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Generalization of internal density-functional theory and Kohn-Sham scheme to multicomponent
self-bound systems, and link with traditional density-functional theory
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We generalize the recently developed “internal” density-functional theory (DFT) and Kohn-Sham scheme
to multicomponent systems. We obtain a general formalism, applicable for the description of multicomponent
self-bound systems (such as molecular systems where the nuclei are treated explicitly, atomic nuclei and mixtures
of 3He and 4He droplets), where the fundamental translational symmetry has been treated correctly. The main
difference with traditional DFT is the explicit inclusion of center-of-mass correlations in the functional. A
large part of the paper is dedicated to the application to molecular systems, which permits us to clarify the
approximations that underly traditional DFT.
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I. INTRODUCTION

Density-functional theory (DFT) [1–3] is a tool widely
used in condensed-matter physics and quantum chemistry to
calculate properties of many-electron systems. It is based
on the simple local density instead of the less tractable
N -body wave function. One of the pillars of DFT is the
Hohenberg-Kohn (HK) theorem [4], which, in its original
form, proves that for any nondegenerate system of fermions or
bosons [1] put into a local external potential vext(r) there exists
a unique functional of the local one-body density ρ(r) that
gives the exact ground-state energy when ρ(r) corresponds to
the exact ground-state density. The Kohn-Sham (KS) scheme
provides a practical method to compute self-consistently the
ground-state density in a quantum framework, defining the
local single-particle potential (i.e., an auxiliary noninteracting
system) which reproduces the exact ground-state density [5].

Traditional DFT is particularly well suited to describe the
electrons in a molecule, but not for the description of self-
bound systems, such as atomic nuclei, He droplets, or molec-
ular systems where the nuclei are treated explicitly. Indeed, in
those systems external fields are not required to obtain bound
states. As a consequence, isolated self-bound systems are
plagued by a center-of-mass (c.m.) problem: for any stationary
state, the c.m. is delocalized in the whole space (because of the
translational invariance of the Hamiltonian) and the laboratory
wave function is consequently not normalizable. This prevents
us from using traditional DFT methods, formulated in terms
of the laboratory density, when vext(r) = 0 [6]. Indeed, the
laboratory density is then an indeterminate constant [6–8],
which prevents us from constructing from it a universal
functional. Moreover, it is internal properties (measured in
the c.m. frame) and not laboratory properties that are of
experimental interest. Experimentalists always deduce internal
properties using the c.m. observables (position, momentum, or
kinetic energy of the c.m.) and Galilean invariance to transform
all the other observables into the c.m. frame.

It is thus a question of interest to formulate a rigorous DFT
formalism and KS scheme in terms of the internal density ρint,
having achieved the correct separation of internal properties
from the c.m. motion. Efforts in that direction have been made
recently in Refs. [7,9], but the question of a rigorous “internal”
KS scheme remained open (see the corresponding discussion

of Ref. [6] for more details). The different approach found in
Refs. [10,11] results in a rigorous KS scheme, but that is not
“internal” (i.e., formulated within the c.m. frame of reference),
so that it is not directly comparable to self-consistent mean-
field-like calculations with effective interactions formulated in
the c.m. frame of reference.

In Ref. [6] it was proposed to use Jacobi coordinates to
decouple the c.m. properties from internal ones in self-bound
systems, which permits one to separate the non-normalizable
part of the wave function from the normalizable part which
describes internal properties. Moreover, an arbitrary trans-
lationally invariant potential of the form

