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Majorization formulation of uncertainty in quantum mechanics
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Heisenberg’s uncertainty principle is formulated for a set of generalized measurements within the framework of
majorization theory, resulting in a partial uncertainty order on probability vectors that is stronger than those based
on quasientropic measures. The theorem that emerges from this formulation guarantees that the uncertainty of the
results of a set of generalized measurements without a common eigenstate has an inviolable lower bound which
depends on the measurement set but not the state. A corollary to this theorem yields a parallel formulation of the
uncertainty principle for generalized measurements corresponding to the entire class of quasientropic measures.
Optimal majorization bounds for two and three mutually unbiased bases in two dimensions are calculated.
Similarly, the leading term of the majorization bound for position and momentum measurements is calculated
which provides a strong statement of Heisenberg’s uncertainty principle in direct operational terms. Another
theorem provides a majorization condition for the least-uncertain generalized measurement of a given state with
interesting physical implications.
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I. INTRODUCTION

Heisenberg’s uncertainty principle codifies certain inherent
limitations on the simultaneous knowledge of observables in
the microscopic realm, and as such constitutes one of the
conceptual pillars of quantum theory [1]. The limitations
implied by the uncertainty principle played an important role
in the celebrated Bohr-Einstein debates and the formative years
of quantum theory and have since served as a source of insight
on the structure and behavior of microscopic systems. Having
recognized that the noncommutativity of a pair of observables
implies an irreducible indeterminacy in the simultaneous
knowledge of their values, Heisenberg presented semiquan-
titative arguments to establish a universal lower bound of the
order of Planck’s constant for the product of their uncertainties.
Heisenberg’s arguments were subsequently formulated in a
mathematically precise manner by Kennard [2] and extended
by Robertson [3] and Schrödinger [4], all of whom adopted
the square root of variance as the measure of uncertainty. The
variance formulation of the uncertainty principle, which is
the one familiar from textbook accounts, is often useful when
applied to canonically conjugate observables for estimating
spectral and structural properties of microsystems.

More than half a century later it was realized that entropy
is a more effective measure for capturing the information
theoretical aspects of uncertainty, especially when applied
to noncanonical observables. The key idea was to quantify
uncertainty as the information associated with the probabilities
of measurement outcomes rather than the variance in the
values of the measured observable. In a seminal paper [5],
Deutsch argued that such a measure would be superior to
the traditional one when dealing with observables of finite
rank and developed an entropic formulation of the uncertainty
principle based on an inviolable lower bound for the sum of
Shannon entropies associated with projective measurements
of noncommuting observables. He also emphasized that, in
contrast to the variance formulation in its generalized form, the
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irreducible lower bound in the entropic formulation depends
on the observables but not the state.

In a subsequent work, this author showed that an extension
of Deutsch’s formulation to infinite-rank observables such
as position and momentum, whether discrete or continuous,
entails a nontrivial consideration of the resolution of the
measuring device [6]. The resulting entropic measure was
a more realistic description of uncertainty for canonical
observables than the variance formulation, and in contrast to
the latter, was mathematically well defined for any state of
the system and an arbitrary set of observables, even if infinite
rank. Consequently, while Deutsch’s primary objective was to
deal with the shortcomings of the variance formulation when
applied to discrete spectra and finite-dimensional observables,
the extension to continuous spectra such as position and
momentum turned out to be quite potent as well.

The entropic formulation has since been refined by deriving
sharper bounds [7,8] and extended by introducing mutually
unbiased observables [8], generalized measurements [9],
alternative entropy functions such as those of Tsallis [10] and
Rényi [11], and other innovations [12]. Its applications include
the quantum formulation of Jaynes’ maximum entropy method
and time-energy uncertainty relations [13] and, more recently,
quantum cryptography, information locking, and entanglement
detection [12,14]. In particular, the recent applications to
quantum information and entanglement theory clearly under-
score the importance of basing uncertainty considerations on
probability vectors resulting from measurements rather than
values of measured observables. It should also be noted here
that the idea of entropy as a measure of uncertainty has an
interesting earlier history [15].

In this paper we develop a majorization formulation of
the uncertainty principle. Majorization provides a partial
order on probability vectors which characterizes the degree
of their disorder, or uncertainty, and is naturally suited for
application to measurement results. It is based on the intuitive
but surprisingly powerful notion that a probability vector
which is a mixture of the permutations of another is more
disordered. This simple condition gives rise to a measure
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of uncertainty that is more discriminating than any measure
based on a symmetric, concave function defined on probability
vectors. We shall refer to this class of measures, which
includes the Shannon and Tsallis (but not Rényi) entropies,
as “quasientropic.” Thus the majorization order implies any
order in the quasi-entropic class, but not vise versa [16]. As
a result, the main theorem of the present formulation directly
implies the existence of an entire class of scalar formulations of
the uncertainty principle for generalized measurements based
on quasientropic functions. This generalization serves, inter
alia, to extend the standard (Shannon) entropic measure of
uncertainty to a set of generalized measurements.

It is important to note here that while quasientropic order
is total and based on a single inequality, the majorization
order is partial (i.e., not every pair of probability vectors
can be ordered) and rests on N − 1 inequalities, where
N is the number of nonzero entries in the less uncertain
probability vector under comparison (see Sec. II B for details).
Consequently, while the majorization order is equivalent to
quasientropic ones for N � 2, it becomes progressively more
stringent, and captures more information, with increasing
N . It is this feature of majorization, namely the matching
of its complexity to that of the object being probed, that
makes it particularly effective as a comparator of disorder.
Furthermore, when a pair of probability vectors is found to
be incomparable according to the majorization order, it is
a signal that there will be conflicting order determinations
within the quasientropic class. This is because unanimity
with respect to order determination within the quasientropic
class guarantees comparability as well as agreement by the
majorization order (the converse holds as well; see Sec. II B).
Clearly then, when majorization finds a pair incomparable, it
is because there is not sufficient reason to declare one or the
other as more disordered, and, in fact, the order determined
for the pair by one quasientropic measure, e.g., the standard
measure based on Shannon entropy, will be contradicted by
another. It should, therefore, come as no surprise that some
of the most fundamental results of quantum information and
entanglement theory are based on majorization relations [17].
We believe that its use in the present formulation likewise
serves to extend the reach and power of the uncertainty
principle.

