloch vectors, �r1 and
�r2, must be real, only real eigenvectors û of A can contribute to
the solution. As a 3 × 3 matrix, A has three eigenvalues and,
by a fundamental theorem of algebra, at least one eigenvalue
(and consequently one eigenvector) is real. Therefore, a qubit
always has a preferred ensemble comprising just two states
and there can be up to three different solutions.

Different PR ensembles (including three different PR
ensembles to track a qubit with one bit [6]) arise from the
freedom that experimentalists have (in principle) to monitor the
system’s environment in different ways. This freedom exists
because of the invariance properties of the master equation,
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Eq. (1), which is invariant with respect to transformations

{ĉl} →
{

ĉ′
m =

L∑
l=1

Smlĉl + μm

}
, (9)

Ĥ → Ĥ ′ = Ĥ − i

2

M∑
m=1

(μ∗
mĉ′

m − μmĉ′
m
†), (10)

where �μ = (μ1, . . . ,μM ) is an arbitrary complex vector and
S is an arbitrary semiunitary matrix—

∑M
m=1 S∗

l′mSml = δl′,l .
Realizations of this master equation with {ĉ′

m} as the jump
operators and Ĥ ′

eff = Ĥ ′ − i
∑M

m=1 ĉ′
m
†ĉ′

m/2 as the effective
non-Hermitian Hamiltonian generate the same average evo-
lution as the original master equation, but clearly give rise
to different stochastic evolution. To obtain the most general
pure-state unraveling of the master equation, we require �μ and
S to depend upon the previous record of jumps. That is, we
require an adaptive monitoring. Of course when we use this to
achieve jumping between a finite number of states, the classical
K-state memory that stores which state the system is currently
in carries all the information necessary for determining �μ and
S. That is, the adaptive unraveling is specified by k different
values for �μ and S.

The physical meaning of these parameters is most easily
explained in a quantum optics context. The matrix S describes
a linear interferometer taking the field outputs from the
system as inputs and interfering them prior to detection. This
is to be understood in the most general sense, including
frequency shifters if the system has outputs in different
frequency bands. The vector �μ describes adding (weak) local
oscillators to the output fields from the interferometer prior
to detection by photon counting. There have been for many
years theoretical proposals for adaptively controlling the local
oscillator amplitude [9] or phase [5,10], and more recently a
number of experiments have been performed [11–13], one of
which (Ref. [12]) used a weak local oscillator, with amplitude
comparable to that of the system.

One characteristic that sets apart different solutions is the
Shannon entropy. Under continuous monitoring, the system
will occupy states |ve

k〉 with probabilities ℘k . The Shannon
entropy for an ensemble {℘k,|ve

k〉〈ve
k |} that represents ρss is

h ({℘k}) = −∑
k ℘k log2 ℘k . This is lower bounded by the

von Neumann entropy of ρss:

h({℘k}) � S(ρss) = −Tr[ρss log2 ρss], (11)

where equality holds iff {℘k,|ve
k〉〈ve

k |} is the diagonal ensemble.
We showed in Ref. [6] that some of the K = 2 and K = 3
ensembles for a qubit can have entropy h much smaller than
1. In this case one can track the state of the qubit with less
than one bit on average, meaning that the state of N identical
qubits subject to the same independent monitoring can be
tracked with Nh � N bits. This is one reason why studying
different PR ensembles for the same system is of great interest.
In the next section we explore the stability of such adaptive
monitoring.

III. JUMP DYNAMICS AND STABILITY

As explained above, the existence of a PR ensemble
{℘k,|ve

k〉〈ve
k |} ensures that if we start the system in state |ve

k〉

and subject it to the adaptive monitoring determined by the
parameters κjk from Eq. (3), then the system will always
jump between states |ve

k〉 with k = 1, . . . ,K and throughout its
evolution will never leave the PR ensemble. But what happens
if the system is not initialized perfectly at the start of the
monitoring procedure?

We address this question in this section. We consider a
general qubit system, whose evolution is governed by the
master equation (1), with one jump operator, ĉ. We assume
that this system is subject to adaptive monitoring that allows
the system to jump between K states in a cyclic manner.
Since the resulting evolution is stochastic, we cannot say what
will happen to each specific trajectory, but we can determine
what happens to many different realizations on average. We
show that on average any initial state subject to the adaptive
monitoring will eventually converge to the jumping between
states |ve

k〉 with k = 1, . . . ,K from the PR ensemble. We first
develop our results assuming that adaptive monitoring leaves
the qubit jumping between K = 2 states and then generalize
to K-state cyclic jumps.

A. Two-state jumping

For the two-state jumping scenario, the system jumps
between pure states |ve

1〉 and |ve
2〉. In principle, we can compute

these states using Eqs. (7) and (8). This approach tends
to yield useful numerical answers, but extracting a simple
analytical expression is not easy. An alternative approach
for identifying jumping states (for the specific example of
resonance fluorescence) was undertaken in Refs. [14,15]. This
approach uses the properties of transformations, Eqs. (9) and
(10), that leave the master equation (1), invariant to explicitly
construct the adaptive monitoring schemes that generates a
PR ensemble with the desired number of elements. This is the
approach we use in this section.

The system we study in this paper is simple. It has only
one jump operator and, therefore, the only degree of freedom
for generating Eqs. (9) and (10) is the strength of the local
oscillator, a complex scalar μ. For a given μ, the effective
Hamiltonian for the system is [3]

Ĥ (μ) ≡ Ĥ − i

2
ĉ†ĉ − iμ∗ĉ − i

|μ|2
2

(12)

and the jump operator is

ĉ′(μ) = ĉ + μ. (13)

Note that although for convenience we are not using the “eff”
subscript anymore, Ĥ (μ) is the non-Hermitian Hamiltonian
Ĥeff introduced earlier.

Under two-step adaptive monitoring, the signal from the
system (a qubit) is mixed with the local oscillator with
strength μ1 prior to the photon detection. Before the photon is
detected the system undergoes smooth evolution governed by
Ĥ1 = Ĥ (μ1). Then the system experiences a jump governed
by ŝ1 = ĉ′(μ1) when the photon is detected. At this point an
experimentalist switches the strength of the local oscillator
from μ1 to μ2 and the consequent smooth evolution is
generated by the effective Hamiltonian Ĥ2 = Ĥ (μ2) and the
next jump is caused by ŝ2 = ĉ′(μ2). As soon as this jump is
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|ψ0

. . .

ŝ1e
−iĤ1τ1

|ψ̃2l−1

ŝ2e
−iĤ2τ2l |ψ̃2l

|ψ̃2l+1

ŝ1e
−iĤ1τ2l+1

. . .

FIG. 1. A schematic of the conditioned state evolution under two-
step adaptive monitoring.

detected, the experimentalist switches the strength of the local
oscillator back to μ1 and the evolution cycle repeats itself.

We can solve for the evolution of the system as follows.
Let the initial state of the system be |ψ0〉. We assume that the
nth jump happens at time tn after which the system will be
in state |ψn〉 and the waiting times between jumps are given
by τn = tn − tn−1. The evolution is stochastic and for each
realization of such evolution jumps will happen at different
times. The probability density function, p(�τ ), for waiting times
�τ = (τ1, . . . ,τn) is given by

p(�τ ) = |||ψ̃n〉||2. (14)

Here the unnormalized state |ψ̃n〉 is defined recursively by

|ψ̃n〉 = ŝj e
−iĤj τn |ψ̃n−1〉, with j =

{
1 for n odd,

2 for n even.
(15)

This construction implies that |ψ̃n−1〉 implicitly depends on
τ1, . . . ,τn−1 and, consequently, state |ψ̃n〉 depends on all prior
waiting times �τ . The diagram for this evolution is depicted in
Fig. 1. At an arbitrary time t = tn−1 + s, with 0 � s < τn, for
some n, the state of the system is given by

|ψ(t)〉 = e−iĤ1s |ψ̃n−1〉
||e−iĤ1s |ψ̃n−1〉||

, with j =
{

1 for n odd,

2 for n even.
(16)

We can force the system evolution to be restricted to just
two states, |ve

1〉 and |ve
2〉, if we require that the state |ve

1〉 is
an eigenstate of Ĥ1, the state |ve

2〉 is an eigenstate of Ĥ2, the
jump operator ŝ1 maps |ve

1〉 to |ve
2〉, and ŝ2 performs the reverse

action. A consequence of these assumptions is that after two
jumps the state |ve

1〉 should return back to itself, i.e.,

ŝ1ŝ2

∣∣ve
1

〉 ≡ [μ1μ2 + (μ1 + μ2)ĉ + ĉ2]
∣∣ve

1

〉 ∝ ∣∣ve
1

〉
. (17)

Without loss of generality, we can assume that the jump
operator ĉ is traceless and this means that the square of this
operator is proportional to the identity, ĉ2 ∝ Î . Thus, Eq. (17)
can happen only in two ways: either (i) |ve

1〉 is an eigenstate of
ĉ or (ii) μ1 + μ2 = 0. Case (i) holds iff |ve

1〉 is an eigenstate of
ŝ1, which would prevent any jumping from happening. Since
case (i) is ruled out, case (ii) must hold. Thus, μ1 = −μ2 and
the full cycle jump operator ŝ1ŝ2 is proportional to the identity,
which is a very useful fact for the discussion later on.