∑N
i=1 vint(ri − R),

where R = 1
N

∑N
j=1 rj is the total c.m. of the particles, was

added to the Hamiltonian of a self-bound system. This potential
is an “internal” potential, i.e., it acts in the c.m. frame, and is
the only form that satisfies all the key formal properties [6]. Of
course vint should be zero in the stationary isolated self-bound
case. This is why in Ref. [6] the authors presented it as a
mathematical auxiliary to reach the desired goal and showed
that it can be dropped properly at the end, preserving all
the conclusions (because the internal ground state should
by definition remain bound at this limit). Nevertheless, its
form is suitable to model the internal effects of fields used in
experiments. Through it and using Jacobi coordinates it was
shown, by a different way than those found in Refs. [7,9], the
stationary “internal” DFT theorem for identical particles: the
internal many-body ground state can be written as a functional
of the internal density ρint. Then, the corresponding “internal”
KS scheme was formulated rigorously in the c.m. frame. This
work provided a first step toward a fundamental justification
for the use of internal density functionals for stationary
mean-field-like calculations of nuclei [12] or He droplets
[13] with effective interactions, showing that there exists an
ultimate functional which permits one to reproduce the exact
internal density. The major difference with traditional DFT is
that the c.m. correlations (which appear due to the redundant
coordinate problem) are explicitly included in the functional.

The aim of the present article is to generalize the inter-
nal DFT formalism and KS scheme to self-bound systems
composed of different kinds of particles (i.e., multicomponent
systems). This is crucial to obtain a fundamental justification
to the use of density functionals for the description of:
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(i) Molecular systems where the nuclei are treated ex-
plicitly and quantum mechanically. Taking into account the
quantum nature of the nuclei is important for describing
small molecules [14] and solid hydrogen [15], for instance,
and explicit treatment of the nuclei is necessary to describe
nonadiabatic phenomena. Moreover, taking into account the
electron-nuclei correlations can be important for the descrip-
tion of some physical properties [16]. For those reasons,
various multicomponent DFT formalisms have been developed
[8,16–20], but in none of them has the c.m. motion been
separated properly from the beginning, leading to formal
difficulties (that will be detailed in Sec. III D). Here we propose
a general formulation that overcomes those difficulties and
is suited for the description of all self-bound systems. We
show that the application to molecular systems is particularly
interesting for understanding the approximations inherent to
traditional DFT and thus how to eventually improve its results
for molecular systems.

(ii) Atomic nuclei. The application of multicomponent
internal DFT to protons and neutrons gives a further step
toward the use of mean-field-like calculations with effective
interactions, as currently done in nuclear physics [12], and
shows that the c.m. correlations can be included in the
functional. It thus opens the way to an alternative to the
numerically very costly projection techniques used in nuclear
physics to restore Galilean invariance [12,21–23]: they would
not be necessary if the ultimate functional were known.

(iii) Mixtures of 3He and 4He droplets. Mean-field-like cal-
culations with effective interactions are also used to describe
those systems [13] and can be justified more fundamentally by
the multicomponent internal DFT formalism.

The article is organized as follows. We first give the
foundations of the multicomponent internal DFT formalism
and make explicit the link with the previously developed
formalisms. Then we apply the formalism to molecular
systems where the nuclei are treated explicitly. This application
clearly shows the link between multicomponent internal DFT
and “one kind of particle” standard and internal DFT. Finally,
we mention some features of the application to atomic nuclei
and mixtures of 3He and 4He droplets.

II. MANY-BODY FORMULATION

A. General formulation

For the sake of simplicity and to underline more clearly the
physics, we assume the following:

(i) Two different kinds of particles. This is sufficient to
describe atomic nuclei, mixtures of 3He and 4He droplets,
and molecular systems with only one kind of nuclei. The
generalization to more kinds of different particles, for the
description of molecular systems with more than one kind
of nuclei, is easy.

(ii) Two-body particle-particle interactions. The general-
ization to three-body, etc., interactions is straightforward.

(iii) Particles without spin. Generalization to spin-polarized
systems can be obtained by introduction of an arbitrary internal
magnetic field

∑
i Bint(ri − R), which models the effect on

internal properties of magnetic fields used in experiments, and
adapting the standard derivation [1,24].