The rest of this paper is organized as follows: In Sec. II A
we describe measurement types and establish notation, in
Sec. II B we introduce the relevant elements of majorization
theory, and in Sec. II C we relate concepts of measurement
uncertainty to majorization relations. In Secs. III A and III B
we establish the central result of this paper, Theorem 1, parts
A and B, and state the physical content of the uncertainty
principle in majorization terms. In Sec. III C, we construct the
class of quasientropic measures of uncertainty as a corollary
to Theorem 1. We apply Theorem 1 to mutually unbiased
observables in Secs. IV A and IV B and to position and
momentum in Sec. V. In Sec. VI we establish the least-
uncertain measurement of a quantum state in Theorem 2 and
state its relation to the spectrum and von Neumann entropy
of the state. We conclude the paper with a few remarks in
Sec. VII.

II. MEASUREMENT UNCERTAINTY
AND MAJORIZATION

We begin our analysis by introducing the concepts and
methods that underlie the majorization formulation of uncer-
tainty in the following subsections.

A. Measurements

To establish our notation and nomenclature, we find it
convenient to start by defining types of measurement. A
generalized measurement is defined by a set of measure-
ment operators {M̂α} subject to the completeness condition∑

αÊα = 1̂, where Êα = M̂†
αM̂α is called a measurement

element and the index α identifies the possible measurement
outcomes [18]. Note that each measurement element is a
bounded, positive, self-adjoint operator whose norm cannot
exceed unity. The probability that outcome α turns up in
a measurement of the state ρ̂ is given by the Born rule
Pα(ρ̂) = tr[Êαρ̂], with the postmeasurement state given by
ρ̂ ′

α = M̂αρ̂ M̂†
α/Pα [19]. If ρ̂ is not a pure state, then ρ̂ ′

α will
not, in general, be pure either unless M̂α is of rank 1 [20].
A measurement is rank 1 if every measurement operator is of
rank 1. Rank-1 measurements are thus seen to have the highest
resolution among generalized measurements in the sense that
the range of their measurement operators consists of a single
pure state.

A generalized measurement can always be considered a
restriction of a more basic type of measurement, namely a
projective measurement performed on an enlarged system, to
the system under generalized measurement [18]. A projective
measurement is commonly associated with an observable of
the system, which would be represented by some self-adjoint
operator M̂ . Such a measurement entails a partitioning of the
spectrum of M̂ into a collection of subsets {bM

α } called bins [6].
This partition induces a corresponding partition of the Hilbert
space into orthogonal subspaces with the corresponding
projection operators being the measurement operators [21].
Thus, for projective measurements, M̂M

α = �̂M
α , where �̂M

α

is the projection operator onto the subspace corresponding
to bM

α . We call a projective measurement maximal if each
bin consists of a single point of the spectrum of the measured
observable. Note that a maximal measurement of an observable
with a nondegenerate spectrum, the type usually described in
textbook accounts, is rank 1. It is important to understand
that physically realizable measurements are limited to a finite
set of outcomes so any measurement of an observable with a
continuous spectrum such as position or momentum, or even
an infinite discrete spectrum such as the energy of a harmonic
oscillator, must necessarily involve infinite-rank measurement
operators and cannot be maximal [6]. Equivalently, only
systems describable by finite-dimensional Hilbert spaces (such
as spin systems) admit maximal measurements.

B. Majorization relations

We now turn to a brief introduction to the basics of majoriza-
tion relations, a topic that has found important applications
in quantum information and entanglement theory in recent
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years [16,17]. With every vector λ we associate another vector
λ↓ which is obtained from λ by arranging the components
of the latter in a descending (i.e., nonincreasing) order. Then,
given a pair of vectors λ1 and λ2, λ1 is said to be majorized by
λ2 and written λ1 ≺ λ2 if

∑j

i λ
1↓
i �

∑j

i λ
2↓
i for j = 1,2, . . . d,

where d is the larger of the two dimensions and trailing
zeros are added where needed. An equivalent but intuitively
more compelling definition is that λ1 ≺ λ2 if and only if λ1

equals a mixture of permutations of λ2. As stated earlier, the
majorization relation is a partial order, i.e., that not every two
vectors are comparable under majorization. It is important to
understand that this is not a shortcoming of majorization but
rather a consequence of its more rigorous protocol for ordering
uncertainty. Indeed, as mentioned in Sec. I, for any function
F (λ) of the quasientropic type like Shannon and Tsallis
entropies, λ1 ≺ λ2 implies F (λ1) � F (λ2) but not conversely
[16]. On the other hand, if for every such function F (λ) we
have F (λ1) � F (λ2), then λ1 ≺ λ2. Clearly, the majorization
relation as a comparator of disorder is stronger than any single
quasientropic measure and, in a sense, is equivalent to all such
measures taken collectively.

Another concept needed in the following is that of the
infimum of a set of N vectors, defined as the vector that is
majorized by every element of the set and, in turn, majorizes
any vector with that property [22]. The supremum is similarly
defined as the vector that majorizes every element of the set
and is, in turn, majorized by any vector with that property [23].
To construct these extremal vectors, we consider a vector μinf

with components

μinf
0 = 0, μinf

j = min

(
j∑

i=1

λ
1↓
i ,

j∑
i=1

λ
2↓
i , . . . ,

j∑
i=1

λ
N↓
i

)
,

1 � j � dmax, (1)

where dmax is the largest dimension found in the set [24]. The
desired infimum is then given by

λinf
i = [inf(λ1,λ2, . . . ,λN )]i = μinf

i − μinf
i−1, (2)

where 1 � i � dmax. One can show that λinf as given by Eq. (2)
is a descending sequence [25]. While the construction given
in Eq. (2) guarantees that λinf is majorized by every element
of the set, the descending property guarantees that any other
vector with that property is in turn majorized by λinf .

A parallel construction to the above with “min” in Eq. (1)
replaced with “max” yields a sequence that majorizes every
element of the set, but one that does not necessarily emerge in
a descending order and may, therefore, fail to be majorized by
any other sequence that has the same property as required. In
such a case, the sequence so obtained, λ̃, can be modified by
a “flattening” process that, while maintaining the property of
majorizing every element of the set, culminates in a sequence
that is descending as well. The flattening process starts with
λ̃ and, for every pair of components violating the descending
property, i.e., λ̃i+1 > λ̃i , replaces the pair by their mean such
that the updated elements are λ̃′

i = λ̃′
i+1 = (λ̃i + λ̃i+1)/2. This

process of flattening is then continued until a descending
sequence corresponding to the supremum λsup is obtained [26].