We also comment here how Eqs. (14)–(16) can be used
for simulation of a piecewise deterministic process and, in
particular, for two-state jumping. We start the system in the
normalized state |ψ0〉. We know that after the nth jump the
normalized state of the system is given by Eq. (16) with s =
0. We determine a random waiting time τn according to the
cumulative waiting time distribution [2]:

F (τn) = 1 − ||e−iĤj τn |ψ(τn−1)〉||2, (18)

with j = 1 if n is odd and j = 2 if n is even. This is done
as follows. We draw a random number η from the uniform
distribution over the interval [0, 1] and solve η = 1 − F (τn)
for τn. Between the jumps the state of the system is given by
Eq. (16). The evolution depicted in Figs. 3 and 4 is generated
using this procedure.

The cumulative waiting time distribution, F (τn), can be, of
course, related back to the probability density p(�τ ). Using the
induction step

p(τn) = p(τn|τn−1) p(τn−1) = d

dτn

F (τn)p(τn−1) (19)

together with the fact that

d

dτn

F (τn) = − d

dτn

||e−iĤj τn |ψ(τn−1)〉||2

= 〈ψ(τn−1)|eiĤ
†
j τn ŝ

†
j ŝj e

−iĤj τn |ψ(τn−1)〉

= |||ψ̃n〉||2
|||ψ̃n−1〉||2

, (20)

we can deduce Eq. (14).

B. Mean-square stability

We now know how to describe the state of the system
subject to two-state monitoring and we know the probability
density for jumps occurring at times t1, . . . ,tn with waiting
times �τ = (τ1, . . . ,τn). The resulting evolution is a stochastic
process, as we don’t know when the jumps occur. Thus it is
sensible to look at what happens to the system on average, over
many different realizations, by considering the mean-square
stability.

The mean-square fidelity between the desired system state
and the actual system state immediately following the nth
jump, starting from the initial state |ψ0〉 is

〈∣∣〈ve
j

∣∣ψn

〉∣∣2〉 =
∫

dn�τ p(�τ )
∣∣〈ve

j

∣∣ψn

〉∣∣2

=
∫

dn�τ |||ψ̃n〉||2
∣∣〈ve

j

∣∣ψ̃n

〉∣∣2
|||ψ̃n〉||2

=
∫

dn�τ ∣∣〈ve
j

∣∣ψ̃n

〉∣∣2, (21)

with j = 1 if n is odd and j = 2 if n is even. Thus this quantity
is easy to compute. At the same time, it is easy to see that if

lim
n→∞

〈∣∣〈ve
j

∣∣ψn

〉∣∣2〉 = 1, with j =
{

1 if n is even,

2 if n is odd,
(22)

the system will converge on average to a perfect jumping
scenario. We call this mean-square stability.
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We now investigate under what conditions the system has
mean-square stability. To do this, we need a way to evaluate
the dependence of |ψ̃n〉 on the jump times, �τ . We let |ve

j 〉 and

|vo
j 〉 be the eigenstates of iĤj with respective eigenvalues λe

j

and λo
j , where states |ve

j 〉 are part of the PR ensemble and states
|vo

j 〉 are other states, not part of the ensemble. It is easiest to
compute the time dependence of |ψ̃n〉 if we decompose this
state in terms of eigenstates of Ĥ1 for even n (i.e., |ve

1〉 and
|vo

1〉) and in terms of eigenstates of Ĥ2 for odd n (i.e., |ve
2〉 and

|vo
2〉). There is no loss of generality in doing this, since these

pairs of eigenstates each form a basis (albeit nonorthogonal)
for the qubit Hilbert space.1

Thus we let the state of the system after 2l and 2l + 1 jumps
be, respectively,

|ψ̃2l〉 = α2l

∣∣ve
1

〉 + β2l

∣∣vo
1

〉
, (23)

|ψ̃2l+1〉 = α2l+1

∣∣ve
2

〉 + β2l+1

∣∣vo
2

〉
. (24)

The dependence on the jump times is hidden in the coefficients
α2l , α2l+1, β2l , and β2l+1, which we determine by establishing
the relationship between them and their dependence on α0 and
β0. To do this, we first define that the action of jump operators
ŝ1 and ŝ2 is on the basis states {|ve

1〉, |vo
1〉} and {|ve

2〉, |vo
2〉}:

ŝ1

∣∣ve
1

〉 = Q1
11

∣∣ve
2

〉
,

ŝ1

∣∣vo
1

〉 = Q1
21

∣∣ve
2

〉 + Q1
22

∣∣vo
2

〉
,

(25)
ŝ2

∣∣ve
2

〉 = Q2
11

∣∣ve
1

〉
,

ŝ2

∣∣vo
2

〉 = Q2
21

∣∣ve
1

〉 + Q2
22

∣∣vo
1

〉
.

The scalar elements Q1
jk and Q2

jk can be determined once

all the parameters of the system, Ĥ , ĉ, and μ1, are specified.
Equations (25) simply state that jumping operators (ŝ1 and ŝ2)
map jumping states (v̂e

1 and v̂e
2) to each other and the mapping

for the other basis states is quite general.
Using Eqs. (23)–(25) and the propagation between states

given in Eq. (15), we can derive

β2l+1 = β2le
−λo

1τ2l+1Q1
22, (26)

β2l = β2l−1e
−λo

2τ2lQ2
22. (27)

1This discussion leaves out one technical detail. Because Ĥ1 and
Ĥ2 are non-Hermitian operators, there could be special circumstances
when one (or both) of these operators cannot be reduced to a
diagonal matrix via similarity transformation. In these cases (of
measure 0), such an operator Ĥj can still be reduced to a Jordan
normal form. For this there is only one eigenvector |ve

j 〉 of iĤj , with
eigenvalue λe

j , which is a member of the PR ensemble. But there is a

generalized eigenvector |wj 〉 satisfying (iĤj − λe
j I )|wj 〉 = |ve

j 〉. The
set {|ve

j 〉,|wj 〉} spans the qubit Hilbert space, and it is easy to verify
that the calculation goes through exactly the same using |wj 〉 instead
of |vo

j 〉. We emphasize that, in all the examples we consider, all of the

Ĥn do have a complete set of eigenvalues so this issue does not arise.

Now we can show by induction that

β2l = β0
(
Q1

22Q
2
22

)l l∏
j=1

e−λo
1τ2j−1e−λo

2τ2j , (28)

β2l+1 = β0Q
1
22

(
Q1

22Q
2
22

)l l∏
j=0

e−λo
2τ2j e−λo

1τ2j+1 . (29)

This information is sufficient to derive the mean-square
fidelity 〈|〈ve

j |ψn〉|2〉, using the following useful identity:∣∣〈ve
j

∣∣ψ̃n

〉∣∣2 = |||ψ̃n〉||2 − |βn|2(1 − |Oj |2), (30)

where j = 1 if n is even and j = 2 if n is odd and Oj =
〈ve

j |vo
j 〉 is the overlap function. Now calculating the mean-

square fidelity becomes easy. According to Eq. (14), |||ψ̃n〉||2
is the probability density for jumps occurring with waiting
times �τ = (τ1, . . . ,τn) and thus when integrated with respect
to dn�τ yields 1. Thus〈∣∣〈ve

j

∣∣ψn

〉∣∣2〉 = 1 − (1 − |Oj |2)
∫

dn�τ |βn|2, (31)

with j = 1 if n is even and j = 2 if n is odd. Using Eq. (28),
we learn∫

d2l �τ |β2l|2 = |β0|2
( ∣∣Q1

22Q
2
22

∣∣2
4Reλo

1Reλo
2

)l

≡ |β0|2Cl. (32)

Thus the mean-square fidelity is〈∣∣〈ve
1

∣∣ψ2l

〉∣∣2〉 = 1 − |β0|2(1 − |O1|2)Cl (33)

and 〈∣∣〈ve
2

∣∣ψ2l+1
〉∣∣2〉 = 1 − ∣∣Q1

22β0

∣∣2(1 − |O2|2)Cl. (34)

Thus coefficient C determines the convergence rate to the
perfect two-state jumping.