We thus consider

(i) N (1) particles (1) of mass m(1) and laboratory coordi-
nates {r(1)

1 , . . . ,r(1)
N (1)},

(ii) N (2) particles (2) of mass m(2) and laboratory coordi-
nates {r(2)

1 , . . . ,r(2)
N (2)},

and start from a general translationally invariant many-body
Hamiltonian,1

H =
N (1)∑
i=1

p(1)
i

2

2m(1)
+

N (2)∑
i=1

p(2)
i

2

2m(2)
+

N (1)∑
i,j=1
i>j

u(1)
(
r(1)
i − r(1)

j

)

+
N (2)∑
i,j=1
i>j

u(2)
(
r(2)
i − r(2)

j

) +
N (1)∑
i=1

N (2)∑
j=1

u(12)
(
r(1)
i − r(2)

j

)

+
N (1)∑
i=1

v
(1)
int

(
r(1)
i − R

) +
N (2)∑
i=1

v
(2)
int

(
r(2)
i − R

)
, (1)

composed of
(i) the usual kinetic energy terms,

(ii) translationally invariant two-body potentials u(1), u(2),
and u(12), which describe the particle-particle interactions,

(iii) arbitrary translationally invariant internal potentials v
(1)
int

and v
(2)
int , which act on each species in the c.m. frame and

can model internal effects of potentials used in experiments
(such as electric fields in the molecular case), or can be
safely dropped at the end in the case of an isolated self-bound
system.

The total c.m. coordinate R, i.e., of particles (1) and (2), is
defined as

R = 1

N (1)m(1) + N (2)m(2)

⎡
⎣m(1)

N (1)∑
i=1

r(1)
i + m(2)

N (2)∑
i=1

r(2)
i

⎤
⎦

= M (1)R(1) + M (2)R(2)

M (1) + M (2)
, (2)

where M (l) = N (l)m(l) is the total mass of the particles (l), and
R(l) = 1

N (l)

∑N (l)

i=1 r(l)
i is the center of mass of the particles (l).

The (N (1) + N (2) − 1) Jacobi coordinates {ξα} are defined as
(see Appendix A for some reminders)

for α ∈ [1; N (1) − 1] : ξα = r(1)
α+1 − 1

α

α∑
i=1

r(1)
i ,

for α = N (1) : ξN (1) = r(2)
1 − R(1),

for α ∈ [N (1) + 1; N (1) + N (2) − 1] :

ξα = r(2)
α−N (1)+1 − m(2) ∑α−N (1)

i=1 r(2)
i + M (1)R(1)

(α − N (1))m(2) + M (1)
. (3)

1In a Hamiltonian and wave-function-based description of an
isolated self-bound system, the Hamiltonian should be explicitly
translationally invariant to ensure Galilean invariance of the wave
function. Translational invariance, which states that the observables
do not depend on the position of the c.m., is a necessary but not suffi-
cient condition for the more fundamental Galilean invariance, which
ensures that scalar observables are the same in all inertial frames.
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The ξα are relative to the c.m. of the other 1, . . . ,α − 1
particles and are independent of R. They are to be distinguished
from the (N (1) + N (2)) laboratory coordinates r(l)

i and the
(N (1) + N (2)) c.m. frame coordinates (r(l)

i − R) relative to the
total c.m.

Note that for multicomponent systems, those “standard”
Jacobi coordinates cannot be associated to one specific kind of
particle, in contrary to the laboratory or c.m. frame coordinates.
More precisely, even if the {ξα; α ∈ [1; N (1) − 1]} are the
Jacobi coordinates associated to particles (1) only, the {ξα; α ∈
[N (1); N (1) + N (2) − 1]} mix the laboratory coordinates of
particles (1) and (2).

We mention that the “standard” Jacobi coordinates used in
this paper do not constitute the unique set of coordinates which
permit separation of the c.m. contribution from the internal
contribution in the Hamiltonian, as we do thereafter. Another
possible decomposition is [instead of (3)]

for l = 1,2 and α ∈ [1; N (l) − 1] :

ξ (l)
α = r(l)

α+1 − 1

α

α∑
i=1

r(l)
i , (4)

and R(12) = R(2) − R(1),

in addition to the total c.m. coordinate R defined in Eq. (2).
R(12) is the relative motion of the c.m. of each species. The
use of this set of coordinates permits one to introduce the
Jacobi coordinates ξ (l)

α reduced to a given kind of particles
(l), which is more symmetric. In this article we decided to
use the set defined in Eq. (3) because it permits us to obtain
more directly the results of Appendix B and Sec. IV A in the
limit when one kind of particle has a much larger mass than
the other kind, and does not change the final results nor the
way to obtain them [the formulation in terms of the set (4) is
straightforward].