C. Uncertainty

We are now in a position to characterize uncertainty
by means of majorization relations. The probability vector
PX(ρ̂) resulting from a measurement X on a state ρ̂ is
said to be uncertain if it is majorized by I = (1,0, . . . ,0)
but not equal to it. As such, PX(ρ̂) is said to be strictly
majorized by I and written PX(ρ̂) ≺≺ I. Similarly, ρ̂ is more
uncertain with respect to measurement X than with respect
to Y if PX(ρ̂) ≺ PY (ρ̂). Furthermore, we define the joint
uncertainty of a pair of measurements X and Y by means
of the outer product PX ⊗ PY , i.e., PX⊕Y

αβ = PX
α PY

β . Since

H (PX ⊗ PY ) = H (PX) + H (PY ), where H (·) is the Shannon
entropy function, this definition is seen to be consistent with
its entropic counterpart. As stated earlier, PX ≺ PY implies
H (PX) � H (PY ) but not conversely. Note that the foregoing
definitions naturally extend to an arbitrary number of states
and measurements.

It is worth repeating here that the partial nature of the
majorization order implies that not all measurement results
are comparable under our uncertainty order. A concomitant
of partial order is that the infimum or supremum of a set
of probability vectors will in general not be a member of
the set. In other words, a set of probability vectors does not
in general have a least-uncertain element, although it may
have multiple elements that are not more uncertain than any
other probability vector [27]. While one may wish to do
away with these unfamiliar features, they are nevertheless
necessary and meaningful features of a high-resolution com-
parator of uncertainty, as discussed in Sec. I.

III. MAJORIZATION FORMULATION
OF THE UNCERTAINTY PRINCIPLE

The information theoretical expression of the uncertainty
principle may be stated as the requirement that the information
available from a set of measurements performed on a system
is subject to an irreducible level of uncertainty unless the
measurements have a common eigenstate. In the latter case,
the outcome of every measurement would be certain and
unique, and the information so obtained would be complete
for the given set of measurements. An important additional
requirement is that the said irreducible level of uncertainty
be a property of the measurement set and not depend on the
state of the system. The entropic formulation implements these
requirements by identifying the sum of the entropies associated
with the measurements in the set as the measure of their joint
uncertainty [5]. The majorization formulation, by contrast,
relies on the outer product of probability vectors resulting from
the measurements as representative of their joint uncertainty.
An example of this definition for a set of two measurements
was stated in Sec. II C. The corresponding irreducible level of
uncertainty is then defined to be the supremum of such outer
products as all possible states are considered. This supremum
is then guaranteed to be less uncertain than the probability
vector resulting from the measurement of any possible state of
the system. As also noted in Sec. II C, the Shannon entropy
of the outer product of a set of probability vectors equals
the sum of their entropies, which guarantees that the two
formulations are consistent. It also implies that a formulation
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of the uncertainty principle in terms of majorization implies
a parallel entropic formulation, as will be demonstrated in
Sec. III C.

In the following we will establish a theorem that embodies
the above statements in a mathematically precise manner. We
will treat the cases where measurement elements have discrete
spectra and behave similarly to Hermitian matrices acting
on finite-dimensional spaces, namely compact measurement
elements, separately from other cases such as canonical
observables and continuous spectra [28]. The reason for
this separate treatment is simply that the very notion of
an eigenstate may lose proper mathematical meaning for
noncompact measurement elements [29]. Needless to say, the
physical content of the uncertainty principle is unaffected by
these mathematical details.

A. Compact measurement elements

Here we consider a measurement set whose elements are
compact. Since measurement elements are bounded, positive,
self-adjoint operators, the condition of compactness will
guarantee that they only have a discreet spectrum consisting
of positive eigenvalues, each with a finite multiplicity, except
possibly for a clustering of eigenvalues near zero [28].
Since we will primarily be concerned with eigenvalues away
from zero, compact elements essentially behave as positive
Hermitian matrices of finite dimension for our purposes. Note,
however, that while finite-rank measurement elements are
necessarily compact, the converse is not true. Note also that
most discussions of uncertainty in the literature deal with
finite-rank, hence, compact, elements and often just rank-1
projection operators as in the case of maximal projective
measurements.

Theorem 1A. Let {PX(ρ̂),PY (ρ̂), . . . ,PZ(ρ̂)} be the set
of probability vectors resulting from a set of generalized
measurements {X,Y, . . . ,Z} with compact elements on the
state ρ̂. Then

PX(ρ̂) ⊗ PY (ρ̂) ⊗ · · · ⊗ PZ(ρ̂) ≺ PX⊕Y⊕···⊕Z
sup ≺≺ I, (3)

where

PX⊕Y⊕···⊕Z
sup = supρ̂[PX(ρ̂) ⊗ PY (ρ̂) ⊗ · · · ⊗ PZ(ρ̂)], (4)

unless the measurement elements {ÊX,ÊY , . . . ,ÊZ} have a
common eigenstate in which case PX⊕Y⊕···⊕Z

sup = I.

It is important to note that PX⊕Y⊕···⊕Z
sup depends on the

measurement set but is independent of the state ρ̂. Note also
that as the supremum of all possible measurement outcomes
for the measurement set, it is the probability vector that sets
the irreducible lower bound to uncertainty for the set. As
such, it is analogous to variance or entropic lower bounds
for existing formulations of the uncertainty principle. Unlike
the scalar bounds of the variance and entropic formulations,
however, PX⊕Y⊕···⊕Z

sup is, in general, a vector quantity whose
dimension is variable and grows with the complexity of the
measurement set. In addition, PX⊕Y⊕···⊕Z

sup is in general not
realizable on any state of the system [23] except under special
conditions. In other words, there is generally no such thing
as a “minimum uncertainty state” within the majorization
framework, as alluded to in Sec. II C. An important exception

to this statement is the special case of zero uncertainty for
which PX⊕Y⊕···⊕Z

sup = I, signaling the existence of a common
eigenstate for the measurement elements as asserted by
Theorem 1A. We will illustrate these and other properties of
majorization bounds for three archetypal cases in Secs. IV
and V.

To establish Theorem 1A, we need to show that PX⊕Y⊕···⊕Z
sup

is strictly majorized by I, equivalently, that its largest
component is strictly less than unity, if the measurement
elements do not have a common eigenstate. Suppose, on the
contrary, that the largest component of PX⊕Y⊕···⊕Z

sup does equal
unity while the measurement elements in the set do not possess
a common eigenstate. There then must exist a set of indices
(α∗,β∗, . . . ,γ ∗) such that supρ[PX

α∗ (ρ̂)PY
β∗ (ρ̂) . . . PZ

γ ∗ (ρ̂)] = 1
or, in terms of measurement elements,

supρ

[
tr
(
ÊX

α∗ ρ̂
)
tr
(
ÊY

β∗ ρ̂
)
. . . tr

(
ÊZ

γ ∗ ρ̂
)] = 1. (5)

Since the elements of each measurement are positive,
Hermitian operators whose sum equals the identity operator,
e.g.

