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Frequency tracking and parameter estimation for robust quantum state estimation

Jason F. Ralph,1,* Kurt Jacobs,2,† and Charles D. Hill3,‡
1Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, Liverpool L69 3GJ, United Kingdom

2Department of Physics, University of Massachusetts at Boston, 100 Morrissey Blvd, Boston, Massachusetts 02125, USA
3Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Victoria 3010, Australia

(Received 15 September 2011; published 28 November 2011)

In this paper we consider the problem of tracking the state of a quantum system via a continuous weak
measurement. If the system Hamiltonian is known precisely, this merely requires integrating the appropriate
stochastic master equation. However, even a small error in the assumed Hamiltonian can render this approach
useless. The natural answer to this problem is to include the parameters of the Hamiltonian as part of the estimation
problem, and the full Bayesian solution to this task provides a state estimate that is robust against uncertainties.
However, this approach requires considerable computational overhead. Here we consider a single qubit in which
the Hamiltonian contains a single unknown parameter. We show that classical frequency estimation techniques
greatly reduce the computational overhead associated with Bayesian estimation and provide accurate estimates
for the qubit frequency.
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I. INTRODUCTION

It is well known that the key to large scale quantum comput-
ing is the ability to maintain and manipulate a pure quantum
state, minimizing any sources of possible error. Errors, either
due to environmental fluctuations or inherent in the quantum
system itself, are liable to produce decoherence, such as
dissipation or dephasing, and lead to initially pure quantum
states becoming mixed. In many of the candidate quantum
technologies (such as quantum optics, atoms, and ions in traps)
the systems being used as the qubits can be reasonably well
characterized. Laser frequencies can be measured accurately.
Atomic and ionic transition frequencies are consistent from
one qubit to another. In the solid state, where devices need
to be fabricated individually, there will always be some
uncertainty in the parameters that determine the Hamiltonians
of the individual qubits, the coupling between qubits, and the
coupling to any external controls or environment.

Any attempt to apply feedback control to solid-state
qubits will therefore have to deal with uncertainties in their
Hamiltonians. Feedback control is based upon continuous
state estimation, in which the observer tracks the system via
a continuous measurement [1–4], and uses this knowledge to
correct the evolution via control inputs [5–8]. It is therefore
essential that continuous state estimation handles uncertainties
in the Hamiltonian. An estimation process that does this is
referred to as being robust. An effective approach to achieving
this robustness is to estimate continuously both the state of
the system and the uncertain parameters in the Hamiltonian as
the measurement proceeds. This is the approach we consider
here, comparing the optimal Bayesian technique and classical
estimation techniques to determine an unknown parameter.

A number of authors have examined continuous state
estimation in which the Hamiltonian is uncertain. There has
been work on parameter estimation by Gambetta and Wiseman
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[9], Verstraete et al. [10], Stockton et al. [11], Chase and
Geremia [12], and Tsang [13–15]. Gambetta and Wiseman
have examined a situation similar to the one we consider
here, and derived the full Bayesian estimation equations. They
found that the ability to determine the unknown parameter
depended strongly on the way that the system was measured.
This is a result of the way in which the measured observable
is affected by errors in the parameter, and the noise introduced
into the dynamics by the measurement. The goal of the work by
Verstraete et al. and Stockton et al. was to estimate continu-
ously a signal that appeared as a (possibly time dependent)
parameter in the Hamiltonian of a measured system. This
problem arises naturally in the context of measuring classical
fields, such as gravity-wave detection [16] and magnetometry
[11]. In tracking the classical parameter it was necessary to
track the state of the system, and thus the authors also derived
the full Bayesian estimation equations. More recently, Chase
and Geremia have developed a quantum analog of a classical
tracking filter called a particle filter [17], which estimates
the evolution of continuous probability density function for a
parameter by considering a finite set of weighted sample points
[12], and Tsang has developed a generalisation of classical
smoothing filters [13–15], where measurements are processed
forward and backward in time to improve state estimates
and the probability distributions for classical parameters. In
addition, related work has been done by Yamamoto [18],
who considered the problem of robust state estimation for
linear quantum systems, using results from classical control
theory. Issues of robustness in quantum control have also been
discussed in Refs. [19,20].

We consider what is possibly the simplest nonlinear
quantum state-estimation problem, that of tracking the state
of a single qubit. We first examine what happens when the
observer uses the usual stochastic master equation to estimate
the state of the system, but with an incorrect Hamiltonian.
We find that this procedure is, as expected, very sensitive to
errors in the Hamiltonian, failing quickly when the observer’s
Hamiltonian differs only a little from the true Hamiltonian.
We then describe how this problem is solved by extending the
estimation equations to include the Hamiltonian parameters.
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The resulting estimation equations are those derived in
Refs. [9] and [10]. (We also include a simple and concise
derivation of these equations in an Appendix A.) Since the
estimation equations simultaneously estimate both a quantum
state and a set of classical parameters, we will refer to this
set of equations as the hybrid stochastic master equation
(HME).

The HME, while an optimal solution to the robust state-
estimation problem, does generate a considerable computa-
tional overhead. Our main purpose here is to show that this
overhead can be reduced, with a relatively small reduction
in performance, by using “frequency tracking” methods that
were originally developed for classical signal processing ap-
plications (such as radar frequency tracking, sonar processing,
and communications) [21]. In particular, we examine three
frequency tracking techniques: one Fourier-based method and
two that do not require a Fourier transform (thereby avoiding a
large computational overhead). The Fourier-based technique is
the maximizer of the periodogram, finding the frequency that
maximizes the correlation between the noisy measurement
signal and a complex Fourier kernel. It is optimal for a
single sinusoidal signal in noise, but it is computationally
expensive.

The first non-Fourier technique (Quinn-Fernandes [22])
is iterative and can be applied entirely in the time domain.
It uses notch filtering and relies on the iterative construc-
tion of a filter that cancels an instability at the desired
frequency. It can be shown to approach the Cramér-Rao
bound for the convergence of the estimated frequency, in
which the variance of the estimator asymptotes to O(N−3),
where N is the number of data points in the measurement
record [21].

The second non-Fourier technique is common in signal
processing and is called “multiple signal characterisation” or
MUSIC [23,24]. This technique uses the properties of the
eigenvectors of the autocovariance matrix of the data. These
are related to the corresponding eigenvalues, which are in turn
related to the frequencies present in the data. The variance
of this technique scales as O(N−1) rather than O(N−3), but
unlike the Quinn-Fernandes method it does not require an
initial frequency estimate and can be more stable for large,
appropriately filtered data sets. We compare the accuracy of
these techniques with that of the full Bayesian estimator and
find that they perform very well in general, although some
do require additional filtering to obtain a stable parameter
estimate.