Since the {r(l)
i − r(l)

j �=i}, {r(l)
i − r(m�=l)

j } and {r(l)
i − R} can

be rewritten as functions of the ξα , the interaction potentials
u(1), u(2), u(12), and the internal potentials v

(1)
int and v

(2)
int can be

rewritten as functions of the ξα . We denote

N (l)∑
i,j=1
i>j

u(l)
(
r(l)
i − r(l)

j

) → U (l)(ξ1, . . . ,ξN (1)+N (2)−1),

N (1)∑
i=1

N (2)∑
j=1

u(12)
(
r(1)
i − r(2)

j

) → U (12)(ξ1, . . . ,ξN (1)+N (2)−1), (5)

N (l)∑
i=1

v
(l)
int

(
r(l)
i − R

) → V
(l)

int (ξ1, . . . ,ξN (1)+N (2)−1).

After having defined the conjugate momenta of R and ξα

(see Appendix A), we can separate (1) into H = HCM + Hint,
where the c.m. Hamiltonian (M = N (1)m(1) + N (2)m(2) is the
total mass)

HCM = −h̄2�R

2M
(6)

is a one-body operator acting in R space only, and the internal
Hamiltonian

Hint =
N (1)+N (2)−1∑

α=1

τ 2
α

2μα

+ U (1)(ξ1, . . . ,ξN (1)+N (2)−1)

+U (2)(ξ1, . . . ,ξN (1)+N (2)−1) + U (12)(ξ1, . . . ,ξN (1)+N (2)−1)

+V
(1)

int (ξ1, . . . ,ξN (1)+N (2)−1) + V
(2)

int (ξ1, . . . ,ξN (1)+N (2)−1)

is a (N (1) + N (2) − 1) body operator in the {ξα} space. It
contains the particle-particle interaction potentials and the
internal potentials. τα is the conjugate momentum of ξα and
μα the corresponding reduced mass, defined as

for α ∈ [1; N (1) − 1] : μα = α

α + 1
m(1),

for α ∈ [N (1); N (1) + N (2) − 1] : (7)

μα = [M (1) + (α − N (1))m(2)]m(2)

M (1) + (α − N (1) + 1)m(2)
.

Hence the (N (1) + N (2))-body laboratory wave function
ψ(r(1)

1 , . . . ,r(1)
N (1) ; r(2)

1 , . . . ,r(2)
N (2) ) can be separated into a wave

function � that is an eigenstate of HCM and depends on the
c.m. coordinate R only, and an internal wave function ψint

that is an eigenstate of Hint and depends on the remaining
(N (1) + N (2) − 1) Jacobi coordinates ξα:

ψ
(
r(1)

1 , . . . ,r(1)
N (1) ; r(2)

1 , . . . ,r(2)
N (2)

)
= �(R) ψint(ξ1, . . . ,ξN (1)+N (2)−1). (8)

The �(R) describes the motion of the c.m. of the isolated
system in any chosen inertial frame of reference (such as
the laboratory). The ψint describes the internal properties
and is a function of the (N (1) + N (2) − 1) Jacobi coordi-
nates. Of course it could also be written as a function
of the N (1) coordinates r(1)

i and N (2) coordinates r(2)
i , i.e.,

ψint(r
(1)
1 , . . . ,r(1)

N (1) ; r(2)
1 , . . . ,r(2)

N (2) ), but one of them would be
redundant [25].

Thus c.m. properties and internal properties are fully
decoupled and the total energy splits into E = ECM + Eint.
Since � is solution of the free Schrödinger equation, �(R)
should be an arbitrary stationary plane wave, i.e., infinitely
spread and thus not normalizable. This leads to delocalization
of R and arbitrary c.m. energy ECM = h̄2K2/(2M). This does
not correspond to experimental situations, where the system
is no longer isolated: interactions with other systems of the
experimental apparatus localize the c.m.. But the formal decou-
pling between c.m. motion and internal properties permits us to
leave the c.m. motion to the choice of experimental conditions,
internal properties being comparable to the experimental ones.
If ψint is normalizable, which is by definition always the case
for the ground state of a self-bound system, the internal energy
can be written