∑
αÊX

α = 1̂, they must all be bounded operators with
norms not exceeding unity, i.e., ‖ÊX

α ‖ � 1 for every α, with
similar conditions for all other measurement elements in the
set. But this implies that tr(ÊX

α∗ ρ̂) � 1, with similar conditions
for all measurement elements in the set. Consequently, the
only way Eq. (5) can be satisfied under the stated constraint
on the norms is that (a) each measurement element is of unit
norm and (b) each trace term in Eq. (5) equals unity, i.e.,

supρ tr
(
ÊX

α∗ ρ̂,ÊY
β∗ ρ̂, . . . ,ÊZ

γ ∗ ρ̂
) = (1,1, . . . ,1). (6)

Note that by probability conservation, if a subscript on an entry
in the left-hand side of Eq. (6) is changed, the corresponding
entry on the right-hand side must vanish. Physically, Eq. (6)
implies the existence of states for which the outcome of every
measurement is essentially determinate, and the joint results
are basically without any uncertainty, since the outcome of the
measurement set {X,Y, . . . ,Z} will very nearly all be events
in those measurement “bins” that correspond to the subscript
set (α∗,β∗, . . . ,γ ∗).

Mathematically, on the other hand, we note that the
measurement elements in Eq. (6) are positive, compact Her-
mitian operators of unit norm, with discrete eigenvalues and
corresponding eigenfunctions that are complete. In addition,
all nonzero eigenvalues have finite multiplicity. We may,
therefore, conclude that there exists a state ρ̂∗ that realizes the
equalities of Eq. (6), i.e., that tr(ÊX

α∗ ρ̂∗) = tr(ÊY
β∗ ρ̂∗) = · · · =

tr(ÊZ
γ ∗ ρ̂∗) = 1, and that ρ̂∗ is a common eigenstate of the

measurement elements {ÊX
α∗ ,ÊY

β∗ , . . . ,ÊZ
γ ∗ } with eigenvalues

unity (and of all other elements with eigenvalue zero) [30].
However, this conclusion contradicts our starting assumption,
thereby completing the proof of Theorem 1A.

B. Noncompact measurement elements

In the foregoing paragraph we used the compactness
property of the measurement elements to deduce the existence
of a common eigenstate for them from Eq. (6). In the
general case where noncompact elements may be present, the
measurement elements may not even have properly defined
eigenstates or eigenvalues, common or otherwise [29]. Of
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course, the physical content of the uncertainty principle is
still captured by Eq. (6). We will, therefore, use the physically
equivalent notion of an approximate eigenstate in this case,
defined as follows: If for some number a and any ε > 0 there
exists a state ψ(ε) such that ‖(Â − a)ψ(ε)‖ < ε, then ψ(ε) is
said to be an approximate eigenstate of Â.

Clearly, Eq. (6) implies the existence of an approximate
common eigenstate for the measurement elements therein, thus
yielding the desired result. Nevertheless, it is useful to develop
a separate formulation and an alternative proof for this general
case, especially with a view to deriving majorization bounds
for position and momentum measurements in Sec. V.

Theorem 1B. Let {PX(ρ̂),PY (ρ̂), . . . ,PZ(ρ̂)} be the set
of probability vectors resulting from a set of generalized
measurements {X,Y, . . . ,Z} on the state ρ̂. Equation (3) of
Theorem 1A then holds unless the measurement elements
{ÊX,ÊY , . . . ,ÊZ} have an approximate common eigenstate
in which case PX⊕Y⊕···⊕Z

sup = I.
To establish this result, we first note that, by definition,∥∥ÊX

α + ÊY
β + · · · + ÊZ

γ

∥∥ � tr
[(

ÊX
α + ÊY

β + · · · + ÊZ
γ

)
ρ̂
]

for any (normalized) density operator ρ̂. The right-hand side
of this inequality is, by definition, equal to [PX

α (ρ̂) + PY
β (ρ̂) +

· · · + PZ
γ ], which is a sum of non-negative numbers. Since

the arithmetic mean of a set of non-negative numbers is never
exceeded by their geometric mean, we have the inequality[
PX

α (ρ̂) + PY
β (ρ̂) + · · · + PZ

γ

]/
n �

[
PX

α (ρ̂)PY
β (ρ̂) · · · PZ

γ

]1/n

which governs the set of probability vectors.
Combining the above pair of inequalities, we arrive at the

important conclusion that

PX
α (ρ̂)PY

β (ρ̂) · · · PZ
γ (ρ̂) �

(∥∥ÊX
α + ÊY

β + · · · + ÊZ
γ

∥∥/n
)n

,

(7)

where n is the number of measurements in the set.
At this point we follow the proof of Theorem 1A by

assuming, contrary to Theorem 1B, that PX⊕Y⊕···⊕Z
sup = I while

the measurement elements do not possess an approximate
common eigenstate. But then there must exist a set of indices
(α∗,β∗, . . . ,γ ∗) such that supρ[PX

α∗ (ρ̂)PY
β∗ (ρ̂) · · ·PZ

γ ∗ (ρ̂)] = 1.
However, this equality together with the inequality in Eq. (7)
imply that ∥∥ÊX

α∗ + ÊY
β∗ + · · · + ÊZ

γ ∗
∥∥ = n. (8)

Since the measurement elements appearing in Eq. (8) are
positive operators with norms not exceeding unity, we must
conclude that they are all in fact of unit norm. Equation (8)
further implies that for any ε > 0, there must exist a state ρ̂∗
such that |1 − tr(Êρ̂∗)| < ε, where Ê stands for every mea-
surement element in Eq. (8). But this implies the existence of an
approximate common eigenstate contrary to our assumption,
thus completing the proof of Theorem 1B.

We are now in a position to summarize the physical content
of the uncertainty principle in the framework of majorization
theory.

The uncertainty principle. The joint results of a set of
generalized measurements of a given state are no less uncertain
than a probability vector that depends on the measurement set

but not the state and is itself uncertain unless the measurement
elements have a common eigenstate.

In the above statement, we have dropped the qualification
“approximate” in referring to eigenfunctions since this is the
common practice in the physics literature as well as the fact
that it makes little difference for the physical content of the
uncertainty principle.