The absolute value of fidelity is a number between 0 and
1 and its average with respect to all possible waiting times �τ
is still between 0 and 1. Thus Eq. (33) implies that C � 1.
Thus unless C = 1, Eq. (34) implies that the mean-square
fidelity always converges to 1 and the system has mean-square
stability.

We now determine under what conditions parameter C

is strictly less than one. To answer this question, we need
one more calculation, which is performed in Appendix A
and establishes that |Q1

11Q
2
11|2/4Reλe

1Reλe
2 = 1 and that

Q1
11Q

2
11 = Q1

22Q
2
22. Thus

C = Reλe
1Reλe

2

Reλo
1Reλo

2

. (35)

In other words, the system will have mean-square stability iff
the geometric mean of the real part of the eigenvalues of the
states in the ensemble is smaller than the geometric mean of
the real part of the eigenvalues of the states not in the ensemble.
This makes sense, as the real parts of these eigenvalues give
the rate at which the amplitudes of their respective states decay
during the between-jump stages of the evolution, as we explore
in Sec. III D. Thus, the smaller they are, the more stable
the respective states. As we see in Sec. IV B, the condition
for mean-square stability can be satisfied even though every
second stage is unstable.
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C. K -state jumping

We now explain how our results can be generalized to cyclic
K-state jumping, as first studied in Ref. [6] for K > 2. We
simply let the index j for expressions in Secs. III A and III B
range over {1, . . . ,K} instead of just taking values 1 and 2.
All considerations still hold and we can derive Eq. (31) as
before, but the index j in this expression is now determined
according to j = (n mod K) + 1. We also need to reevaluate∫

dn�τ |βn|2. The unnormalized state for the j th step in the cycle
after n repeats is

|ψ̃N 〉 = αN

∣∣ve
j+1

〉 + βN

∣∣vo
j+1

〉
(36)

with N = nK + j and j + 1 stands for (j + 1) mod K .
Equation (25) becomes

ŝj |ve
j 〉 = Q

j

11

∣∣ve
j+1

〉
,

(37)
ŝj |vo

j 〉 = Q
j

21

∣∣ve
j+1

〉 + Q
j

22

∣∣vo
j+1

〉
,

and the expression for βnK becomes

βnK = β0
(
Q1

22 · · · QK
22

)n n−1∏
j=0

e−λo
1τjK+1 · · · e−λo

Kτ(j+1)K (38)

and thus∫
dnK �τ |βnK |2 = |β0|2

(
Q1

22 · · · QK
22

2nReλo
1 · · · Reλo

K

)n

. (39)

Thus parameter C which determines stability is redefined to
be

C = Q1
22 · · · QK

22

2nReλo
1 · · · Reλo

K

. (40)

Just as before we can show that C can be reexpressed as

C = Reλe
1 · · · Reλe

K

Reλo
1 · · · Reλo

K

, (41)

so that C < 1 whenever Reλo
1 · · · Reλo

K > Reλe
1 · · · Reλe

K . The
argument proceeds in the same way as for two-state jumping,
and the details appear in Appendix A.

We conjecture that the fact that |ve
j 〉 form a PR en-

semble for ρss, the unique steady state, ensures that∏K
k=1 Reλo

k >
∏K

k=1 Reλe
k . Even more generally, we conjec-

ture that every finite PR ensemble is stable.

D. Stability of an individual trajectory

It is important to note that mean-square stability does
not imply that in an individual trajectory there will be
monotonic convergence of the system toward the desired
states. The fidelity could decrease between the jumps and/or
could decrease due to a jump. We begin with the first issue.

We say that the system is piecewise stable if |〈ve
j |ψ(t)〉|2

is a monotonically increasing function of t during all stages
tn−1 � t < tn, where j = 1 if n is odd and j = 2 if n is
even. Otherwise, if the fidelity with the desired state decreases
between jumps, this constitutes an unstable stage in the
evolution. As we will show, this happens only if n is even
or n is odd, not both. That is, stable and unstable stages will
alternate.

The stability of the evolution between jumps is determined
by the relationship between eigenvalues λe

j and λo
j . Let us

assume without loss of generality that the state of the system
right after the jump is

|ψ0〉 = α0

∣∣ve
j

〉 + β0

∣∣vo
j

〉
. (42)

Then the unnormalized state of the system at time τ after the
jump, but before the next one, is

|ψ̃(τ )〉 = α0e
−λe

j τ
∣∣ve

j

〉 + β0e
−λo

j τ
∣∣vo

j

〉
. (43)

We now want to know what happens to the fidelity between
|ψ(τ )〉 (normalized state of the system between jumps) and
the ideal jumping state |ve

j 〉:

∣∣〈ve
j

∣∣ψ(τ )
〉∣∣2 =

∣∣〈ve
j

∣∣ψ̃(τ )
〉∣∣2

|||ψ̃(τ )〉||2 . (44)

Using Eq. (30), we can compute this fidelity to be

∣∣〈ve
j

∣∣ψ(τ )
〉∣∣2 = 1 − |β0|2(1 − |Oj |2)

|α0e
−(λe

j −λo
j )τ

∣∣ve
j

〉 + β0

∣∣vo
j

〉|2 . (45)

Thus we can see that if Reλe
j < Reλo

j then in the long time limit
fidelity approaches 1. That is, between jumps the system will
converge to the desired ensemble state with exponential rate
and the fidelity will monotonically increase to the maximum
value of 1. On the other hand, if Reλe

j > Reλo
j , then the system

state converges toward the non-ensemble eigenstate, and the
fidelity converges toward |Oj |2, which is a quantity less than
1. Thus the fidelity may decrease during such a stage, and we
call this an unstable stage in the evolution. This is illustrated
for the case of resonance fluorescence in Sec. IV B.

We now address the issue of whether the jump itself
increases or decreases fidelity. We again introduce some
notation. Let |φ̃1〉 = α1|ve

j 〉 + β1|vo
j 〉 be the state of the system

right before the jump and |φ̃2〉 = α2|ve
k〉 + β2|vo

k 〉 be the
unnormalized state of the system right after the jump, where
k = (j + 1) mod K . We also know that |φ̃2〉 = ŝj |φ̃1〉. We
want to compare the fidelity right before and immediately
after the jump and we let

F1 =
∣∣〈ve

j

∣∣φ̃1
〉∣∣2

|||φ̃1〉||2
and F2 =

∣∣〈ve
k

∣∣φ̃2
〉∣∣2

|||φ̃2〉||2
. (46)

We evaluate |〈ve
j |φ̃1〉|2 and |〈ve

k |φ̃2〉|2 using Eq. (30). Then
fidelity will decrease after the jump, F1 < F2, iff

|||φ̃2〉||2
|||φ̃1〉||2

<
|β2|2
|β1|2

1 − |Ok|2
1 − |Oj |2 ≡ B. (47)

We can easily determine tight bounds for |||φ̃2〉||2/|||φ̃1〉||2
by observing that

λmin|||φ̃1〉||2 � |||φ̃2〉||2 = 〈φ̃1|ŝ†j ŝj |φ̃1〉 � λmax|||φ̃1〉||2,
(48)

where λmin and λmax are the smallest and the largest eigenvalues
of the operator ŝ

†
j ŝj . Thus the lower bound of λmin, or upper

bound of λmax, is attained if |φ̃1〉 is the corresponding eigenstate
of ŝ

†
j ŝj . If λmin < B, it is possible to observe jumps that

decrease the fidelity. Again, we illustrate this for the resonance
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fluorescence example in Sec. IV B. Note however that for
mean-square stable evolution, in the long time limit, |φ1〉
converges to |ve

j 〉, and so F1 and F2 also converge to one.
Thus we expect that as the system converges toward the
ideal ensemble states, observing jumps that decrease fidelity
becomes less and less likely.

IV. RESONANCE FLUORESCENCE

In this section we apply our results for stability in the
mean-square sense, and for individual trajectories, to a specific
physical example. In particular, we show that there are PR
ensembles which are mean-square stable, but whose cycles
are composed of stable and unstable stages. Others are
composed of only stable stages, and so the fidelity is piecewise
monotonically increasing. It is only piecewise because this
example also illustrates that jumps can decrease the fidelity.