Eint[ψint] = (ψint|Hint|ψint). (9)

B. Some useful definitions

Before we address the generalization of internal DFT to
many kinds of particles, we define some quantities and rela-
tions that are useful for subsequent considerations. Following
Refs. [6,10,26], we define the internal one-body densities for
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each species

ρ
(l)
int(r) = N (l)

∫
dr(1)

1 · · · dr(1)
N (1)dr(2)

1 · · · dr(2)
N (2)δ(R)

× ∣∣ψint
(
r(1)

1 , . . . ,r(1)
N (1) ; r(2)

1 , . . . ,r(2)
N (2)

)∣∣2

× δ
(
r − (

r(l)
i − R

))
. (10)

They are normalized to N (l). The laboratory densities ρ(l)(r)
are obtained by convolution of ρ

(l)
int with the c.m. wave function

(following Refs. [10,26]): ρ(l)(r) = ∫
dR|�(R)|2ρ(l)

int(r − R).
Following the considerations of Refs. [6] and [26], we

define the local parts of the two-body internal density matrices
for each species

γ
(l)
int (r,r′)=N (l)(N (l) − 1)

∫
dr(1)

1 · · · dr(1)
N (1)dr(2)

1 · · · dr(2)
N (2)δ(R)

× ∣∣ψint
(
r(1)

1 , . . . ,r(1)
N (1) ; r(2)

1 , . . . ,r(2)
N (2)

)∣∣2

× δ
(
r − (

r(l)
i − R

))
δ
(
r′ − (

r(l)
j �=i − R

))
. (11)

These have the required normalization to N (l)(N (l) − 1).
Following similar steps to those in Refs. [10] and [26], we can
show that the local part of the two-body laboratory density ma-
trices γ (l)(r,r′) are obtained by convolution of γ

(l)
int with the c.m.

wave function: γ (l)(r,r′) = ∫
dR|�(R)|2γ (l)

int (r − R,r′ − R).

Finally, we introduce the local part of the two-body internal
coupling density matrix,

γ
(12)
int (r,r′) = N (1)N (2)

∫
dr(1)

1 · · · dr(1)
N (1)dr(2)

1 · · · dr(2)
N (2)δ(R)

× ∣∣ψint
(
r(1)

1 , . . . ,r(1)
N (1) ; r(2)

1 , . . . ,r(2)
N (2)

)∣∣2

× δ
(
r − (

r(1)
i − R

))
δ
(
r′ − (

r(2)
j − R

))
, (12)

where r acts in the particle (1) space and r′ acts in the particle
(2) space.

The definitions of ρ
(l)
int(r), γ

(l)
int (r,r′), and γ

(12)
int (r,r′) show

clearly that they are defined in the c.m. frame, i.e., that the
positions r and r′ are measured in the c.m. frame [see the
δ relations in Eqs. (10)–(12)]. Compared to the traditional
definitions, a δ(R) appears in the definition of the internal
densities calculated with ψint written in terms of the {r(l)

i } coor-
dinates. Since one of them is redundant, the δ(R) represents the
dependence of the redundant coordinate on the others.2 Note
that, following steps similar to those in Ref. [6], one can rewrite
ρ

(l)
int, γ

(l)
int , and γ

(12)
int as functions of Jacobi coordinates {ξα}.

We establish a useful relation. For any function
f (r(1)

1 , . . . ,r(1)
N (1) ; r(2)

1 , . . . ,r(2)
N (2) ) of laboratory coordinates ex-

pressible in terms of Jacobi coordinates [we denote
F (ξ1, . . . ,ξN (1)+N (2)−1) and F̂ the associated operator] we
have

(ψint|F̂ |ψint) =
∫

dξ1 · · · dξN (1)+N (2)−1F (ξ1, . . . ,ξN (1)+N (2)−1)|ψint(ξ1, . . . ,ξN (1)+N (2)−1)|2

=
∫

dRdξ1 · · · dξN (1)+N (2)−1δ(R)F (ξ1, . . . ,ξN (1)+N (2)−1)|ψint(ξ1, . . . ,ξN (1)+N (2)−1)|2

=
∫

dr(1)
N (1) · · · dr(1)