C. Quasientropic formulations of uncertainty

Theorems 1A and 1B immediately imply a parallel formula-
tion of the uncertainty principle for generalized measurements
based on quasientropic measures. We recall that a quasien-
tropic measure of uncertainty is any symmetric, concave
function of the components of PX⊕Y⊕···⊕Z(ρ̂) resulting from
generalized measurements {X,Y, . . . ,Z} on the state (ρ̂) [31].
Specifically, for every quasientropic function F , we define a
scalar uncertainty measure according to

UX⊕Y⊕···⊕Z(F,ρ̂) = F [PX⊕Y⊕···⊕Z(ρ̂)] − F (I), (9)

where we have normalized the measure such that it vanishes
when measurement results have zero uncertainty and is
positive otherwise.

A special class of quasientropic measures is obtained if we
choose

F [PX⊕Y⊕···⊕Z(ρ̂)] =
∑

α,β,...,γ

f
[
PX

α (ρ̂)PY
β (ρ̂) . . . PZ

γ (ρ̂)
]
, (10)

where f is a concave function of a single variable. Note that
F as constructed in Eq. (10) is manifestly symmetric and, as a
sum of concave functions, it is also concave.

The standard entropic measure of uncertainty [5] corre-
sponds to the choice f (x) = H (x) = −x ln(x) in Eq. (10), in
which case the sum on the right-hand side simplifies to the sum
of Shannon entropies for each measurement. This example
serves to demonstrate that the class of measures introduced
in Eq. (9) is a vast generalization of the standard entropic
measure of uncertainty, not only in the functional form of the
uncertainty measure but also in the fact that it allows for any
number of generalized measurements. Furthermore, as stated
in the following formulation of the uncertainty principle based
on quasientropic functions, the corresponding lower bounds to
uncertainty are given by the associated majorization bound.

Corollary 1. Let {PX(ρ̂),PY (ρ̂), . . . ,PZ(ρ̂)} be the set
of probability vectors resulting from a set of generalized
measurements {X,Y, . . . ,Z} on the state ρ̂. Then, for any
uncertainty measure UX⊕Y⊕···⊕Z(F,ρ̂) as defined in Eq. (9),
and with PX⊕Y⊕···⊕Z

sup as defined in Eq. (4), we have

UX⊕Y⊕···⊕Z(F,ρ̂) � UX⊕Y⊕···⊕Z
min = F

[
PX⊕Y⊕···⊕Z

sup

]
> 0,

(11)

unless the measurement elements {ÊX,ÊY , . . . ,ÊZ} have an
approximate common eigenstate or a common eigenstate
if the elements are compact. In either of these cases,
UX⊕Y⊕···⊕Z(F,ρ̂) vanishes.

This general result is an immediate consequence of
Theorems 1A and 1B and the quasientropic nature of the
underlying measures. It is important to understand that the
uncertainty bound given in Eq. (11) is valid, and, in fact,
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optimal, for the entire class of quasientropic measures. The
optimality property of F [PX⊕Y⊕···⊕Z

sup ] is a consequence of

the optimality of PX⊕Y⊕···⊕Z
sup , which is, in fact, the defining

characteristic of the latter. As such, F [PX⊕Y⊕···⊕Z
sup ] cannot

be expected to be optimal for individual members of the
quasientropic class such as the Shannon or Tsallis measures.

As an example, we will calculate the Shannon-entropic
uncertainty bound given by Eq. (11) for maximal projective
measurements of the three components of a spin- 1

2 system.

The majorization bound for this measurement, P
σx⊕σy⊕σz

sup , is
given in Eq. (16) of Sec. IV B. Therefore, the desired entropic
bound is given by H (P

σx⊕σy⊕σz

sup ), so we can write

Uσx⊕σy⊕σz (H,ρ̂) � H
(
P

σx⊕σy⊕σz

sup
) = 1.23. (12)

The fact that a single majorization bound PX⊕Y⊕···⊕Z
sup generates

an uncertainty bound for the entire quasientropic class of
measures is, of course, a consequence of its power as a
comparator of disorder, as discussed in Sec. I.

In the remainder of this paper we will explore certain con-
sequences of the majorization formulation of the uncertainty
principle. Our objective will be to illustrate the power and reach
of the majorization formulation, primarily in applications
that are familiar from the traditional variance and entropic
formulations of the uncertainty principle.

IV. MUTUALLY UNBIASED OBSERVABLES

Our first application is to projective measurements of
mutually unbiased observables in two-dimensional Hilbert
spaces.

A. Two spin- 1
2 components

The simplest example of Eq. (3) is a maximal projective
measurement of a pair of mutually unbiased observables
in a two-dimensional Hilbert space, e.g., a measurement of
σ̂x and σ̂y on a spin-1/2 system. The state of a spin-1/2
system can, in general, be represented as ρ̂ = (1 + σ̂ · p)/2,
corresponding to a polarization vector p. The measure-
ment elements, on the other hand, are Ê

σx

1,2 = (1 ± σ̂x)/2
and Ê

σy

1,2 = (1 ± σ̂y)/2. A calculation using these quantities
gives Pσx (ρ̂) = [(1 + px)/2,(1 − px)/2] and Pσy (ρ̂) = [(1 +
py)/2,(1 − py)/2], whereby we find

Pσx⊕σy (ρ̂) = [(1 + px)(1 + py)/4,(1 + px)(1 − py)/4,

(1 − px)(1 + py)/4,(1 − px)(1 − py)/4]. (13)

The next step is to find the supremum of Pσx⊕σy (ρ̂) as ρ̂, or,
equivalently, p, is varied. Following the construction of Eq. (2)
et seq., we first determine μ

sup
1 by finding the maximum value

of a single component of Pσx⊕σy (ρ̂) in Eq. (13), then μ
sup
2 by

finding the maximum value of the sum of a pair of components
of Pσx⊕σy (ρ̂), and so on. Implementing this process, we find

μsup = [0,(1 + 1/
√

2)
2
/4,1,1,1], (14)

where μ
sup
1 obtains for pz = 0 and ‖px‖ = |py | = 1/

√
2, and

the next three components for p equal to a unit vector along

either the x or y axis. Using Eq. (14) and the counterpart of
Eq. (2) for the supremum, we arrive at

P
σx⊕σy

sup = [(1.5 +
√

2)/4,(2.5 −
√

2)/4,0,0]. (15)

Thus, a measurement of σ̂x and σ̂y on any spin-1/2 system
will yield results no more certain than this supremum. Notice
that while the supremum in Eq. (15) is less uncertain than is
possible for any state of the system, it is not itself a possible
probability vector in any actual measurement [23]. This is,
therefore, an instance of a measurement where there is no
“minimum uncertainty” state in the majorization sense, as
discussed in Sec. III A.