The example we consider is resonance fluorescence. We
consider a qubit (for example, a two-level atom) with basis
states |0〉 and |1〉, with a transition frequency ω0. We assume
that qubit is coupled to the continuum of electromagnetic
radiation and, therefore, decays to |0〉 at rate γ . At the
same time, it is driven by a classical field oscillating at
frequency ω0. The strength of the driving is quantified by
the Rabi frequency �. In the interaction frame [3] with respect
to the atomic transition frequency ω0, the evolution of the
qubit is given by the master equation of the form of Eq. (1)
with Ĥ = (�/2)σ̂x and one jump operator ĉ = √

γ σ̂ , where
σ̂ = |0〉〈1| and σ̂x = σ̂ + σ̂ †. Then matrix A and �b in the Bloch
vector equation, Eq. (4), are

A =

⎛
⎜⎝

−γ /2 0 0

0 −γ /2 −�

0 � −γ

⎞
⎟⎠ and �b =

⎛
⎝0

0
γ

⎞
⎠. (49)

The steady state �rss = (0,2γ�, − γ 2)T /(γ 2 + 2�2) is a mixed
state for � �= 0. The unnormalized eigenvectors of A are �u1 =
(1, 0 0)T and �u± = (0,γ ±

√
γ 2 − 16�2,4�)T . For ε ≡ �/γ

and |ε| < 1/4 all three eigenvectors of A are real, while for
|ε| > 1/4 only �u1 is real. Note that ε here is different from
ε = (�/γ )2 in Ref. [6].

A. Two-state jumping

We now analyze stability properties for two-state jumping
in this system and we do this with the method described in
Sec. III B and in Refs. [14,15]; i.e., we know that the PR
ensemble is constructed from the eigenvectors of Ĥ (μ), or
equivalently, of iĤ (μ), where Ĥ (μ) is the effective (non-
Hermitian) Hamiltonian given by Eq. (12).

For resonance fluorescence, the operator −iĤ (μ) has
eigenvectors given by

|v±(μ)〉 = ε|1〉 +
(

±
√

ε2 − 1

4
− 2iεμ∗ + i

2

)
|0〉. (50)

The corresponding eigenvalues are

λ±(μ) = 1 + 2|μ|2
4

± i

2

√
ε2 − 1

4
− 2iεμ∗, (51)

(a) (b)

(c) (d)

FIG. 2. (Color online) Solid arrows show Bloch vectors for two-
state jumping. The volume of the sphere at the tip of each arrow
represents the probability that the qubit occupies the corresponding
pure state. The dashed arrow is �rss. Solutions in panels (a) and (b) arise
from �u1 with ε = 1 and ε = 0.23, respectively. This is the solution
that exists for all ε. Solutions depicted in panels (c) and (d) exist only
for ε � 0.25 and are shown here for ε = 0.23. The solution in panel
(c) is generated by �u+ and that in panel (d) by �u−.

where here, and in the remainder of the paper, we have set
γ = 1 for simplicity. Whether |v+(μ)〉 or |v−(μ)〉 is part of
the PR ensemble depends on a particular value of μ1. We
know already from Sec. III A that μ2 = −μ1, so without loss
of generality we can choose μ1 to have a non-negative real
part. Once we impose additional conditions from Sec. IV C
associated with jump operators ŝ1 and ŝ2, we learn that μ1

only assumes values from the set {1/2,ν+,ν−}, where

ν± = i

√
1 ± √

1 − 16ε2

2
√

2
. (52)

The last two values in the set contribute to solutions only for
ε � 1/4. That is, one only obtains a PR ensemble for values of
μ1 that are either real or purely imaginary. Detailed derivation
of these conditions can be found in Refs. [14,15], and the
Bloch vectors for all three ensembles are shown in Fig. 2.

For μ1 = 1/2, the jumping states in Eqs. (7) and (8) are
spanned from eigenvector �u1 and, as explained in Ref. [6],
the system spends an equal amount of time in each state.
Equivalently, the probability of occupying each state is 1/2
and the Shannon entropy is 1. Thus one bit is sufficient to
track the state of the system. As shown in Figs. 2(a) and 2(b),
the solution is symmetric with respect to the x = 0 plane and
as ε increases jumping states move away from each other
and away from the bottom of the Bloch sphere. For μ1 = ν+
and μ1 = ν− the jumping states are generated by �u+ and �u−,
respectively. Figures 2(c) and 2(d) show that such solutions
lie in the x = 0 plane. For μ1 = ν−, jumping states are spread
as far apart as possible; the system spends most of the time
in one state, which is nearly aligned with the direction of the
steady state, �rss. For μ1 = ν+, jumping states cluster together
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around the direction of the steady state, �rss; the probability of
occupying each state is more similar and becomes equal as ε

approaches 0. Since the probability of occupying each state
is no longer equal, the Shannon entropy is less than 1. This
means that one could store the state of the qubit in less than
one bit on average. That is, one could keep track of the state
of a collection of N identically monitored qubits using only
Nh bits. Actually, the entropy of the solution due to �v− is
very low. That is, it is very close to the von Neumann entropy
of the steady state, which is a lower bound for the Shannon
entropy of any ensemble representing for the steady state. For
this solution, the Shannon entropy in a Taylor expansion in
terms of ε is

h(�u−) = (log2 10 − 4 log2 ε)ε4 − 48(log2 ε) ε6 + O(ε8)

(53)

compared to

S(ρss) = (log2 10 − 4 log2 ε)ε4 + 6(log2 ε) ε6 + O(ε8).

(54)

B. Stability of two-state jumping

For μ1 = 1/2, the PR states are |v+(μ1)〉 and |v+(−μ1)〉
and the full set of eigenvalues from Eq. (51) can be simplified
to

λ+

(
±1

2

)
= 1

8
± iε

2
and λ−

(
±1

2

)
= 5

8
∓ iε

2
. (55)

Thus Reλe
1 = Reλe

2 = 1/8, while Reλo
1 = Reλo

2 = 5/8. There-
fore C = 1/25, and the system is mean-square stable. More-
over, it is piecewise deterministically stable (that is, the fidelity
increases monotonically except perhaps at jumps.)

For μ1 = ν−, the situation is quite different. The PR
ensemble is composed of |v+(μ1)〉 and |v−(−μ1)〉. It is still
mean-square stable, but the short-lived state |ve

2〉 = |v−(−μ1)〉
has an eigenvalue such that Reλe

2 > Reλo
2, where |vo

2〉 =
|v+(−μ1)〉. That is, every second stage is unstable. We
illustrate this situation in Figs. 3 and 4. Here we assume
that evolution starts with the unstable step; that is, the initial
strength of the local oscillator is −μ1. We also let ε = 0.1 and
the initial state is |ψ̃0〉 = −1.09|v−(−μ1)〉 + 0.5|v+(−μ1)〉.
Figure 3 shows highly untypical evolution, where the short-
lived state |v+(−μ1)〉 exists for an improbably long time
and the long-lived state |v−(−μ1)〉 lasts an improbably short
time. One can see here that for stages governed by −μ1 the
fidelity decays as the system moves away from the desired
PR ensemble state. Figure 4 shows typical evolution under the
same conditions. Here the instability can be seen only during
the first step, which is short (at time τ1 ≈ 1.1γ −1). The next
jump does not happen for a long time (τ2 ≈ 792.5γ −1) and it is
very short (it lasts for τ3 ≈ 0.3γ −1). Thus the unstable stages
contribute very little to the overall evolution of the fidelity.
As a result it does not disturb mean-square stability for the
system.

For μ1 = ν+ the situation is even more curious. For
ε < ε0 ≈ 0.243, the PR ensemble is generated from |v+(μ1)〉
and |v+(−μ1)〉, and for ε > ε0, the PR ensemble is generated
from |v+(μ1)〉 and |v−(−μ1)〉. The system is always mean-
square stable and is piecewise deterministically stable for

FIG. 3. (Color online) Alternating stages of stable and unstable
two-jump evolution, exaggerated by an atypical trajectory. The blue
(darker) line represents the fidelity of the state with the ideal PR
ensemble and the green (lighter) line shows when jumps happen
(photon count increment dN = 1). This is a highly improbable
evolution, as the systems spends an uncharacteristically long time
in an unstable step and an uncharacteristically short time in a stable
step. Fidelity is decreasing during the unstable step. At the second
jump there is also a decrease in fidelity due to the jump itself. Time t

is measured in units of γ −1.

ε < ε0. However for ε > ε0 the short-lived stage associated
with |v−(−μ1)〉 becomes unstable. At ε = ε0, λ+(−μ1) =
λ−(−μ1). In Fig. 5, we show the entropy for three different
solutions with two-state jumping and the type of stability they
exhibit.