N (1)dr(2)
1 · · · dr(2)

N (2)δ(R)f
(
r(1)

1 , . . . ,r(1)
N (1) ; r(2)

1 , . . . ,r(2)
N (2)

)∣∣ψint
(
r(1)

1 , . . . ,r(1)
N (1) ; r(2)

1 , . . . ,r(2)
N (2)

)∣∣2
. (13)

We see that the internal mean values calculated with ψint

expressed as a function of the (N (1) + N (2) − 1) coordinates
ξα can also be calculated with ψint expressed as a function of
the (N (1) + N (2)) coordinates r(l)

i . Then, as above, a δ(R) that
represents the dependence of the redundant coordinate on the
others appears.

III. GENERALIZATION OF INTERNAL DFT
AND KOHN-SHAM SCHEME TO MANY

KINDS OF PARTICLES

A. Hohenberg-Kohn theorem

We show that ψint can be written as a functional of the
internal densities ρ

(1)
int and ρ

(2)
int . The relation (13) leads to [V̂ (l)

int

2More generally, we should introduce a δ(R − a), where a is an
arbitrary translation vector, instead of the δ(R). This is linked to the
translational invariance. In this paper we chose a = 0, which leads to
perfectly equivalent results and permits lightening of the notations.

is defined with (5)]

(
ψint

∣∣V̂ (l)
int

∣∣ψint
)

(14)

=
∫

dr(1)
1 · · · dr(1)

N (1)dr(2)
1 · · · dr(2)

N (2)δ(R)

×
N (l)∑
i=1

v
(l)
int

(
r(l)
i − R

)∣∣ψint
(
r(1)

1 , . . . ,r(1)
N ; r(2)

1 , . . . ,r(2)
N (2)

)∣∣2

=
N (l)∑
i=1

∫
dr v

(l)
int(r)

∫
dr(1)

1 · · · dr(1)
N (1)dr(2)

1 · · · dr(2)
N (2) δ(R)

×∣∣ψint
(
r(1)

1 , . . . ,r(1)
N ; r(2)

1 , . . . ,r(2)
N (2)

)∣∣2
δ
(
r − (

r(l)
i − R

))
=

N (l)∑
i=1

∫
dr v

(l)
int(r)

ρ
(l)
int(r)

N (l)
=

∫
dr v

(l)
int(r) ρ

(l)
int(r), (15)

where we used (10) to obtain the penultimate equality. We see
that the potential v

(l)
int(r

(l)
i − R) that is N (l) body with respect

to the laboratory coordinates becomes one body (and local)
when expressed with the c.m. frame coordinates (remember
that the ρ

(l)
int are defined in the c.m. frame, cf. Sec. II B).
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The internal energy Eint[ψint] (9) can be rewritten

Eint[ψint] =
⎛
⎝ψint

∣∣∣∣∣∣
N (1)+N (2)−1∑

α=1

τ 2
α

2μα

∣∣∣∣∣∣ψint

⎞
⎠

+ (ψint|Û (1) + Û (2) + Û (12)|ψint)

+
∫

drv(1)
int (r)ρ(1)

int (r) +
∫

drv(2)
int (r)ρ(2)

int (r). (16)

As in its definition enter two arbitrary one-body potentials in
the c.m. frame of the form

∫
dr v

(l)
int(r) ρ

(l)
int(r), and as the ground

state ψint of Hint is obtained by minimization of Eint, we can
directly apply the usual proof of the standard HK theorem
[1,4], generalized to many kinds of particles [17,20]. We thus
can claim that for a nondegenerate ground state ψint and given
kinds of particles (1) and (2) (i.e., given interactions u(1), u(2),
and u(12)), the ground state ψint can be expressed as a unique
functional of ρ

(1)
int and ρ

(2)
int , i.e., ψint[ρ

(1)
int ,ρ

(2)
int ], and therefore

also the corresponding internal energy of a self-bound system,
i.e., Eint[ρ

(1)
int ,ρ

(2)
int ].