We note in passing here that the infimum for the above
measurement, P

σx⊕σy

inf , is trivially realized on an unpolarized
state (i.e., for p = 0) with all four components equal 1/4. As
such, it represents the state of maximum uncertainty for the
measurement. If ρ̂ is restricted to pure states, on the other
hand, the supremum is still given by Eq. (15) but the infimum
is found to be (1/2,1/2,0,0), which is realized when ρ̂ is an
eigenstate of one or the other of the two observables.

B. Three spin- 1
2 components

The extension of the above analysis to the case of three
mutually unbiased observables, e.g., all three components of
σ̂ in the foregoing example, is analogous but requires the
full machinery of the calculation of the supremum. Here the
measurement set is σx ⊕ σy ⊕ σz, with the six measurement
elements given by Ê

σx

1,2 = (1 ± σ̂x)/2, Ê
σy

1,2 = (1 ± σ̂y)/2, and
Ê

σz

1,2 = (1 ± σ̂z)/2. The state is parametrized as above, so
ρ̂ = (1 + σ̂ · p)/2. A straightforward calculation of the eight
components of Pσx⊕σy⊕σz (ρ̂) now gives (1 ± px)(1 ± py)(1 ±
pz)/8, which extends the result given in Eq. (13) to three
observables.

The procedure for finding P
σx⊕σy⊕σz

sup is the same as above,
i.e., maximizing a single element of Pσx⊕σy⊕σz (ρ̂), then the sum
of a pair of components, and so on, followed by the “flattening”
process described in Sec. II B to obtain a descending
sequence. While doable analytically, this calculation is more
conveniently done numerically [32]. Using either method,
one finds for the first two components of μsup the values

μ
sup
1 = (1 + 1/

√
3)

3
/8 and μ

sup
2 = (1 + 1/

√
2)

2
/4. The next

two components emerge in an ascending order and must,
therefore, be flattened, i.e., replaced by their mean. It turns
out that these four components add up to unity, thus implying
that the next four components vanish. The desired supremum
is then found from μsup and is given by

P
σx⊕σy⊕σz

sup = (0.491,0.238,0.136,0.136,0,0,0,0). (16)

Thus, any measurement of the three components of a spin- 1
2

system will yield results more uncertain than the supremum
given in Eq. (16), while the latter itself cannot be reached in
any physically realizable measurement.

As in the case of two spin components, P
σx⊕σy⊕σz

inf is
trivially realized on an unpolarized state with all eight
components equal. With ρ̂ restricted to pure states, the
supremum is unchanged while the infimum is found to be
(0.250,0.250,0.250,0.104,0.062,0.040,0.034,0.011).
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Needless to say, the results given in Eqs. (15) and (16)
conform to the requirements of Theorem 1A.

V. CANONICALLY CONJUGATE OBSERVABLES

Here we consider position and momentum, the archetypal
example of the uncertainty principle for canonically conju-
gate observables. Our objective is to calculate the leading
component of Px⊕p

sup for a projective measurement of position
and momentum in one dimension since the knowledge of this
component is sufficient to determine whether Px⊕p

sup ≺≺ I as
required by Theorem 1B. As expected, we will find that this
condition is fulfilled in this case as well.

A projective measurement of position in one dimension, x̂,
entails a set of measurement bins corresponding to intervals
of the x axis (where the detectors are positioned) [6]. Let
[x1,α,x2,α] be the αth bin, with �̂x

α the corresponding Hilbert
space projection operator, and, similarly, �̂

p

β and [p1,β ,p2,β ]
for the momentum (p̂) measurement [33]. Note that these
projection operators are the measurement elements for this
measurement set, i.e., Êx

α = �̂x
α and Ê

p

β = �̂
p

β . The explicit
representation of these projection operators in coordinate space
are as follows:

〈x|�̂x
α|x ′〉 = δ(x − x ′)�(x1,α − x)�(x − x2,α),

(17)

〈x|�̂p

β |x ′〉 = 1

2π
exp[ip̄β(x − x ′)]

sin[�pβ(x − x ′)/2]

(x − x ′)/2
,

where p̄β = (p2,β + p1,β)/2 and �pβ = p2,β − p1,β . We have
also set h̄ = 1 in Eq. (17) to simplify the writing.

Our objective is to find the maximum value of P
x⊕p

αβ ,

which, by definition, equals Px
α(ρ̂)Pp

β (ρ̂) = tr(�̂x
αρ̂)tr(�̂p

β ρ̂),
as ρ̂ is varied. Since ρ̂ is a convex mixture of pure
states, the desired maximum will be realized on pure
states for which ρ̂ → |ψ〉〈ψ |. We are thus looking to
maximize 〈ψ |�̂x

α|ψ〉〈ψ |�̂p

β |ψ〉/〈ψ |ψ〉2 by varying |ψ〉 or,
equivalently, 〈ψ |.

A variation with respect to 〈ψ | gives the eigenvalue
equation

L̂+|ψ�〉 = |ψ�〉, (18)

where

L̂± = (
�̂x

α

/
Px�

α ± �̂
p

β

/
P

p�

β

)/
2 (19)

and where we have used a star to signify an opti-
mized quantity so Px�

α = 〈ψ�|�̂x
α|ψ�〉/〈ψ�|ψ�〉 and P

p�

β =
〈ψ�|�̂p

β |ψ�〉/〈ψ�|ψ�〉. The two operators L̂± defined above

are clearly bounded and self-adjoint, with L̂+ positive as
well. Furthermore, L̂− has a vanishing expectation value in
the optimized state |ψ�〉 by definition.

Using Eq. (18) and the fact that 〈ψ�|L̂−|ψ�〉 = 0, we
find that 〈ψ�|L̂+L̂− + L̂−L̂+|ψ�〉 = 0. If we then apply the
definitions of Px�

α and P
p�

β to this equation, we arrive at
the equality Px�

α = P
p�

β . This equality is a consequence of
the symmetry with respect to the x̂ � p̂ exchange in the above
optimization problem.

At this point we appeal to Eq. (7) of Sec. III B, which implies

that Px
α(ρ̂)Pp

β (ρ̂) � 1
4‖�̂x

α + �̂
p

β‖2
. This inequality, in view of

Px�
α = P

p�

β , in turn, implies that Px�
α = P

p�

β � 1
2‖�̂x

α + �̂
p

β‖.
Comparing this to Eq. (18), we conclude that

Px�
α = P

p�

β = 1
2

∥∥�̂x
α + �̂

p

β

∥∥. (20)

Thus, the eigenvalue of unity in Eq. (18) is in fact the maximum
for the operator L̂+. Our task then is to find ‖�̂x

α + �̂
p

β‖.