Recall from Eq. (32) that the deviation of the fidelity from
unity decays as Cl , after 2l jumps. The critical constant for all
three values of μ1 can be written as

C = |μ1|4
4Reλo

1Reλo
2

. (56)

We show the convergence coefficient C as a function of ε for all
three possible values of μ1 in Fig. 6. There is a clear (although
not perfect) correlation between the low entropy solutions
and the most quickly converging (in the mean-square sense)

FIG. 4. (Color online) As in Fig. 3, but showing a typical
trajectory. The fidelity decreases visibly only during the first stage,
as stable stages last much longer than unstable stages.
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FIG. 5. (Color online) Ensemble Shannon entropy h for the three
different two-state jumping solutions. A solid line indicates mean-
square stability as well as piecewise deterministic stability. A dashed
line indicates that the solution has only mean-square stability, with
one of its stages being unstable. The uppermost (yellow) line shows
entropy for the PR ensemble with μ1 = 1/2. The middle line (blue)
describes entropy for solutions with μ1 = ν+ and the lowest line (red)
is for μ1 = ν−.

solutions. Note however that the most rapidly converging
solution is typically not piecewise deterministically stable.

We note here that from Eq. (33), one can see that
convergence coefficient C characterizes only certain aspects
of mean-square stability. In particular, it determines how many
stages are needed for convergence to the PR ensemble. Thus
the smaller C in Fig. 6 corresponds to fewer stages needed
to achieve a certain level of convergence in the mean-square
sense. This plot, however, does not tell us about the time
needed to achieve convergence. For example, although the
solution with μ1 = ν− has a much smaller value for C than the
μ1 = 1/2 solution, and so requires more jumps to converge,
it could have shorter stages between every jump so that it
approaches fidelity in a shorter time than the μ1 = ν− solution.
To show that this is a plausible scenario we consider an
asymptotic rate of convergence to the PR ensemble, which
we define as R = − ln(C)/〈tas〉, where 〈tas〉 is the expected

FIG. 6. (Color online) The convergence coefficient C as a
function of ε for the three different values for μ1. The yellow (straight)
line corresponds to μ1 = 1/2, the red (lowest) line to μ1 = ν−, and
the blue (intermediate) line to μ1 = ν+. Note that the lowest entropy
solution, which is not piecewise deterministically stable, is the most
stable (smallest C) in the mean-square sense.

FIG. 7. (Color online) The asymptotic convergence rate R as a
function of ε for the three different values for μ1. The yellow (straight)
line corresponds to μ1 = 1/2, the red (lowest) line to μ1 = ν−, and
the blue (intermediate) line to μ1 = ν+. Note that a high value of
R indicates faster convergence (per unit time), so this measure of
convergence reverses the order of the three schemes relative to that
in Fig. 6.

value for the duration of the complete cycle of evolution for
the corresponding PR ensemble. Because asymptotically the
actual ensemble converges to the PR ensemble, and using
the law of large numbers, the number of cycles undergone
in the limit t → ∞ converges to t/〈tas〉. Thus from Eq. (33),
in the long time limit, the fidelity F (t) between the actual
conditioned state and the record-determined PR state at time t

behaves as

〈F (t)〉 ∼ 1 − |β0|2(1 − |O1|2) exp(−Rt). (57)

For two-state jumping this asymptotic convergence rate is

R = − ln(C)
/[(

2Reλe
1

)−1 + (
2Reλe

2

)−1]
, (58)

and we plot it in Fig. 7 as a function of ε for all three values of
μ1. Here the solution with μ1 = 1/2 has the highest asymptotic
convergence rate, with R = ln(5)/4, while the solution μ1 =
ν− has the lowest, with R → 0 as ε → 0. Specifically, for μ1 =
ν−, although ln(C) = O[log(ε2)] � 1, Reλe

1 = O(ε4) so that
R = O[ε4 log(ε2)] → 0. This is a complete reversal from the
results reported in Fig. 6, based on C.

The vast difference in rates in the limit ε → 0 can be
understood from the nature of the ensembles as illustrated in
Fig. 2. In all cases the the average ρss differs from |0〉〈0| only
at O(ε) and differs from a pure state only at O(ε4), as reflected
in Eq. (54). In the case μ = 1/2, the ensemble comprises a
pair of Bloch vectors located near �rss in a symmetric fashion
in the plane perpendicular to the x = 0 plane. For μ1 = ν+
the Bloch vectors lie in the x = 0 plane around �rss in a nearly
symmetric fashion. In both cases, the system spends the same
time in each state and thus the expected time for the duration
of each cycle is independent of ε, so the rate of convergence
is nonzero. For μ1 = ν−, one of the jumping states is nearly
aligned with ρss [i.e., it has the form |0〉 + O(ε)|1〉] and the
other state approaches |1〉 as ε → 0. For small ε, the system
spends almost all of the time in the first state. It jumps to the
excited state with a rate of O(ε4) and jumps back with a finite
rate. The former process is the rate-limiting step, so the system
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has a cycle whose duration tends to infinity as ε → 0, giving
a convergence rate near 0.

However, we need to be careful in interpreting the results
from Fig. 7 as it only shows the asymptotic rate. Most of the
convergence happens in the initial evolution—during the first
few stages, while the state of the system is drastically different
from the PR ensemble. The asymptotic rate becomes relevant
only when the state of the system closely resembles the PR
ensemble and, in a way, the convergence has already occurred.
We, therefore, also consider another measure for the rate of
convergence: R1 = − ln(C)/〈T1〉. Here 〈T1〉 is the expected
time for the duration of the first cycle. For two-state jumping,
this quantity was investigated numerically.

Our numerics reveal that the initial convergence rate R1

shows strong dependence on the initial condition. For some
initial conditions, R1 for the μ1 = ν+ solution is above that
for the μ1 = 1/2 solution for all ε � 1/4. Because the ν−
and ν+ solutions coincide for ε = 1/4, this implies that, for
these initial conditions, and for ε sufficiently close to 1/4, the
μ1 = 1/2 solution has the slowest initial rate of convergence
for some range of ε near 1/4. On the other hand, for other initial
conditions, R1 for the μ1 = ν+ solution is below that for the
μ1 = 1/2 solution for all ε � 1/4, and the same ordering as
seen in the asymptotic limit (Fig. 7) occurs for some range of ε

near 1/4. Because − ln(C) diverges (slowly) to +∞ as ε → 0
for μ1 = ν−, for a fixed initial condition this last solution
always has the largest initial rate of convergence R1 as ε → 0.

The last question we address in this section is the effect
jumps have on fidelity. For the model we are considering we
can easily evaluate the upper and lower bounds in Eq. (48) to
be

λmin = |μ1|2 + 1/2 −
√

|μ1|2 + 1/4, (59)

λmax = |μ1|2 + 1/2 +
√

|μ1|2 + 1/4. (60)

For μ1 = 1/2, these give the bounds

0.043 ≈ 3

4
− 1√

2
� |||φ̃2〉||2

|||φ̃1〉||2
<

3

4
+ 1√

2
≈ 1.46. (61)

To calculate B from Eq. (47), we observe that for μ1 = 1/2
we have observed that |O1| = |O2| and |β2| = |μ1| × |β1|.
This gives B = |β2|2/|β1|2 = 1/4. Because this is greater than
0.043 it follows that sometimes jumps can decrease the fidelity.
For μ1 = ν−, we determine B and the bounds numerically. We
find similar results, as plotted in Fig. 8. This time however B

depends on which jump operator one is considering, and a
fidelity-decreasing jump is much less likely following a stage
of unstable evolution. Our results confirm what was seen in
the second jump in the untypical evolution depicted in Fig. 3,
where a jump following a stable stage of evolution visibly
decreased the fidelity.

C. Three-state jumping

We now consider three-state PR ensembles with cyclic
jumps as in Ref. [6], still for a qubit subject to resonance
fluorescence. In this case, in Eq. (6) only κ12, κ23, and κ31 are
nonzero and Eqs. (5) and (6) yield a total of 12 equations
(9 equations for jumping conditions and 3 equations for
normalization condition) and 12 unknowns. Since this system

FIG. 8. (Color online) Quantities relevant to a fidelity decrease
upon jumping in the two-state jumping solution with μ1 = ν−. The
blue (lowest) line shows the achievable lower bound for the relative
norm |||φ̃2〉||2/|||φ̃1〉||2. The cyan (uppermost) line shows the bound
B the jump generated by ŝ1 and the purple (middle) line is the same
bound for jumps generated by ŝ2. Since the curves for B are both
above the lower bound, it is possible for the system to experience a
decrease in fidelity under either type of jump.

involves quadratic equations, simple analytic solutions no
longer exist. We find all three-state cycles by numerical search
for all real solutions to Eqs. (5) and (6) using symbolic-
numerical algorithms based on computing a Groebner basis
[16,17], as described in detail in Appendix B.