As emphasized in Refs. [6,27], the HK theorem is valid only
for arbitrary one-body potentials that lead to bound ground
states. As a direct consequence, the internal DFT formalism is
valid only for potentials v

(1)
int and v

(2)
int that lead to bound internal

ground states ψint. For pure self-bound systems, described
by our formalism in the limit v

(1)
int = v

(2)
int = 0, ψint should

by definition be a bound ground state so that the previous
conclusions still hold.

B. Internal Kohn-Sham scheme

Following similar steps as in Eq. (13), we
rewrite the interacting kinetic energy as (we note
(r(1)

1 , . . . ,r(1)
N (1) ; r(2)

1 , . . . ,r(2)
N (2) ) → (r(1)

1 , . . . ,r(2)
N (2) ) and

dr(1)
1 . . . dr(1)

N (1)dr(2)
1 . . . dr(2)

N (2)→ dr(1)
1 . . . dr(2)

N (2) for simplicity)

⎛
⎝ψint

∣∣∣∣∣∣
N (1)+N (2)−1∑

α=1

τ 2
α

2μα

∣∣∣∣∣∣ ψint

⎞
⎠ =

∫
dξ1 · · · ξN (1)+N (2)−1ψ

∗
int({ξα})

⎛
⎝−h̄2�R

2M
+

N (1)+N (2)−1∑
α=1

τ 2
α

2μα

⎞
⎠ ψint({ξα})

=
∫

dr(1)
1 · · · dr(2)

N (2)δ(R) ψ∗
int

(
r(1)

1 , . . . ,r(2)
N (2)

)⎛
⎝N (1)∑

i=1

p(1)2
i

2m(1)
+

N (2)∑
i=1

p(2)2
i

2m(2)

⎞
⎠ ψint

(
r(1)

1 , . . . ,r(2)
N (2)

)
, (17)

which permits recovery of an interpretation in terms of particles (1) and (2) and makes it clear that the major difference with the
standard kinetic energy comes from the c.m. correlations, i.e., the δ(R) term in the previous expression.

Using relation (17) and the notations introduced in Sec. II B, we can rewrite the internal energy as

Eint
[
ρ

(1)
int ,ρ

(2)
int

] =
∫

dr(1)
1 · · · dr(2)

N (2)δ(R) ψ∗
int

(
r(1)

1 , . . . ,r(2)
N (2)

)⎛
⎝N (1)∑

i=1

p(1)2
i

2m(1)
+

N (2)∑
i=1

p(2)2
i

2m(2)

⎞
⎠ ψint

(
r(1)

1 , . . . ,r(2)
N (2)

)

+ 1

2

∫
dr dr′ γ (1)

int (r,r′) u(1)(r − r′) + 1

2

∫
dr dr′ γ (2)

int (r,r′) u(2)(r − r′) +
∫

dr dr′ γ (12)
int (r,r′) u(12)(r − r′)

+
∫

drv(1)
int (r)ρ(1)

int (r) +
∫

drv(2)
int (r)ρ(2)

int (r). (18)

To recover the internal KS scheme, we assume, as in the
traditional KS scheme, that there exist, in the c.m. frame
(the ρ

(l)
int being defined in the c.m. frame, see Sec. II B),

two noninteracting systems (i.e., two local single-particle
potentials v

(l)
S ):

(
p2

2m(l)
+ v

(l)
S (r)

)
ϕ

(l)i
int (r) = ε

(l)
i ϕ

(l)i
int (r),

(19)
l = 1,2, i = 1 . . . N (l),

which reproduce exactly the densities ρ
(l)
int of the interacting

system:

ρ
(l)
int(r) =

N (l)∑
i=1

∣∣ϕ(l)i
int (r)

∣∣2
. (20)

Note that even if only (N (1) + N (2) − 1) coordinates are
sufficient to describe internal properties, we introduce in the
KS scheme (N (1) + N (2)) orbitals, i.e., the same number as the
number of particles. The reason is discussed in Sec. III C.

In Eq. (19) we implicitly supposed that the particles are
fermions (i.e., that the {ϕ(l)i

int } are orthonormal). A KS scheme to
describe boson condensates can be defined similarly by choos-
ing identical ϕ

(l)i
int for a given kind of particles (l). Uniqueness

of the potential v
(l)
S (r) for a given density ρ

(l)
int(r) is ensured by

a direct application of traditional DFT formalism to each KS
equation (19). Of course, the question of the validity of the KS
hypothesis, known as the “noninteracting v-representability”
problem, remains, at least qualitatively, the same as it is in
traditional DFT [1] (but can quantitatively be different).