We begin by reviewing the formalism used to describe
continuous weak measurement, and define the relevant mea-
surement record upon which the parameter estimates will
be based. We then describe the optimal Bayesian estimator
(the HME) for updating the parameter estimates and discuss
several approximate methods for the estimation of frequencies
from noisy data, with particular emphasis on computational
complexity. We then analyze the performance of the Fourier,
Quinn-Fernandes, and MUSIC techniques for a range of
measurement strengths, and find that these perform well
in comparison with the Bayesian method. We conclude by
describing how these techniques can be included in a quantum
feedback system to estimate an unknown (possibly time-
dependent) Hamiltonian.

II. CONTINUOUS WEAK MEASUREMENT
AND STATE ESTIMATION

Measurement processes in quantum mechanics have always
been the subject of intense theoretical interest. Traditionally,
measurements have been projective and the quantum evolution
has been reconstructed from a stochastic series of results,
averaged over an ensemble of similarly prepared quantum
systems. The main problem with this approach is the restrictive
nature of the projective measurement process. There is no
alternative to performing a series of projective measurements
and building up a probabilistic model for the average evolution.
Continuous weak measurement models were developed as a
means to describe the effect of weak (i.e., nonprojective) mea-
surement processes. This is achieved by coupling the quantum
system of interest to environmental degrees of freedom, and
then performing a series of projective measurements on the
environment. Because the system becomes correlated with the
environment, the projective measurements provide a stream
of information about the system of interest. As long as the
coupling strength between the system and the environment
is sufficiently weak, then the effect of the projective mea-
surements will be small compared to the underlying quantum
evolution of the system, and the result is a (weak) continuous
measurement.

The evolution of the system now depends on the stream
of measurement results, called the measurement record, and
since these are necessarily random, the evolution of the system
is given by a stochastic equation. If one averages over all
possible measurement records, then one obtains the usual
Lindblad-form master equation for a system coupled to an
environment. Each possible measurement record corresponds
to a particular realisation of an experiment on a single quantum
system. This is often referred to as an “unravelling” of the
master equation, with different unravellings corresponding to
different kinds of measurements that one could make on the
environment [25]. Weak measurements have a relatively small
effect on the underlying quantum evolution, but increasing
the strength of the coupling between the quantum system
and the environment will also allow stronger measurements
to be made, including projective-like measurements, where
the nonunitary terms dominate the evolution, along with the
quantum Zeno effect [26].

Of course, in a real experiment, all one has is the measure-
ment record rather than the underlying processes. In such cases
it is possible to reconstruct aspects of the underlying quantum
evolution by solving the relevant stochastic master equation
(SME) for the specific measurement process and unravelling
using the measurement record obtained from the experiment.
The resultant evolution provides estimates of the instantaneous
state of the quantum system given the measurement record [5].
This type of state estimation process is common in classical
systems, where the classical evolution of a system is estimated
from a noisy series of measurements, often using the Kalman
filter or its variants [27]. The parallels between classical state
estimation and quantum state estimation have been widely
discussed in the literature [28]. In this context, the estimated
quantum state represents the best guess of what the actual
state of the system is, based upon the set of measurements
that are currently available. As the system evolves and more
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information becomes available via the measurements, the
estimate of the quantum state should improve and the purity
of the state should increase.

For a quantum system with a Hamiltonian Ĥ , subject to
a measurement corresponding to an operator ĉ, the stochastic
master equation for the unravelling is given by Ref. [29]

h̄dρc = −i[Ĥ ,ρc]dt + [
ĉρcĉ

† − 1
2 (ĉĉ†ρc + ρcĉĉ

†)
]
dt

+ dz†(ĉρc − 〈ĉ〉 ρc) + (
ρcĉ

† − ρc〈ĉ†〉
)
dz, (1)

where dt is an infinitesimal time increment and dz is
an infinitesimal complex Wiener increment. The complex
Wiener increments obey the relations E[dz] = 0 (where
E[· · · ] represents an expectation value), dzdz† = h̄�dt , and
dzdzT = h̄ϒdt . In general, dz is a complex vector and � and
ϒ are matrices, but if we restrict consideration to a single
measurement interaction, � is a real number (which we will
set to one, corresponding to efficient detection [29]) and we
set ϒ = 1 so that the Wiener increments are real. The density
matrix ρc is conditioned upon the measurement record, which
is given by Ref. [29]

dy(t) = 〈ĉT � + ĉ†ϒ〉cdt + dzT = 〈ĉ + ĉ†〉cdt + dz, (2)

where the expectation values are taken with respect to the
conditional state, 〈ĉ〉c = Tr [ρcĉ].

Unlike projective measurements, weak measurement pro-
cesses are not restricted to Hermitian operators but, for
the purposes of the current paper, we will assume that the
measurement operator is Hermitian. This means that the sole
action of the measurement is to extract information about a
single physical observable. (Measurement operators that are
not Hermitian describe damping in addition to the extraction
of information, a common example is the damping of a
lossy optical cavity [30]). For a Hermitian weak measurement
ĉ = √

2kh̄ŷ = ĉ†, where k is the strength of the measurement
interaction, the SME reduces to

dρc = − i

h̄
[Ĥ ,ρc]dt − k[ŷ[ŷ,ρc]]dt

+
√

2k(ŷρc + ρcŷ − 2〈ŷ〉cρc)dW, (3)

where dW is a real Wiener increment (such that dW 2 = dt),
and the measurement record is

dy(t)√
h̄

=
√

8k〈ŷ〉cdt + dW. (4)

At each point in time, the measurement record (from an ex-
periment or a simulated process) will determine the associated
dW , given the current estimate of the state ρc. The state of
the system may then be updated using the value found for
dW and Eq. (3). In classical state estimation, the value dW is
often referred to as the innovation [27], in that it represents the
new information provided by the measurement. The innovation
is normally the difference between the actual measurement
[in this case, dy(t)] and the current estimate of what the
measurement should be given the current state of knowledge
of the system [which is

√
8k 〈ŷ〉c dt]. The main difference

between classical and quantum measurement processes is
that if the measured observable does not commute with the
Hamiltonian, then the measurement actually feeds noise into
the observable that is being measured. Because of this, no

matter how long we measure for, we will always be left with
some uncertainty about the observable.

The main potential problem with the above approach to state
estimation is that the stochastic master equation requires that
the system is well defined, in the sense that the Hamiltonian
and the measurement interaction need to be known very
accurately. If the Hamiltonian and interaction are not well
defined, the measurement record that is used to update the
system will produce incorrect state estimates and assign too
much confidence to the results of the SME. This is also
common in classical state estimation problems, where too
much confidence is assigned to the dynamical processes and
valid measurements are often discounted because they conflict
with the (inaccurate) state estimates [27]. Ideally we would
like our state estimates to be insensitive to small errors in the
Hamiltonian, or to allow the parameters in the Hamiltonian to
be estimated from the measurement record so that errors can
be corrected online.