To that end, we left-multiply Eq. (18) by L̂+, use Eq. (18)
again together with the idempotent property of the projection
operators to eliminate all operators except �̂

p

β�̂x
α , and rewrite

the resulting equation in terms of |φ�〉 = �̂x
α|ψ�〉. The result

is the transformed equation

�̂x
α�̂

p

β�̂x
α|φ�〉 = (

2Px�
α − 1

)2|φ�〉. (21)

Thus, (2Px�
α − 1)2 equals the largest eigenvalue of the positive

operator �̂x
α�̂

p

β�̂x
α , which we denote by μ2

max. Consequently,

the desired maximum, P
x⊕p�

αβ = (Px�
α )2, equals 1

4 (1 + μmax)2.

At this point, we observe that ‖�̂x
α�̂

p

β�̂x
α‖ � 1 since it involves

a product of projection operators. This, in turn, implies that
μmax � 1 and, consequently, Px⊕p�

αβ � 1 as well. Furthermore,

P
x⊕p�

αβ = 1 is excluded since it would imply ‖�̂x
α + �̂

p

β‖ = 2

by Eq. (19) and an approximate common eigenstate for ‖�̂x
α‖

and ‖�̂p

β‖ which is not possible for finite x and p bins.
To simplify the notation, we can without a loss of generality

translate the x and p axes such that the two bins α and β for
which the optimal values above are reached are symmetrically
centered at x = 0 and p = 0 with x2,α = −x1,α = �x/2
and p2,β = −p1,β = �p/2. Using the representations of the
projection operators given in Eq. (17), we can write Eq. (21)
as the following integral equation:

1

2π

∫ +�x/2

−�x/2
dx ′ sin[�pβ(x − x ′)/2]

(x − x ′)/2
φ�(x ′) = μ2

maxφ
�(x),

(22)

where φ�(x) = 〈x|φ�〉 is the wave function corresponding to
the state |φ�〉 = �̂x

α|ψ�〉, with x and x ′ restricted to the interval
[−�x/2, + �x/2]. It is convenient to rescale Eq. (22) by
measuring x and x ′ in units of �x. The resulting equation can
then be written as

1

π

∫ +1/2

−1/2
dξ ′ sin[sπ (ξ − ξ ′)]

(ξ − ξ ′)
f (ξ ′) = μ2f (ξ ), (23)

where s = (�x)(�p)/2πh̄ and ξ and ξ ′ are restricted to the
interval [−1/2,+1/2]. Note that h̄ has been restored to the
expression for s here.

The largest eigenvalue of the integral equation (23) is thus
equal to μ2

max. Its kernel, on the other hand, is a positive
operator bounded by unity according to Eq. (19) et seq. In
addition, the square of this operator has a finite trace, which
implies that the kernel belongs to the Hilbert-Schmidt class
of operators and is, therefore, compact as well [28]. This
confirms that the spectrum of Eq. (23) is discrete and of finite
multiplicity (except possibly for zero), confined to the interval
from zero to 1, and can cluster only around zero. Furthermore,
the sum of the eigenvalues of the operator, which may be found
by calculating its trace, equals s.

The spectrum of Eq. (23) can be intuitively captured by
considering (�x�p) as the “volume of phase space” and of
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s = (�x)(�p)/2πh̄ as the “number of states” as well as the
number of (nonzero) eigenvalues. For a large phase-space
volume, there are s eigenstates with nonzero eigenvalues
nearly equal to unity so their sum should be of the order of s,
which agrees with the trace of the kernel found above. Indeed, a
perturbative treatment of Eq. (23) for large values of s confirms
this interpretation [34]. Indeed for s → ∞, we find, using the
stationary phase approximation, that the kernel of Eq. (23)
effectively approaches δ(ξ − ξ ′) and μ2 = μ2

max → 1. This
is the limit of low-precision measurements with position or
momentum bins approaching the entire span of the x or p space
and P

x⊕p�

αβ → 1. Therefore, the measurement results approach
(but do not reach) the limit of zero uncertainty for large s, albeit
for measurements that yield correspondingly little information.
The physically interesting limit is, of course, the opposite
extreme of small bins and high resolution where the effects
of the uncertainty principle are most strongly manifested. We
will next consider that limit.

For small bins and high-resolution measurements, we
expect no more than one small nonzero eigenvalue for
Eq. (23). To verify this expectation, we observe that as
s → 0, sin[sπ (ξ − ξ ′)]/(ξ − ξ ′) → sπ , u(ξ ) → θ (1 − 4ξ 2)
(arbitrary normalization), and μ2 = μ2

max → s, where θ is the
usual step function. Thus the largest eigenvalue approaches
the sum of all eigenvalues, confirming that there is just one
nonzero eigenvalue in this limit. Using its value, we find
(Px�

α ) → 1
2 (1 + √

s) as s → 0 and, therefore,

P
x⊕p�

αβ

s→0−→ 1
4 (1 + 2

√
s). (24)

The corresponding wave function, ψ�(x) = 〈x|ψ�〉, can
be constructed by reference to the two projections φ�(x) =
〈x|�̂x

α|ψ�〉 and χ�(x) = 〈x|�̂p

β |ψ�〉. The first of these was
defined above and is directly related to u(ξ ) → θ (1 − 4ξ 2)
as found in the foregoing paragraph. The second, χ�(x),
can be constructed from the first using the x̂ � p̂ symmetry
mentioned above. Omitting the details of these steps, we can
state the result as follows:

ψ�(x)
s→0−→ 1√

2�x
θ (�x2 − 4x2) +

√
�p

4πh̄

sin(x�p/2h̄)

(x�p/2h̄)
.

(25)

In view of the x̂ � p̂ symmetry mentioned above, it is
instructive to consider the momentum-space representation of
this equation, ψ̃�(p) = 〈p|ψ�〉, which can be found by Fourier
transformation:

ψ̃�(p)
s→0−→ 1√

2�p
θ (�p2 − 4p2) +

√
�x

4πh̄

sin(p�x/2h̄)

(p�x/2h̄)
.

(26)

The expected symmetry is clearly in evidence between
Eqs. (25) and (26). It is important to remember here that �x

and �p are bin sizes and in effect represent the resolution
of the measuring devices. They should not be confused with
variances.

The above results, i.e., (Px�
α ) = (Pp�

β ) → 1
2 (1 + √

s) as
s → 0, show that the state with the sharpest simultaneous
values of position and momentum will turn up the two values
only 25% of the time. Note also that as a characterization

of the limitations on what is knowable in a measurement of
position and momentum, this is a more poignant statement
of the uncertainty principle than the Heisenberg inequality
or the optimal entropic bound [11]. This is so even though
we have only used the leading component of Px⊕p� for its
derivation. As pointed out earlier, |ψ�〉 is not a “minimum
uncertainty” state in the usual sense as it maximizes only the
leading component of the probability vector. The calculation
of the remaining terms of Px⊕p� in the high-precision limit,
which will impose limitations on the readouts of more than one
position or momentum bin at a time, is an interesting unsolved
problem.