One of the reasons to study K-state PR ensembles for
K > 2 is the search for low entropy solutions that allow for
efficient tracking. As we have shown, for ε > 1/4 there are
no low entropy solutions for K = 2. However by moving to
K = 3 we open the possibility for ensembles with different
properties. The intuitive reason for the greater flexibility is as
follows. Recall that for two-state jumping, we could use only
one eigenvector of A to generate the PR states and we could
not use complex eigenvectors because Bloch vectors must
have real components. Observe that complex eigenvectors of A

come in conjugate pairs. Thus, for three-state jumping, we can
construct (real) Bloch vectors for PR states if we use conjugate
pairs of eigenvectors of A. This method imposes additional
constraints however and cannot be used for all possible ε.
We now explore when complex eigenvectors can yield a PR
ensemble.

We first show that any cyclic jumps between three states is
generated from two eigenvectors of A. We observe that Eq. (6)
implies that for �sj = �rj − �rss, with j ∈ {1,2,3},

(A − κ12)(A − κ23)(A − κ31)�sj = −κ12κ23κ31�sj . (62)

Since A is invertible, we can reformulate this condition
as g(A)�sj = 0, where we have defined a quadratic func-
tion g(A) = A2 − (κ12 + κ23 + κ31)A + (κ12κ23 + κ12κ13 +
κ23κ31). This is an eigenvalue equation for �sj . Note that all
eigenvectors of A are also eigenvectors of g(A) and vice versa.
Thus �sj is a linear combination of eigenvectors of A, whose
eigenvalues λ satisfy equation g(λ) = 0. If all eigenvalues of
A are distinct, then only two eigenvalues of A can satisfy
equation g(λ) = 0 and only two eigenvectors of A are used to
construct �sj .

However, not every conjugate pair of complex eigenvectors
of A can be used to construct �sj . Suppose A has two
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(a) (b)

FIG. 9. (Color online) Solid arrows show Bloch vectors for
three-state jumping. The volume of the sphere at the tip of each arrow
represents the probability that the qubit occupies the corresponding
pure state. The dashed arrow is �rss. Solutions in panels (a) and
(b) are shown for ε = 0.27. These are low entropy solutions for
three-state jumping that are generated from complex conjugate pairs
of eigenvectors of A. Note that a low entropy solution fortwo-state
jumping does not exist for such ε. The solution in panel (a) has
entropy lower than that in panel (b).

complex eigenvalues λ and λ∗. Equation g(λ) = 0 implies that
κ12 + κ23 + κ31 = 2Reλ and κ12κ23 + κ12κ13 + κ23κ31 = |λ|2.
By construction, κ12, κ23, and κ31 are real, which is only
possible if (Reλ)2 > 3(Imλ)2. In particular, for the resonance
fluorescence example, complex eigenvectors cannot be used
to generate three-state PR states if |ε| > 1/2. This bound
is actually not tight as was shown by numerical search for
solutions to Eqs. (5) and (6) for three-state jumping [6]. These
determined that such solutions exist iff |ε| � 0.282.

Solutions for cyclic three-state jumping come in pairs.
As |ε| approaches 0, the Shannon entropy h for half of
the solutions approaches 1.2, whereas h for the other half
approaches 0. For 0.247 < |ε| � 0.282, there are two preferred
ensembles generated from complex eigenvectors �u± of A and
shown in Fig. 9 with ε = 0.27. In the region 0.183 < |ε| �
0.247, there are six solutions, which are shown in Fig. 10
with ε = 0.23. Solutions with the same entropy are shown
in one subplot. These entropy-degenerate solutions are mirror
images with respect to the x = 0 plane and are constructed
from �u1 and �u−. The other two solutions have the lowest and
the highest entropy and are generated by �u+ and �u−. In the last
region, |ε| < 0.183, there are eight solutions, which are shown
in Fig. 11 with ε = 0.18. Solutions with the same entropy still
appear in the same subplot and are mirror images with respect
to the x = 0 plane. All other solutions are constructed from
�u+ and �u−. Solutions that have unique entropy always lie in
the x = 0 plane.

In ensemble {℘k, �rk}k=1,2,3, we can order the states by
probability ℘k in decreasing order. The system always jumps
from one state to another in this order. For solutions with
lower entropy, the systems spends most of the time in state
one, which is nearly aligned with the steady state. For
the lowest entropy ensemble, the states are spread out on
the Bloch sphere as far away from each other as possible.
As the entropy increases, states with small probability tend
to move closer to the steady state. And for high entropy
ensembles, the probability for occupying each state tends to
equalize, and none of the states align with the steady state, but

(a) (b)

(c) (d)

FIG. 10. (Color online) As in Fig. 9, but showing all three-state
jumping solutions for ε = 0.23. The solution in panel (a) has the
smallest entropy. Every consequent solution has a larger entropy.
Solutions (a) and (d) correspond to solutions (a) and (b) in Fig. 9.
Solutions (b) and (c) are actually pairs of solutions, symmetric about
the x = 0 plane.

instead cluster around it. In Table I, for ε = 0.15 we report
the geometric characteristics of the six distinct solutions. The
total angle ∠Sa = ∠(�r1,�r2) + ∠(�r2,�r3) + ∠(�r3,�r1) between the
Bloch vectors shows inverse correlation with the entropy.

D. Stability of three-state jumping

We now analyze the stability of the above three-state
jumping schemes. We do this using results from Secs. III C and
III D and numeric solutions for three-state jumping computed
in Sec. IV C. As shown before, the stability of an individual
trajectory is determined by the properties of the effective
Hamiltonian Ĥ (μi) from Eq. (12), where index i ranges
from 1 to 3 and μi are the settings for adaptive monitoring
that generate three-state jumping for a resonance fluorescence
system. We extract values for μi using the expression derived
in Ref. [6] for cyclic jumps that states that

ĉ
∣∣ve

k

〉 = −μk

∣∣ve
k

〉 + bk

∣∣ve
k+1

〉
, (63)

TABLE I. This table reports geometric characteristics of six
distinct solutions for ε = 0.15. It shows that the total angle (column 1)
for the ensemble shows the inverse correlation with the entropy h.

∠Sa ∠(�r1,�rss) ∠(�r2,�rss) ∠(�r3,�rss) h

235.489 115.323 2.420 85 0.031 354 6 0.020
221.528 109.238 3.580 5 0.039 062 6 0.023
189.578 94.731 6 5.874 93 0.057 596 5 0.026
26.934 5 0.654 795 12.812 4 5.303 14 0.466
14.243 5 1.663 5 5.457 59 2.779 01 1.171
13.061 4 3.065 05 1.486 3 3.465 69 1.299
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(a) (b)

(c) (d)

(e) (f)

FIG. 11. (Color online) As in Fig. 10, but showing all three-state
jumping solutions for ε = 0.18. Again, the solution in panel (a) has
the smallest entropy and the entropy increases with every consequent
solution. Solutions (a) and (b) correspond to solutions (a) and (b) in
Fig. 10. Solutions (e) and (f) correspond to solutions (c) and (d) in
Fig. 10.

where k + 1 stands for k + 1 mod 3 and bk is some constant.
Once |ve

k〉 and |ve
k+1〉 are known, coefficients μk and bk

are uniquely determined. Thus our approach for determining
the stability of three-state jumping proceeds as follows. We
convert the three-state jumping solutions in terms of Bloch
vectors �r1, �r2, and �r3 into state vectors |ve

1〉, |ve
2〉, and |ve

3〉.
Using Eq. (63), we compute μk and Ĥ (μk) with k = 1, . . . ,3.
At this point we can conclude that the evolution stage from
state |ve

k〉 to state |ve
k+1〉 is stable if state |ve

k〉 has the smallest
eigenvalue with respect to operator Ĥ (μk). Otherwise, such
a stage is unstable. From the eigenvalues λe

j and λo
j one can

determine mean-square stability using Eq. (41).
Results for this analysis are reported in Fig. 12 and resemble

the results for two-state jumping quite closely. Figure 12
shows ensemble Shannon entropy h for all possible three-state
jumping solutions. Instability of individual trajectories for
three-state jumping always arises in the same way as for
two-state jumping: one of the three stages (corresponding to
jumping from the least probable state) becomes unstable. Solu-

FIG. 12. (Color online) Ensemble Shannon entropy h for the
eight different three-state jumping solutions (two of which come
in degenerate pairs). The solid line indicates mean-square stability
as well as piecewise deterministic stability. The dashed line indicates
that the solution has only mean-square stability, with one of its stages
being unstable.

tions with small entropy (i.e., solutions with h → 0 as ε → 0)
have mean-square stability, but not piecewise deterministic
stability. Solutions with large entropy have both mean-square
and piecewise deterministic stability, except in small regions,
where the entropy curves approach lower entropy solutions
and develop one unstable stage in the evolution.