To examine the sensitivity of the state estimates to errors
in the Hamiltonian, we consider two SMEs: one is used
to produce a measurement record (playing the role of an
experimental system) and the other is used to estimate the
underlying state of the system based on a Hamiltonian that
contains a small error. Initially, we select a simple single-qubit
Hamiltonian,

H = h̄ωxσx/2, (5)

where σx is the Pauli x matrix. This Hamiltonian generates a
rotation of the single qubit Bloch vector about the Bloch x axis.
We then apply an interaction that generates a measurement
along the Bloch z axis. This maximizes the size of the output
signal relative to the noise by choosing a measurement that is
orthogonal to the axis of rotation. The Hamiltonian and mea-
surement are selected because they reflect a common situation
for solid state charge qubits, where the σx term corresponds to
a tunneling interaction and the σz interaction corresponds to a
measurement of charge (see Ref. [31] for example). Rewriting
the SME in the Bloch vector representation [32] with

ri = Tr[σiρ], i = X, Y, Z,

where σi is a Pauli matix and the density operator is

ρ = I + rXσy + rY σy + rZσy

2
,

the SME becomes three coupled stochastic equations

drX = −4krXdt −
√

8krXrZdW,

drY = −ωxrZdt − 4krY dt −
√

8krY rZdW, (6)

drZ = ωxrY dt +
√

8k
(
1 − r2

Z

)
dW.

The corresponding measurement record is

dy(t)√
h̄

=
√

8krzdt + dW. (7)

We use one SME with a fixed frequency ωx to generate a
measurement record, and then feed this measurement record
to a second SME. This second SME is used by an observer to
estimate the state of the system. The first SME is initialized
in a pure state. The second SME is initialized in a completely
mixed state (rX = rY = rZ = 0), reflecting the fact that the
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observer does not initially know what state the qubit is in. If
the Hamiltonian used in the second SME is perfect (that is, is
exactly the same as that used in the first SME), then the initial
mixed state will gradually purify as information is extracted.
It will converge to the corrrect underlying state. (The process
of purification or state reduction of single qubits subject to
weak measurements and the use of feedback to increase the
rate of purification have been discussed in detail by the current
authors and others [31,33–35].) If the Hamiltonian used in the
second SME contains an error, the estimated or conditioned
state will purify, but the errors in the predicted evolution
due to the inaccurate Hamiltonian will cause the estimated
state and the underlying state from the first SME to diverge.
The question is how accurate the Hamiltonian needs to be
so that the estimated state purifies before the prediction errors
accumulate and cause the states to diverge. A robust parameter
estimation process would allow a state to be purified to the
required level before they diverge significantly. Preferably this
should be achieved without affecting the underlying evolution
of the state, thereby allowing the Hamiltonian parameters to be
estimated and updated. The alternative, a measurement strong
enough to completely dominate the evolution, projecting the
state on a fast time scale compared to the Hamiltonian, would
certainly give the correct estimated state, but it is not the
situation we are interested in here.

We begin by examining the divergence of the underlying
state, given by the first SME, from that of the estimated
state, given by the second SME. We do this by calculating
the average fidelity between the two density matrices as a
function of time for several different measurement strengths.
The question relating to the extraction of the parameters in the
Hamiltonian will be dealt with in the next section. The fidelity
F for two density matrices ρ0 and ρc is a common measure of
the difference between two (possibly mixed) density matrices
and it is given by Ref. [36]

F = F (ρ0,ρc) = |Tr[
√√

ρcρ0
√

ρc]|2.
In Fig. 1 we show the average fidelity for a completely
mixed initial state as a function of time for a number of
different expected frequency errors (the oscillation frequency
ωx being the parameter that we will be trying to estimate
and the errors being characterized by their standard deviation
σδωx

, which will normally be given as a percentage) and
for a measurement strength k = 0.07ωx/(2π ). The fidelity is
calculated by comparing the estimated density matrix ρc and
the underlying (pure state) density matrix ρ0. Both SMEs are
integrated numerically using Milstein stochastic integration
[37] and at least 4000 time steps per oscillation cycle. The
estimated states’ purify as information is extracted from
the measurement record, thereby increasing their fidelity. The
average purity of ρc will increase with time (the estimated
purity tends to one) but the average fidelity eventually saturates
as the information gain from the measurement record is
balanced by the information loss due to the inaccuracies in
the estimated Hamiltonian parameter. In the inset of Fig. 1, the
saturation value of the average fidelity is given as a function
of measurement strength for three different values of the error
(σδωx

= 1%, 2%, and 5%). Figure 2 shows 1 − F̄ (1 − average
fidelity, sometimes called the “infidelity”) as a function of the

FIG. 1. (Color online) Average fidelity of the estimated state
vs time for different values of expected errors σδωx

= 1% (blue
solid line), 2% (red dashed line), and 5% (green dotted line) for
k = 0.07ωx/(2π ). Inset shows the saturated value for the average
fidelity as a function of measurement strength 2πk/ωx for σδωx

= 1%
(blue solid line), 2% (red dashed line), and 5% (green dotted line).

percentage error in the estimate of the oscillation frequency
for three different measurement strengths. It is clear from the
data shown in Figs. 1 and 2 that errors of the order of a few
percent can have a significant effect on the fidelity of the
estimation process. To obtain a fidelity value in excess of 0.99
the frequency error must be less than about 0.2%–0.3% if
the measurement strength is around k = 0.03ωx/2π , but the
error can be as large as 1% if the measurement strength is
greater than about 0.07–0.08ωx/2π . Therefore, it is crucial
that the measurement strength is chosen to reflect the expected
accuracy of the frequency estimation process, although the
stronger the coupling between the measurement environment
and the qubit, the greater the effect of the backaction of the
measurement on the qubit evolution. In the next section we
consider how an optimal Bayesian inference method can be

FIG. 2. (Color online) Average fidelity error (1 − average
fidelity) of the estimated state vs percentage frequency errors for
2πk/ωx = 0.03 (blue solid line), 0.07 (red dashed line), and 0.12
(green dotted line) after 25 oscillation cycles.
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used to update the parameter estimates online and consider
several alternatives taken from classical signal processing and
frequency tracking.