VI. LEAST-UNCERTAIN MEASUREMENT OF A STATE

Given a state ρ̂, different measurements performed on it
will give rise to probability vectors of varying uncertainty.
Is there a measurement X� which results in a minimally
uncertain probability vector such that PX(ρ̂) ≺ PX�

(ρ̂) for any
measurement X? This question is, of course, meaningful only
if restricted to measurements of comparable precision and in-
teresting only if applied to high-precision measurements such
as those that are rank 1, since low-precision measurements
can yield probability vectors of arbitrarily low uncertainty. We
will, therefore, look for X� among rank-1 measurements. To
that end, we will first develop a sharpened version of Eq. (29)
of Ref. [35].

Lemma. Suppose a rank-1 measurement X is performed on
a state ρ̂ resulting in states {ρ̂ ′

α} with probabilities {PX
α }. We

then have (i) ⊕α PX
α λ(ρ̂ ′

α) ≺ λ(ρ̂), where

sup X

[⊕α PX
α λ(ρ̂ ′

α)
] = λ↓(ρ̂), (27)

and (ii) there exits a rank-1 projective measurement X� that
realizes the above supremum.

Above, λ↓(·) is the spectrum of a density matrix in a
descending order and “⊕” denotes a direct sum of spectra
as defined in Ref. [35]. The majorization condition in part (i)
of this lemma was proved in Ref. [35]; cf. Eq. (29) therein.

For the equality in part (i), as well as in part (ii), we need
to demonstrate only the existence of a rank-1 measurement
that matches the right-hand side of Eq. (27), thus realizing
the supremum. One can readily verify that the projective
measurement defined by �̂�

α = |α〉〈α|, where {|α〉〈α|} are the
eigenstates of ρ̂ arranged according to descending eigenvalues,
is, in fact, the desired measurement X�. This is because
with X restricted to rank-1 measurements, generalized or
projective, every ρ̂ ′

α is pure so λ↓(ρ̂ ′
α) equals (1,0, . . . ,0) and

⊕α PX
α λ(ρ̂ ′

α) = PX(ρ̂). For X�, on the other hand, PX�

α (ρ̂) =
tr(|α〉〈α|ρ̂) = λ↓

α(ρ̂). Putting the last two equalities together,
we arrive at

⊕α PX�

α λ(ρ̂ ′
α) = λ↓

α(ρ̂), (28)

showing that measurement X� realizes the supremum in
Eq. (27). This proves the lemma, which allows us to state
the following theorem.

Theorem 2. The probability vector resulting from a rank-1
generalized measurement of a state is majorized by the
spectrum of that state, PX(ρ̂) ≺ λ(ρ̂). Furthermore, for any
quasientropic measure F , F [λ(ρ̂)] � F [PX(ρ̂)]. In particular,
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the von Neumann entropy of a state is the infimum of the
Shannon entropy of all rank-1 measurements of that state,
i.e., S(ρ̂) � H [PX(ρ̂)]. In addition, there is a projective
measurement X� which satisfies PX�

(ρ̂) = λ(ρ̂) and saturates
the stated inequalities.

The second conclusion of Theorem 2 follows from the fact
that λ1 ≺ λ2 implies F (λ1) � F (λ2) if F is a quasientropic
measure (i.e., if it is a symmetric, concave function). The
choice of the Shannon entropy function H for F then yields
the next part of Theorem 2. This part was also established in
the first paper of Ref. [13] for projective measurements.

Theorem 2 provides a fundamental characterization of the
von Neumann entropy as the greatest lower bound of all
rank-1 measurement (Shannon) entropies. The majorization
statement of the theorem, on the other hand, provides an
operational meaning for the spectrum of a quantum state
(which is the set of eigenvalues of its density operator) as
the least-uncertain probability vector resulting from rank-1
measurements of that state. Not surprisingly, the corresponding
least-uncertain measurement X�, which saturates all ma-
jorization and quasientropic relations above, reproduces the
premeasurement state on average, i.e., in the absence of
postselection.

Note that in the trivial case of a pure state, ρ̂ = |ψ〉, we
find λ(|ψ〉) = (1,0, . . . ,0) and PX�

(|ψ〉) = I, corresponding
to zero uncertainty. In this case, the optimal measurement
X� is given by the orthogonal projections �̂�

1 = |ψ〉〈ψ | and
�̂�

i = |i〉〈i|, i = 2,3, . . . , where the states {|i〉} together with
|ψ〉 form a complete orthonormal set. In case of a pure
state, then, the least-uncertain rank-1 measurement reproduces
the premeasurement state with certainty. This amounts to a
full identification of the state of the quantum system, which
embodies all available information about the system and zero
uncertainty. In the case of a mixed state, on the other hand,
the optimal measurement X� turns up the uncertainties that
result from the impurity of the quantum state. In either case,
X� embodies all available information about the system, as
would be expected of a least-uncertain measurement of highest
resolution.

VII. CONCLUDING REMARKS

It is worth recalling here that majorization is a more
refined comparator of uncertainty than those based on a
scalar condition and that the corresponding formulation of the
uncertainty principle is more stringent than the quasientropic
or variance formulations. We have explained the reasons
that set the majorization order apart from the others and
have demonstrated the consequences in several instances. The
price of this generality is a mathematically more complex
scheme, as one should expect in going from a scalar to a
vector formulation. Generally speaking, one may expect the
majorization formulation to be most suitable when dealing
with overarching information-theoretical aspects of quantum
systems, such as those considered in Corollary 1, Secs. V,
and VI. As such, it complements the entropic and variance
formulations at a fundamental level.

In developing majorization bounds, we resorted to the
concept of the supremum of a set of probability vectors. It
is important to distinguish the supremum from a maximal
element for such a set, which would be defined as an element
that is not majorized by any other element in the set. A set
of probability vectors may include many maximal elements
but no supremum, i.e., while the supremum does exist as a
probability vector, it may not be a member of the set. This is
the reason why there is in general no “minimum uncertainty”
state within the majorization formulation.

In this paper we have presented a few basic applications
of the majorization formulation of uncertainty, with many
others remaining to be worked out. A challenging case is
the calculation of the nonleading components of P

x⊕p�

αβ for
position and momentum measurements. Another interesting
application currently under development is the use of ma-
jorization uncertainty bounds for entanglement detection.
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