V. CONCLUSION

In this paper we considered a qubit undergoing evolution
given by a Markovian master equation, subject to continuous
monitoring that resolves every jump and allows the system to
stay in a pure state. We studied special adaptive monitoring
schemes that, in principle, allow an experimenter to track the
evolution of such a system with a finite state machine as an
apparatus. That is, the system jumps between only finitely
many different states, the states in the associated PR ensemble.
The main contribution of this paper beyond Ref. [6] is analysis
of the stability of such monitoring schemes. This is necessary
to establish that the finite PR ensembles introduced in Ref. [6]
are not just mathematical constructions, but really are PR.

Because the evolution of the system is stochastic—it
undergoes jumps at random times—we concentrated on the
average properties of the system over many different realiza-
tions. Specifically, we derived conditions for the mean-square
stability (that is, the long time convergence of the fidelity of
the system with the correct ensemble state). We showed that
there is a positive parameter C, which is never more than unity,
that guarantees mean-square stability as long it is not equal to
unity. For the specific example of resonance fluorescence we
considered 11 different finite state monitorings (with two or
three different states). In all cases C was strictly less than unity
(by a long way, in fact). Based on this, we conjecture that all
finite PR monitorings are mean-square stable. However we
also considered the long time rate R of convergence (which is
exponential in time) and found that some monitoring schemes
converge much faster than others, in a way contrary to what is
suggested by considering C alone.
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Although all monitorings we considered were mean-square
stable, there is a variety of behavior in the convergence of
individual trajectories. Some monitorings give trajectories that
are guaranteed to be piecewise deterministically stable (i.e.,
the between-jump evolution always increases the fidelity).
However others do not—in some deterministic (between jump)
stages of the evolution the system moves away from the
ensemble state that it “should” be in at that stage (and
will be in, in the long time limit). Moreover, the stochastic
jumps can contribute to both stability and instability of
individual trajectories, even under piecewise deterministically
stable monitorings. However in the long time limit, as the
system approaches the ideal ensemble states in the mean-
square sense, a fidelity decrease upon a jump becomes very
unlikely.

We illustrated these effects for the specific example of
resonance fluorescence with an adaptively controlled weak
local oscillator. Interestingly we found that those monitor-
ings that are not piecewise deterministically stable tend to
be those that are most stable in the mean-square sense (by
the measure of C being very small). Moreover, these are the
monitorings that produce low entropy solutions, where the
system spends most of its time in one state in the ensemble.
Such monitorings would make it possible, in principle, to track
a large number N of qubits, using much less than N bits of
memory (i.e., a finite state machine with far fewer than 2N

states).
It is important to note that there are many open questions in

this field of quantum state tracking with finite state machines.
First, given a PR finite ensemble, does there exist an explicit
construction for an adaptive monitoring scheme that realizes
it? Second, is any such monitoring mean-square stable, as
conjectured here? Third, is it true that any D-dimensional
ergodic Markovian quantum system can be tracked by a
K-state machine with some finite K � (D − 1)2 + 1, as
conjectured in Ref. [6]. Fourth, is K = (D − 1)2 + 1 always
sufficient? Fifth, can an example system be found that proves
that K = D is not sufficient in general (D = 3 would be
the minimum system size for such a search). If the last
can be proven, then there may be a relation to the recent
result that there are classical stochastic processes that can be
generated using quantum systems of entropy lower than that
required using only classical systems [18]. Finally, it seems
likely that any given master equation would have additional
structure that would enable one to use a K smaller than
that conjectured above, and this idea also remains to be
explored.
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APPENDIX A: USEFUL IDENTITIES

We now explain how to derive expressions for the con-
vergence coefficient C that determines how quickly the state
subject to adaptive monitoring approaches the states in the

corresponding PR ensemble. We begin with the two-state
jumping scenario. In this case, the expression for C is given in
Eq. (33). We evaluate it through relating Q1

11Q
2
11 and Q1

22Q
2
22.

We do this by comparing the general expression
∫

dn�τ |βn|2
to

∫
dn�τ |αn|2 for the special case when the initial state |ψ0〉

is the jumping stat |ve
1〉, i.e., α0 = 1 and β0 = 0. Then with

Eqs. (23)–(25) and (15), we get

α2l+1 = α2le
−λe

1τ2l+1Q1
11, (A1)

α2l = α2l−1e
−λe

2τ2lQ2
11. (A2)

Again by induction we deduce that

α2l = (
Q1

11Q
2
11

)l l∏
j=1

e−λe
1τ2j−1e−λe

2τ2j , (A3)

α2l+1 = Q1
11

(
Q1

11Q
2
11

)l l∏
j=0

e−λe
2τ2j e−λe

1τ2j+1 . (A4)

Then∫
dn�τ |||ψ̃2l〉||2 =

∫
dn�τ |α2l|2 =

( ∣∣Q1
11Q

2
11

∣∣2
4Reλe

1Reλe
2

)l

. (A5)

By construction
∫

d2l �τ |||ψ̃2l〉||2 = 1. Therefore, Eq. (A5)
proves that ∣∣Q1

11Q
2
11

∣∣2
4Reλe

1Reλe
2

= 1. (A6)

To calculate the value of C, we relate Q1
11Q

2
11 to Q1

22Q
2
22. We

recall the discussion after Eq. (17), which shows that operator
ŝ2ŝ1 is proportional to the identity operator. Using this fact and
Eqs. (25), we see that

ŝ2ŝ1

∣∣ve
1

〉 = Q1
11Q

2
11

∣∣ve
1

〉
, (A7)

ŝ2ŝ1

∣∣vo
1

〉 = Q1
22Q

2
22

∣∣vo
1

〉
. (A8)

Since ŝ2ŝ1 is proportional to the identity, we can conclude
Q1

11Q
2
11 = Q1

22Q
2
22.

This discussion can be easily generalized to the K-
state jumping scenario. We again calculate the value of∫

dnK �τ |αnK |2 in two ways when α0 = 1 and β0 = 0. The first
way is to note that, as before, in this case

∫
dnK �τ |αnK |2 =∫

dnK �τ |||ψ̃nK〉||2 = 1. The second way is to use the fact that
in this case

αnK = (
Q1

11 · · · QK
11

)n n−1∏
j=0

e−λe
1τjK+1 · · · e−λe

Kτ(j+1)K , (A9)

so that ∫
dnK �τ |αnK |2 =

(
Q1

11 · · · QK
11

2nReλe
1 · · · Reλe

K

)n

. (A10)

Thus Q1
11 · · · QK

11 = 2nReλe
1 · · · Reλe

K . Next, we show that
Q1

11 · · ·QK
11 = Q1

22 · · · QK
22. We prove this relationship for Q

j

kk

by considering the full cycle jump operator ŜK = ŝK · · · ŝ1.
Assuming (as we can do without loss of generality) that the

jump operator ĉ is traceless, we have ĉ2 ∝ Î so that

ŜK

∣∣ve
1

〉 = [g1(μ1, . . . ,μK ) + g2(μ1, . . . ,μK )ĉ]
∣∣ve

1

〉
. (A11)
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The exact nature of functions g1 and g2 depends on the
proportionality constant relating ĉ2 to the identity operator.
Just as for Eq. (17), a system can undergo jumping dynamics
iff g2 = 0. This means that the full cycle jump operator
ŜK is proportional to the identity and we conclude that
Q1

11 · · · QK
11 = Q1

22 · · · QK
22, using the trick from Eqs. (A7)

and (A8).

APPENDIX B: GROEBNER BASIS

The task of finding jumping states for adaptive unravelings
requires solving nonlinear equations. We now introduce
important concepts from computational algebraic geometry
and review some algorithms used to solve multivariate
polynomial systems. Our presentation will rely on analogies
with linear algebra. From now on we regard a polynomial
as the finite sum of terms, where each term is a product of a
coefficient and monomial.

Suppose we want to solve the system of nonlinear equa-
tions,

{f1(�xn) = 0,f2(�xn) = 0, . . . ,fs(�xn) = 0}, (B1)

where {f1,f2, . . . ,fs} are the polynomials with real rational
coefficients and �xn = (x1,x2, . . . ,xn) is the list of variables.
Our goal is to find all the solutions to the set of equations in
Eq. (B1) and a concept of ideal becomes useful. A collection
of polynomials generates the ideal via I = 〈f1,f2, . . . ,fn〉 ={∑s

i=1 hifi : h1, . . . ,hs ∈ C[�xn]
}
, where s can be any finite

index and C[�xn] is a collection of all possible polynomials
with complex coefficients with variables �xn. Thus ideals are
similar to vector spaces, which are formed from all possible
scalar combinations of vectors. But instead of scalars, one
uses all possible polynomial functions, hk , defined on C[�xn]
to form an ideal. Ideals are important because the solution set
to the newly created ideal and to the original system are the
same.