III. QUANTUM PARAMETER ESTIMATION
AND FREQUENCY TRACKING

A. Bayesian inference

Making a continuous measurement will, in general, provide
information not only about the state of a system, but also
about the dynamics, and thus the parameters that determine
the Hamiltonian. We will denote the parameters by the vector
λ. Our task is to process the measurement results in order
to extract that information. The full solution to this problem
is given by applying Bayesian inference [38] (classical mea-
surement theory) in combination with quantum measurement
theory (being the quantum version of Bayesian inference [39]).
To begin with, our state of knowledge regarding the system and
the parameters is described by a density matrix for the state
of the system ρc, and a probability density for the parameters
P (λ). Here we are concerned only with a single parameter (the
frequency of the oscillations), so we have a scalar parameter λ.
The solution to the continuous estimation problem tells us how
to update both the density matrix and P (λ) in each infinitesimal
time-step dt , that is, it gives differential equations for ρc and
P (λ), and these are stochastic because they are driven by the
measurement record.

We now present the stochastic differential equations that
solve the combined state and parameter estimation problem.
While they look somewhat involved, they are quite simple to
derive, and we give this derivation in Appendix A. Since the
Hamiltonian is a function of λ, we will write it as H (λ). The
stochastic master equation for the density matrix is

dρc = −i

h̄

[∫
P (λ)H (λ)dλ,ρc

]
dt − k[ŷ,[ŷ,ρc]]dt

+ 4k(ŷρc + ρcŷ − 2〈ŷ〉cρc)(dr − 〈ŷ〉cdt), (8)

where dr is the measurement record, dr = dy(t)/
√

8kh̄, ŷ is
the measured observable, and 〈ŷ〉c = Tr[ŷρc]. The equation of
motion for P (λ) is

dP (λ) = 8k(〈ŷ〉 − 〈ŷ〉λ)(dr − 〈ŷ〉dt)P (λ). (9)

Here we have introduced a new quantity 〈ŷ〉λ. This is the
expectation value that ŷ would have if we knew the value of
λ. To be able to calculate 〈ŷ〉λ we must continually update our
state-of-knowledge of the system, assuming that we know λ

for every value of λ. Denoting our state-of-knowledge of the
system, given λ, by ρλ, the update equation for each value of
λ is

dρλ = −i

h̄
[H (λ),ρλ]dt − k[ŷ,[ŷ,ρλ]]dt

+ 4k(ŷρλ + ρλŷ − 2〈ŷ〉λρ)(dr − 〈ŷ〉λdt), (10)

where 〈ŷ〉λ = Tr[ŷρλ]. We will refer to Eqs. (8)–(10) together
as the hybrid master equation, since it involves both quantum
and classical states-of-knowledge. Unlike the smoothing filters
developed by Tsang [13–15], the hybrid master equation
propagates forwards in time only.

It is because we must propagate the density matrices ρλ for
every value of our parameter λ that the full state estimator is
so numerically intensive. If λ is a continuous variable, as is
the case here, then it is impossible to have a density matrix
for all values of λ, and we therefore use a discrete grid of
values. Note that the spacing of values on this grid must be
a least as small as the accuracy with which we wish to track
λ. In addition, the length of the grid (the range of values of
λ) must be large enough to encompass our initial uncertainty.
If we use a fixed grid, these two requirements determine how
many values of λ require, which can be large. One approach
to reducing this number would be to use a moving grid,
updating the points on the grid along with P (λ). Even this
procedure would require at least three copies of the density
matrix (likely more), and certainly more if we had two or
more parameters. In addition, it requires the rather involved
task of interpolating a new density matrix each time a grid
point is moved. Rather than exploring dynamical grids as a
numerical method for implementing the full estimator, in the
next section we consider replacing the Bayesian updater for
P (λ) with a classical frequency estimation technique.

We present in Fig. 3 results for using the hybrid master
equation to estimate the frequency of a single qubit. For these
simulations we used a grid of 301 points for λ. The simulations
are highly intensive: running the estimator for 500 periods,
and averaging over 5000 realizations, takes ∼33 hours on
a 232 processor cluster. In Fig. 3 we plot the average error
of the estimator (the average rms deviation from the true
frequency) as a function of time, and for different values of
the measurement strength k. While a stronger measurement
provides a faster rate of information extraction, the laws of
quantum mechanics mean that it also introduces more noise
into the system. As a result there is an optimal value for the
measurement strength for a given frequency. We see from
Fig. 3 that this is approximately k = 0.035ω/2π , at least for
a measurement time of 150 cycles.

FIG. 3. (Color online) Expected frequency errors (1 standard
deviation) vs time for Bayesian inference method and dif-
ferent measurement strengths, 2πk/ωx = 0.005, 0.015, 0.025,

0.035, 0.040, and 0.050. Inset figure shows the expected frequency
error after 150 qubit cycles for the data shown in the main figure.
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B. Classical frequency tracking

The ability to determine which frequencies are present in
a noisy signal is extremely important in a large number of
practical engineering applications. In communication systems,
analog signals are often transmitted by the modulation of the
frequency of a carrier signal or digital data bits can be encoded
in a frequency-shift key modulation scheme [40]. In classical
signal processing, the frequencies present in sonar signals
provide information about the engine and gearing mechanisms
in sea vessels [21] and tracking the Doppler frequency shifts in
radar signals provides information about the relative (radial)
motion of the radar and the target [41]. A large number
of techniques have been developed to extract the dominant
frequencies from a noisy signal. Some rely on calculating
the Fourier transform of the data record and estimating the
likelihood that frequency component corresponds to a signal
rather than to noise, but these are computationally expensive
and are similar in nature to the Bayesian method discussed
above. However, other techniques have been developed which
do not require explicit calculation of a Fourier transform and
some can be applied in the time domain alone. It is natural
then to ask whether these techniques can be used to extract
useful information from a quantum measurement record of the
form given in Eq. (7). From the wide variety of techniques
that are available, we have chosen three for further study: the
maximizer of the periodogram, the Quinn-Fernandes method
[22], and the multiple signal characterization method or
MUSIC [23,24]. The frequency that maximizes the peri-
odogram provides the best correlation between the measure-
ment record and a sine wave, it is a computationally inefficient
technique, but it provides the most accurate frequency estimate
for cases where a single frequency signal is corrupted by white
noise. The Quinn-Fernandes method is selected for its relative
simplicity, it works in the time domain, removing the need
to perform computationally expensive Fourier transforms, and
for the fact that its theoretical accuracy approaches the optimal
Cramer-Rao bound. The MUSIC method is slightly more
complicated, using an estimate of the signal’s autocorrelation
matrix, but it does not require the initial frequency estimate
used by Quinn-Fernandes and it can be used for signals
containing more than one frequency component.

The main advantage of classical techniques is that the
measurement record can be integrated over much longer time
steps, thereby reducing the computational requirements. The
optimal Bayesian inference technique requires that the SME is
integrated using very small time steps. For the purity value of
the quantum state to be well behaved (i.e., not significantly
larger than one), several thousand time steps are required
per period of the oscillation even when Milstein stochastic
integration techniques are used. By contrast, the classical
tracking techniques only require on the order of 50 sample
points per period, a significant saving in computational terms.
The measurement record used by the classical trackers is a
discrete sequence of values sampled at regular intervals from
the continuous measurement record. As such, each sample yn

is an integral of dy(t) over a finite time-step tn → tn + 
t

where n = 0, . . . ,N − 1:

yn =
∫ tn+
t

tn

dy(t). (11)

When the coupling between the qubit and the measured
environment is very weak, the discrete signal yn can be
approximated by a single sinusoid and a noisy background
signal,

yn ≈ A cos[ωx(n
t) + φ] + εn, (12)

where A and φ are the amplitude and phase of the sinusoidal
signal and εn is the noise. For a single sinusoid in Gaussian
white noise, the minimum variance for an unbiased estimate of
the frequency given by the asymptotic Cramer-Rao bound [21]

σ 2
CRB = 48πfx(ωx)

A2(N
t)3
,

where fx(ω) is the spectral density of the noise at a frequency
ω, and the signal-to-noise ratio at the qubit frequency is given
by SNR = 10 log10{A2/[4πfx(ωx)]} [21].

1. Maximizing the periodogram

The periodogram for N discrete points is formed by
calculating

Iy(ω) =
∣∣∣∣∣
N−1∑
n=0

yn exp(−iωtn)

∣∣∣∣∣
2

(13)

and the estimate of the qubit frequency is given by the value of
ω that maximizes Iy(ω). For the cases considered in this paper,
the number of points will be large and the signal-to-noise
ratio for the signal (i.e. the measurement record) will be very
low when compared to most signal processing applications.
Typically there will be 50 points per oscillation cycle of the
qubit, and we will consider the performance over several
hundred cycles. A rough estimate of the signal-to-noise ratio
is given by the ratio between the variance of the two terms in
the dy(t) measurement record,

SNR = 10 log10

[
(
√

8k
t)2

2
t

]
= 10 log10(4k
t),

which, for the discrete time examples that we will be
considering, will provide signal-to-noise ratios between
−30 and −20 dB. However, this simple calculation ignores
the backaction of the measurement on the qubit, which induces
slightly higher levels of noise in the output signal and broadens
the peak associated with the sinusoidal oscillation of the qubit.
In such cases the accuracy of the Fourier-based technique is
limited by the broadening of the peak because a broad peak
has many maxima and a large number of points can generate
a maximum when subject to a large amount of noise. Other
techniques based on the Fourier transform, such as the inter-
polation of Fourier coefficients [42], offer better performance
than simply maximizing the discrete Fourier transform of the
discrete time signal (which was found to provide very poor
performance for all the cases studied in this paper). However,
these techniques will always underperform when compared to
maximizing the periodogram. An alternative approach based
on fitting the whole frequency response of the broadened
measurement peak could be envisaged, and could offer more
accurate frequency estimates, but this is likely to require even
more computational power than calculating the periodogram.
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2. The Quinn-Fernandes technique

The Quinn-Fernandes technique belongs to a class called
adaptive notch filters [22,43]. The general idea is to introduce
a filter than removes a particular frequency from the signal,
the “notch” frequency. If the signal is made up of white noise
and a sinusoid, finding the notch frequency that minimizes
the variance of the filtered signal is equivalent to finding the
frequency of the sinusoid. The background to the method and
the implementation of the technique are described fully in
Appendix B. The main point to note is that this technique
requires an initial estimate of the qubit frequency ω1 = ω̃x .
The accuracy of the initial estimate will have an effect on
the accuracy of the final frequency estimate ωQF because
it affects the convergence properties of the minimization
procedure used by the technique. For sinusoidal signals with
low to moderate noise levels the Quinn-Fernandes technique
is fairly insensitive to inaccuracies in this initial estimate, but
for the situation considered here, where the signal-to-noise
level is very low and the qubit oscillation is affected by the
backaction of the measurement, the accuracy of the initial
estimate is very important. Figure 4 shows the evolution of
the Quinn-Fernandes frequency estimates for the qubit signal
for an example measurement record, and for several different
initial frequency estimates. On short time scales there are very
few stable solutions to the iterative procedure outlined above,
but as time increases the accuracy of the initial estimate is
required to be better because the number of stable solutions
and estimates increases. This multiplicity of solutions is partly
due to the very low signal-to-noise level of the measurement
record and partly due to the broadening of the corresponding
peak in the Fourier domain (one effect of measuring the qubit
is to reduce the effective quality factor of the oscillation).
The Quinn-Fernandes technique performs much better when
the noise level is (artificially) lowered. Reducing the size
of the dW term in the measurement record Eq. (7) relative
to the size of the signal reduces the number of solutions,
and the accuracy of the technique approaches the theoretical
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FIG. 4. (Color online) Example outputs from Quinn-Fernades
frequency estimation algorithm as a function of time with different
initial frequency estimates: f̃x = 1.02 (red line), f̃x = 1.01 (blue x),
f̃x = 1.00 (magenta circle), f̃x = 0.99 (green plus), and f̃x = 0.98
(purple diamond).

best case. (The best case corresponds to the output of the
Quinn-Fernandes estimate when the initial estimate is perfect.)
If the qubit signal is a spin- 1

2 system, then moving to a larger
value of angular momentum would boost the relative size of
the signal compared to the dW noise and may give the Quinn-
Fernandes technique a significant advantage over the others.
Increasing the signal-to-noise ratio by a factor of about 3 to 4 is
enough to increase the accuracy of this technique significantly,
and the Quinn-Fernandes technique is the least expensive
computationally of the different techniques considered in
this paper. Even without an increased signal-to-noise ratio,
the Quinn-Fernandes does provide a slight improvement in
accuracy over the initial estimate, as discussed in the next
section.

3. Multiple signal characterization (MUSIC)

Multiple signal characterization, or MUSIC, is a widely
used frequency estimation technique [23,24]. MUSIC uses
properties of the eigenvectors of the autocovariance matrix of
the measurement record to decompose the data into a signal
subspace and a noise subspace. The autocovariance matrix is
formed by constructing a symmetric Toeplitz matrix

C =

⎛
⎜⎜⎜⎜⎝

C0 C1 ... CM−1

C1 C0 ... CM−2

...
...

. . .
...

CM−1 ... C1 C0

⎞
⎟⎟⎟⎟⎠ (14)

from the autocovariances

Cj = N−1
N−1∑
n=j

(yn − ȳ)(yn−j − ȳ), (15)

where ȳ is the mean of the measurement record. The size of
the autocorrelation matrix M > 2 can be varied to optimize
the performance of the technique and for the examples shown
here M = 5, which provides a good level of performance and
does not require large computational resources. MUSIC can
be used to find more than one frequency, however, we will
only use it to find one frequency in this paper.