Different sets of equations can have the same solution set
and thus generate the same ideal. One of the main ideas in
algebraic geometry is to pick a good set representing the ideal
that has nice properties and yields an easy way to identify the
solutions. Such a set is called a Groebner basis.

Gaussian elimination is the algorithm used to solve a
system of linear equations. The extension to this algorithm
used to solve a system of polynomial equations is known
as Buchberger’s algorithm and it is implemented in many
packages for symbolic computations such as MATHEMATICA,
MAPLE, and SAGE. The set of equations obtained as a result of
these algorithms is known as the Groebner basis.

Before proceeding we explain how to check if a given set
of equations produced by some software package is indeed
a Groebner basis. To do this, we first need to know the S
polynomial. Given two polynomials f and g, let xα be the
least common multiple of leading terms of f and g, denoted
by L(f ) and L(g). Then the S polynomial is computed via
S(f,g) = f xα/L(f ) − gxα/L(g). A set of polynomials G =
{g1, . . . ,gn} are a Groebner basis iff for all i �= j the remainder
on division of S(gi,gj ) by G is 0. An alternative explanation
proceeds as follows. In general, one can always write S(gi,gj )
as S(gi,gj ) = ∑n

i=1 aigi + r , where ai are some polynomials

and the degree of the remainder polynomial r is smaller than
that of any polynomial in G. Then G is a Groebner basis
iff the remainder polynomial r is 0 for all i �= j . Division
by a collection of polynomials is usually implemented in the
software packages for computational algebraic geometry.

Now we explain how to use a Groebner basis to find all
solutions to the system of nonlinear equations. Unlike linear
algebra, where a vector space always has the same number
of basis vectors, different Groebner bases can have different
numbers of elements and drastically different properties for
the same ideal. The collection of Groebner bases arise from
different orderings of monomials in the system of polyno-
mials. Two particular orderings are relevant for the current
discussion: lexicographic order (Lex) and degree reverse
lexicographic order (DRL). Lex order is an alphabetical
order (write out monomial in full without any powers and
order like the words in a dictionary from left to right).
For DRL order, we first compare the total degree and then
perform lexicographic ordering by reading the expressions
from right to left. Both orderings allow different access
to information about solutions to polynomial systems of
equations. The details on different orderings can be found in
Ref. [16].

Lex order is particularly useful because of the elimination
theorem [16], which states that the Groebner basis computed
with respect to Lex order will yield a set of polynomials that
can be solved by back substitution. This means that if the
system of nonlinear equations has a finite number of solutions
and the Lex Groebner basis is given by G = {g1, . . . ,gt }, then
g1 = g1(x1) is a polynomial function of one variable only and
we can determine all values for x1 by solving g1(x1) = 0. The
next polynomial g2 is mostly like a function of two variables,
x1 and x2, so that we can solve for x2 given all possible values
for x1. This sequential substitution allows one to solve for all
variables �xn. Some of the elements of G are just constraints that
eliminate possible solutions. Such a procedure is used to solve
a system of nonlinear equations in MATHEMATICA (command
NSolve).

This algorithm comes with some complications. For some
systems, the algorithm becomes unstable. This is so because
the degree and size of coefficients in the Lex Groebner basis
quickly become huge even for relatively small systems. And
solving g1(x1) = 0 involves rounding, which introduces errors
that quickly propagate through back substitution and yield
wrong results.

The Groebner basis computed with respect to DRL ordering
offers an alternative way to compute solutions to a polynomial
system of equations that does not involve back substitution.
We now review machinery from algebraic geometry needed
to compute solutions using DRL ordering of monomials. The
first construct involves the space of all polynomials C[�xn] and
ideal I defined above. Polynomials C[�xn] can be classified
into distinct categories (cosets) such that polynomials f and
g belong to same coset iff f and g have 0 remainder with
respect to ideal I or equivalently polynomials f and g have
the same remainder with respect to I . We denote the reminder
of f by [f ]. Note that for checking this criteria it is sufficient
just to consider the remainder with respect to the Groebner
basis (same ordering as the one used for division algorithm)
spanning I .
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We can consider the space of cosets, i.e., the space of the
remainders with respect to division by I . This is a quotient
ring, denoted by A = C [�xn]. It also happens to be an
algebra that has vector space structure and carries important
information about solutions to the system of polynomials that
spanned the ideal I .

We now point out the key steps in computing solutions to
polynomials {f1,f2, . . . ,fn} and illustrate them using a simple
example.

(i) We compute the Groebner basis, G = {g1, . . . ,gt }, with
respect to DRL ordering for the ideal I = 〈f1,f2, . . . ,fn〉.

(ii) We identify the leading term for every element of the
Groebner basis L(gi).

(iii) We create set B from monomials that a not divisible
by L(gi), i.e., monomials in B have a degree smaller than the
degree of L(gi). This set is a basis for the space of remainders,
A.

For example, suppose we want to solve a system of
equations:

f1 = x2 − y2 + xy = 0,

f2 = x2y + y − 1 = 0.
(B2)

The Groebner basis (DRL ordering and x > y) for this system
is

g1 = x2 + xy − y2,

g2 = y3 − xy2 + y − 1,

g3 = y4 + xy + 2y2 − x − 2y.

(B3)

Leading terms for these polynomials (with respect to cho-
sen ordering) are L(I ) = {x2,xy2,y4} and the set B =
{1,x,y,xy,y2,y3} is the basis for the quotient ring.

To extract the information about solutions from the quotient
ring A, we associate each polynomial f in C[�xn] with a linear
map mf : A → A whose action is given by mf (g) = [fg],
where g is some polynomial. Map mf can be represented as
a matrix. To do this, we consider the action of mf on basis
elements in the set B. And mf (b) for every b ∈ B is an element
of quotient ring A and can be written as a column vector with
respect to B.

For example discussed above, we show how to compute
mx . The action of mx on 1 is given by

mx(1) = [x] = (0,1,0,0,0,0)T , (B4)

i.e., mx is the coset [x], which can be represented as a
vector with respect to elements in basis set B. Map mx will
take some basis elements outside of B. In this case, we
compute the remainder with respect to the Groebner basis
and again compute a column vector with respect to B. For

example,

mx(x) = [x2] = [g1 + y2 − xy] = [y2 − xy]

= (0,0,0, − 1,1,0)T . (B5)

Then the matrix form for mx is

mx =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1 −1 0
1 0 0 0 0 1
0 0 0 −1 1 1
0 −1 1 0 0 −1
0 1 0 0 0 −1
0 0 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎠. (B6)

We need to compute these matrices because they have a very
nice property: eigenvalues of mf are the values polynomial f

takes, when evaluated on the solution set. Thus eigenvalues of
mx are all possible values a variable x takes in the solution set.
Moreover, we don’t need to compute every possible matrix mf

because mfg = mf mg . This is significant since computing mf

relies on costly symbolic calculations, which are slow, whereas
matrix multiplication is fast.

Thus eigenvalues for all different maps mxi
tell us all

possible values each variable xi can take. But to learn the
full solution (how to combine different xi to form �xn) we also
need information that is encoded in the eigenvector of mf for
some f . Let v be such an eigenvector and we normalize this
vector so that the first component is 1 (assuming that 1 is the
first element in B). If variable xi is the j th element in set B,
then the j th component of v is the value of xi that yields one
of the solutions. All values extracted in this way from one
eigenvector come from one solution. However, this procedure
does not work for every polynomial f . If mf has degenerate
eigenvalues then corresponding eigenvectors cannot be used
to extract the solution. However, generic linear combination
of the variables will yield a desired matrix. The details on this
can be found in Refs. [17,19].

For three-state jumping, we computed the solutions using
the Groebner basis with DRL order. The set of equations for
cyclic three-state jumping has a lot of symmetry, e.g., one can
map �r1 �→ �r2 �→ �r3 �→ �r1 and κ12 �→ κ23 �→ κ13 �→ κ12 and
the system will remain unchanged. As the result, all matrices
mxi

associated with unknowns in the system have degeneracy
with respect to real eigenvectors and cannot be used to extract
the solution. Instead we used matrix mf , where f = r11 + κ12.
Here r11 is the first component of the Bloch vector �r1. The
reason for this choice is the following. Matrices associated
with κ12, κ23, and κ31 are nice because they have the least
nonzero elements, which speeds up the calculation (symbolic
part). However, any combination of κ12, κ23, and κ31 or the
same coordinate of r1, r2, and r3 does not break the degeneracy
due to symmetry above, but r11 + κ12 does.
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