Once the autocovariance matrix has been constructed, the
eigenvectors of the matrix νm (m = 1, . . . ,M) are found and
ordered so that the eigenvalues γm are in ascending order γ1 �
γ2 � · · · � γM . If there are p sinusoids present in the data, the
first M − p eigenvectors corresponding to the lowest M − p

eigenvalues are used to find the MUSIC “spectrum” S(ω) from

S(ω) = 1∑M−p

m=1 |e∗(ω)νm|2
, (16)

where e(ω) = {1 exp(iω
t) exp(2iω
t) · · · exp[i(M −
1)ω
t]}T and the eigenvectors νm are normalized. The
MUSIC spectrum contains a number of maxima, one for each
of the p sinusoids present in the data. In our case, p = 1
and ω 	 ωx . The maximum value of the MUSIC spectrum
therefore provides our estimate for the qubit frequency.

The signal-to-noise level in the measurement record is
sufficiently high that the MUSIC technique applied on its
own proves to be unstable. The frequency estimates generated
occasionally contain very large errors, which unduly affect
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FIG. 5. (Color online) (a) Example MUSIC spectrum and
(b) corresponding frequency estimate as a function of time.

the variance of the errors and the resultant accuracy of the
technique. To remove these very large errors, it is necessary
to prefilter the measurement record to remove frequency
components too far away from the initial estimate of the qubit
frequency. This is not as restrictive as the initial estimate used
in the Quinn-Fernandes technique: the prefilter used here is
a bandpass filter (a Butterworth filter [44]) with a pass band
which is ±10% of the initial frequency estimate. Figure 5(a)
shows an example of a MUSIC spectrum calculated for an
example measurement record and the corresponding MUSIC
frequency estimates are shown in Fig. 5(b) as a function of
time.

C. Comparison of performance

The principal aim of the frequency estimation algorithm
is to improve the final fidelity of the estimated state in the
stochastic master equation. Figures 1 and 2 show that the
expected fidelity of the state, after the initial purification
phase, is dependent on the measurement strength and the
expected error in the qubit frequency. The Bayesian method
gives the best estimates for the qubit frequency for relatively
weak measurements 2πk/ωx 	 0.035. However, such weak
measurements require very accurate frequency estimates to
obtain high fidelity values: Fig. 2 indicates that the frequency

error should be less than about 0.2%–0.3% for the average
fidelity to be in excess of 0.99. Using stronger measurements,
2πk/ωx 	 0.070–0.120, reduces the accuracy required from
the frequency estimation algorithm to around 0.8%–1%. The
strength of the measurement interaction is an important
design consideration for solid state circuits because it is
normally more difficult to decouple or otherwise modify the
interactions between fabricated circuits than it would be for
an atomic or ionic qubit system. As such, the measurement
strength would be an important design parameter in the
construction of solid-state qubits and the associated control
circuitry.

The accuracy of the frequency estimation algorithms for
the different measurement strengths is summarized in Fig. 6.
For weak measurement values around 2πk/ωx 	 0.030, the
accuracy of each of the three classical techniques is found
to be approximately equal in the long time limit, although
maximizing the periodogram is more accurate over short time
scales. (Two values are given for the Quinn-Fernandes tech-
nique, representing the upper and lower bounds to the accuracy,
which is a function of the accuracy of the initial estimate.) The
baseline accuracy of all three classical techniques is limited to
around 0.8%, which would be accurate enough for a maximum
average fidelity of around F = 0.95 (see Fig. 2). Only the
Bayesian technique approaches the accuracy that would be
required for fidelities approaching 0.99 at the expense of
significantly increased computational loading.

As the measurement strength is increased, the accuracy of
the periodogram–Fourier-based technique is seen to deterio-
rate relative to either of the other two classical techniques.
For very short periods of time, it remains the most accurate
technique, but the accuracy asymptotes very quickly to an error
of around 1.2%. With an initial 1% error in the estimate, the
Quinn-Fernandes technique provides a slight improvement in
the frequency estimate after about 150 qubit cycles. However,
the accuracy of the Quinn-Fernandes technique for 2πk/ωx 	
0.070 is around 0.9%, which is just outside the desired
range for an average fidelity of F = 0.99, and the accuracy
of this approach can be seen to deteriorate when the mea-
surement strength is increased. The lower bound for the
Quinn-Fernandes accuracy is given in each graph in Fig. 6
and is the accuracy of the Quinn-Fernandes technique if the
initial estimate is perfect (i.e., zero error). This represents the
best estimate that could be achieved using this (time-domain)
technique, but in practice it will not be achievable because of
errors in the initial frequency.

The expected accuracy of the MUSIC frequency estimates
is slightly better than the other two classical methods, the
error reduces to around 0.7% at 2πk/ωx 	 0.070. This is
well within the range for an average fidelity greater than 0.99.
The expected accuracy of this technique would normally be
expected to be worse than the other two methods because
it does not converge to the Cramer-Rao bound in the long
time limit, however, it is found to be remarkably robust in the
presence of noise and it was also found to be stable in the pre-
sence of a broader peak in the Fourier domain. In fact, the ex-
pected accuracy was found to be fairly insensitive to noise
and to variations in the measurement strength. It provides a
reasonable estimate of the qubit frequency and is relatively
efficient in terms of computational demands, slightly longer
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FIG. 6. (Color online) Expected frequency errors (1 standard
deviation) vs time for classical frequency tracking techniques:
Bayesian [blue (lower) solid line], the maximum of the periodogram
(red cross), Lower limit for Quinn-Fernades (green dotted line)
error, upper limit for Quinn-Fernandes [green (upper) solid line]
with 1% initial error (blue dotted line), and MUSIC (purple dashed
line) for three different measurement strengths 2πk/ωx = 0.03, 0.07,
and 0.12.

to calculate than Quinn-Fernandes but much quicker that the
periodogram or the Bayesian methods.

While the Bayesian frequency estimates are most ac-
curate in the region of 2πk/ωx 	 0.035, the accuracy of
this technique after 500 cycles is always good enough to
give an average fidelity above 0.99. However, comparing
the trends for the fidelity errors shown in Fig. 2 with the
accuracies of the frequencies given in Fig. 6, it suggests
that the improvement in the average fidelity for increasing

measurement strength increases faster than the degradation
in the frequency estimates. This means that the Bayesian
technique should still give higher fidelity estimates for the
qubit states for stronger measurements even though frequency
estimates are less accurate. It should also be noted that the
Bayesian method generates a state estimate to obtain an
estimate of the state from any of the classical tracking methods
one must integrate the SME once the qubit frequency has been
determined.

IV. FREQUENCY TRACKING FOR A
TIME-DEPENDENT HAMILTONIAN

So far we have considered a frequency estimation process
rather than a true tracking process, but the extension of
the estimation processes discussed to tracking is relatively
straightforward for the case of a single qubit subject to a
continuous measurement. The simplicity derives from the
fact that there is only one frequency to be estimated in the
measurement signal. If the qubit frequency is fixed, then
more measurement data can be collected and the accuracy
of the frequency estimates can be improved beyond the values
given in Fig. 6. The accuracies of the Bayesian and MUSIC
techniques are still improving after 500 qubit cycles. It is
not clear whether this is also the case for the periodogram
or Quinn-Fernandes techniques because any improvement in
accuracy after a few hundred cycles is very slow in these cases.

If the qubit frequency is not fixed but varies slowly with
time, slow compared with the time scales associated with
the frequency estimation process, there are a number of
approaches that could be taken depending upon the nature of
the variations in the frequency. For solid-state qubits, the most
common problems are likely to be either a gradual frequency
drift or a discontinuous jump. A gradual frequency drift could
arise because the qubit controls are not absolutely stable and
give rise to small drifts in the applied control fields leading to
slight changes in the qubit frequency. Alternatively, a control
could contain infrequent, but sudden, small jumps in voltage
which alter the bias point of the qubit circuit in a random way.

For gradual frequency drifts, a natural method for generat-
ing a time-dependent frequency “track” would be to generate
a moving window for the measurement data so that the
frequency is always estimated over a fixed length window
of data where the frequency is approximately stationary. The
estimates are continually updated as the window is moved.
The length of the window can be varied depending upon
the anticipated time dependence of the underlying signal.
This can be computationally expensive, the data having to
be reprocessed each time the window moves, but it provides
incremental updates to the frequency and generates a natural
track history for the frequency. To reduce computational
demands, the measurement data can be divided up into fixed
blocks with finite length, but the frequency updates are then
discrete measurements associated with each block and a
separate tracking algorithm, such as a Kalman filter [27],
is required to generate a continuous track in between the
estimates and updates. For sudden discrete frequency changes,
there are a number of techniques based on hidden Markov
models to generate the discontinuous transitions between
different frequency values [21]. In each case, it is often helpful
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to have a model for the dynamics of the time dependence of the
system to reduce any residual errors in the tracked frequency
values.

The frequency estimation techniques can be generalized
if more than one frequency is present in the measurement
signal. The MUSIC technique, in particular, is intended to
allow multiple frequencies to be estimated. However, once
measurements are made of more than one signal, potential
problems can occur and slightly more thought is required when
tracking multiple signals. When two frequencies are close
together there are often problems deciding which measurement
is associated with which tracked frequency. This is a well-
known problem in object tracking. The misassociation of
measurements with tracks can lead to significant errors in
the parameter estimates. For algorithms like the Kalman
filter, additional information regarding the expected errors in
the parameters being tracked (the frequencies in this case)
propagates with the estimates. The expected errors can then be
used to minimize the probability of misassociation by finding
the most likely association of measurements with tracks based
on a statistically weighted distance (e.g., the Mahalanobis
distance [27]).

V. CONCLUSIONS

We have considered a number of frequency estimation
techniques that can be used with continuous quantum mea-
surement processes. The techniques presented have been used
to estimate the Hamiltonian for a single qubit, but they are
quite general and can be readily adapted to monitor more
complicated continuous measurement processes. The qubit has
one parameter, the oscillation frequency for rotations around
the Bloch x axis. The most accurate estimates for the qubit
frequency were generated by a Bayesian inference technique,
but this technique is computationally expensive and typically
requires thousands of integration steps per qubit cycle. By
contrast, the three classical frequency estimation techniques
considered—maximized periodogram, Quinn-Fernandes, and
MUSIC algorithms—all performed relatively well using only
50 integration steps per qubit cycle and one (MUSIC) was
found to be robust to measurement noise and produced
accurate frequency estimates for a wide range of measurement
strengths. The classical frequency estimation algorithms are
much less computationally intensive that Bayesian inference,
partly due to the fact that they can be implemented with much
larger time steps. They provide frequency estimates that are
accurate enough to generate robust (high fidelity) conditional
state estimates for the qubit. We have also considered how
these frequency estimates can be integrated into a tracking
system for a time-dependent Hamiltonian, where the qubit fre-
quency undergoes continuous drifts or sudden discontinuous
changes.
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APPENDIX A: DERIVING THE HYBRID
MASTER EQUATION

The observer starts with a state of knowledge defined by her
density matrix for the system ρ and her probability density for
the parameters that define the Hamiltonian of the system. For
simplicity we will assume that there is only one real para-
meter λ, so that the probability density is P (λ). Generalizing
the result to any number of parameters is straightforward.

If the observer knew λ precisely, then upon obtaining the
measurement result dr = 〈Â〉dt + dW/

√
8k, corresponding

to a Hermitian operator Â, the evolution of the density matrix
would be given by the stochastic master equation [1]

dρλ = −i

h̄
[Ĥ (λ),ρ]dt − k[Â,[Â,ρ]]dt

+ 4k(Âρ + ρÂ − 2〈Â〉ρ)(dr − 〈Â〉dt), (A1)

so that the observers density matrix at time t + dt is ρλ(t +
dt) = ρ + dρλ. Since the observer does not know which value
λ takes, she must average over all the possible ρλ(t + dt). Thus
her state of knowledge at time t + dt is actually

ρ(t + dt) =
∫ ∞

−∞
P (λ)ρλ(t + dt)dλ

= ρ +
∫ ∞

−∞
[P (λ)dρλ]dλ

≡ ρ + dρ. (A2)

The master equation for the observer’s density matrix is
therefore

dρ = −i

h̄

[ ∫ ∞

−∞
P (λ)Ĥ (λ)dλ,ρ

]
dt − k[Â,[Â,ρ]]dt

+ 4k(Âρ + ρÂ − 2〈Â〉ρ)(dr − 〈Â〉dt). (A3)

We now have the equation that updates the observer’s density
matrix, but we need also the equation that updates the observers
probability density P (λ). To derive this we must use Bayes’
theorem [45]. This tells us that the observer’s new state of
knowledge after obtaining the measurement result dr is

P (λ|dr) = P (dr|λ)P (λ)/N , (A4)

in which P (dr|λ) is the probability density for dr given
λ, and N is a normalization constant. If the value of the
parameter was λ, then the measurement record would be given
by dr = 〈Â〉λdt + dW/

√
8k, where 〈Â〉λ = Tr[Âρλ], and ρλ

052119-10



FREQUENCY TRACKING AND PARAMETER ESTIMATION . . . PHYSICAL REVIEW A 84, 052119 (2011)

is obtained by using the update equation (A1). Since dW is
Gaussian distributed with mean 0 and variance dt , P (dr|λ) is

P (dr|λ) = e−4k(dr−〈Â〉λdt)2/dt

√
2πdt

. (A5)

The updated probability density is thus

P (λ|dr) ∝ e−4k(dr−〈Â〉λdt)2/dtP (λ), (A6)

where dr is the actual measurement record obtained by the
observer, dr = 〈Â〉dt + dW/

√
8k. We now expand this to first

order in dt , remembering that dW 2 = dt [1]. This gives

P (λ|dr) ∝ e−4k(〈Â〉dt−〈Â〉λdt+dW/
√

8k)2/dtP (λ)

∝ e−4k(〈Â〉λ−〈Â〉)2dt+√
8k(〈Â〉λ−〈Â〉)dWP (λ)

∝ [1 +
√

8k(〈Â〉λ − 〈Â〉)dW ]P (λ). (A7)

The stochastic differential equation that updates the density
P (λ) is therefore

dP (λ) =
√

8k(〈Â〉λ − 〈Â〉)dWP (λ)

= 8k(〈Â〉λ − 〈Â〉)(dr − 〈Â〉dt)P (λ). (A8)

To be able to calculate this update to P (λ) we must know 〈Â〉λ
for all λ. To track the quantum state along with the parameter λ

we must therefore solve the master equation for ρ [Eq. (A2)],
the master equations for the ρλ for every value of λ [Eq. (A1)],
and the update equation for P (λ) [Eq. (A8)], which is an
example of a Kushner-Stratonovich equation.

APPENDIX B: NOTCH FILTERING AND
THE QUINN-FERNANDES METHOD

For a discrete time series xn, n = 0,1,2, . . ., a filter yn can
be constructed using a number of values for the input signal
(feed forward) and a number of previous values for the filter
output (feedback). A general linear filter is given by

yn = a0xn + a1xn−1 + a2xn−2 + · · ·
+ b1yn−1 + b2yn−2 + · · · . (B1)

The feed-forward coefficients a0,a1, . . . specify a finite dura-
tion impulse response, that is, if the input signal is a single
impulse, the output signal returns to the default value (usually
zero) after a finite number of time steps. Such a filter is
normally referred to as a finite impulse response or FIR filter.
The feedback coefficients b1,b2, . . . define an infinite impulse
response or IIR filter, because the output signal only returns to
zero asymptotically.

The properties of this type of filter are normally analyzed
using the z transform (more precisely, the unilateral z

transform) [44],

X (z) =
∞∑

n=0

xnz
−n, (B2)

where z is a complex number such that z = |z|eiω, where ω

is the (angular) frequency of the signal. Each factor of z−1

represents a time delay of one time step. The z transform plays
a similar role in the analysis of discrete time signals to that

of the Laplace transform for continuous and analog signals.
Applying the z transform to Eq. (B1), we obtain

Y(z) = (a0 + a1z
−1 + a2z

−1 + · · · )X (z)

+ (b1z
−1 + b2z

−2 + · · · )Y(z), (B3)

which can be rearranged to find the transfer function for the
filter

H(z) = Y(z)

X (z)
= (a0 + a1z

−1 + a2z
−1 + · · · )

(b1z−1 + b2z−2 + · · · )
= A(z)

B(z)
.

The two polynomials A(z) and B(z), which represent the
feed-forward and feedback parts of the filter, respectively,
contain all of the relevant properties for this type of linear filter.
The zeros of A(z) determine which frequency components are
suppressed by the filter if a zero of the polynomial lies on
the unit circle in the z plane, A(eiω0 ) = 0, the frequency ω0

is removed. The zeros of B(z) give rise to poles in H(z) and
determine the stability of the filter. For a stable filter, all of
the poles of H(z) must lie within the unit circle |z| < 1. When
a pole lies close to the unit circle, the frequencies close to the
pole are enhanced.

The case considered in Sec. III B consists of a single
sinusoid and a noise source,

xn = A cos(nω
t + φ) + εn (B4)

for n = 0, . . . ,N − 1, where A and φ are the amplitude and
phase of the sinusoidal signal and εn is the noise. In the Fourier
domain this represents a single peak (from the sinusoid) and
a large noisy background. The Quinn-Fernandes technique
[22,43] introduces two filters, one IIR filter and one FIR
filter. The IIR filter has a pole which enhances one particular
frequency B(eiω) = 0. The FIR filter is designed to have zero
response at the same frequency [the notch frequency,A(eiω) =
0]. The variance of the output signal from the combined filter
is a minimum when the filter frequency matches the frequency
of the sinusoid. The Quinn-Fernandes algorithm provides a
means to find the sinusoid frequency and, importantly for the
computational efficiency, it operates purely in the time domain.

If the signal is given by Eq. (B4), it should satisfy a filter
equation,

xn − 2 cos(ω
t)xn−1 + xn−2 = εn − 2 cos(ω
t)εn−1 + εn−2.

(B5)

Rewriting Eq. (B5) as

xn − αxn−1 + xn−2 = εn − βεn−1 + εn−2 (B6)

subject to the constraint α = β, we start with an initial estimate
ω1 for ω, and set α1 = 2 cos(ω1
t) along with an index j = 1.
The data is then passed through the IIR filter to generate a new
record ζn,j ,

ζn,j = xn − αjζn−1,j + ζn−2,j , (B7)

where ζn,j = 0 for n < 0. An improved estimate for β is then
constructed by minimizing the variance of the output from
an FIR filter en = ζn,j − βζn−1,j + ζn−2,j with respect to β,
giving

βj =
∑N−1

n=0 (ζn,j + ζn−2,j )ζn−1,j∑N−1
n=0 ζ 2

n−1,j

. (B8)
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If |αj − βj | is larger than some threshold then the β value
replaces the current α value αj+1 = βj , and the process is
applied again. If the difference between α and β is small
enough then the iteration in j is stopped and the signal
frequency is given as ω = cos−1( 1

2βj )/
t . In most situations
the number of iterations in j is fairly small, typically a few to
ten iterations is sufficient to obtain a good frequency estimate,
and the algorithm is also relatively insensitive to errors

in the initial frequency estimate. However, these properties
are normally quoted for systems with higher signal-to-noise
ratios than those considered here, and that do not generate
a backaction on the signal from the measurement process.
In these slightly more benign situations the Quinn-Fernandes
technique can be shown to generate errors which scale as
O(N−3) and approaches the Cramer-Rao bound, as long
as the error in the initial estimate is fairly small, O(N−1).
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