To use notation similar to the traditional notation, we add
and subtract from the internal energy (18) the internal Hartree
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energies

E
(l)
H

[
ρ

(l)
int

] = 1

2

∫
dr dr′ ρ(l)

int(r) ρ
(l)
int(r

′) u(l)(r − r′),

the “coupling” Hartree term

E
(12)
H

[
ρ

(1)
int ,ρ

(2)
int

] =
∫

drdr′ρ(1)
int (r)ρ(2)

int (r′)u(12)(r − r′)

and the noninteracting kinetic energy terms

N (l)∑
i=1

(
ϕ

(l)i
int

∣∣∣∣ p2

2m(l)

∣∣∣∣ϕ(l)i
int

)
.

This permits us to rewrite the internal energy (18) as

Eint
[
ρ

(1)
int ,ρ

(2)
int

]
=

N (1)∑
i=1

(
ϕ

(1)i
int

∣∣∣∣ p2

2m(1)

∣∣∣∣ϕ(1)i
int

)
+

N (2)∑
i=1

(
ϕ

(2)i
int

∣∣∣∣ p2

2m(2)

∣∣∣∣ϕ(2)i
int

)

+E
(1)
H

[
ρ

(1)
int

] + E
(2)
H

[
ρ

(2)
int

] + E
(12)
H

[
ρ

(1)
int ,ρ

(2)
int

]
+E

(1)
XC

[
ρ

(1)
int ,ρ

(2)
int

] + E
(2)
XC

[
ρ

(1)
int ,ρ

(2)
int

] + E
(12)
C

[
ρ

(1)
int ,ρ

(2)
int

]
+

∫
drv(1)

int (r)ρ(1)
int (r) +

∫
drv(2)

int (r)ρ(2)
int (r). (21)

The internal exchange-correlation energy for the identical
particles of kind (l) is defined as

E
(l)
XC

[
ρ

(1)
int ,ρ

(2)
int

] = 1

2

∫
dr dr′ [γ (l)

int (r,r′) − ρ
(l)
int(r) ρ

(l)
int(r

′)
]
u(l)(r − r′)

+
N (l)∑
i=1

[ ∫
dr(1)

1 · · · dr(2)
N (2)δ(R) ψ∗

int

(
r(1)

1 · · · r(2)
N (2)

) p(l)2
i

2m(l)
ψint

(
r(1)

1 · · · r(2)
N (2)

) −
(

ϕ
(l)i
int

∣∣∣∣ p2

2m(l)

∣∣∣∣ϕ(l)i
int

)]
. (22)

Note that since the KS assumption implies ϕ
(l)i
int [ρ(l)

int] [1], E
(l)
XC

can well be written as a functional of ρ
(1)
int and ρ

(2)
int .

We see that E
(l)
XC contains the exchange correlations that

come from the interaction u(l) [first line of (22)], but also the
correlations contained in the interacting kinetic energy [second
line of (22)]. Concerning these correlations, it is clear that they
come, on the one hand, from the correlations neglected in the
traditional independent-particle framework, but also from the
c.m. correlations (the δ(R) term in the previous expression).
The kinetic energy term is the only one that explicitly contains
those correlations because they directly affect the motions
of the particles in the c.m. frame. Indeed, in this frame, if
one particle moves in one direction, the other particles will
tend to move in the opposite direction. As quantum particles
are described by wave functions, they always have associated
zero-point motions. Those zero-point motions are coupled by
the c.m. correlations, which is specific to quantum systems;
the corresponding quantum part of the c.m. correlations is
included in E

(l)
XC .3

3We take the opportunity to underline a key difference between
the classical and quantum separation of the c.m. motion. In classical
mechanics, as particles are pointlike, this separation is done simply
by a coordinate change. It can be done using Jacobi coordinates
(the redundant coordinate is then treated explicitly) or the c.m.
frame coordinates (which lead to a similar final result because the
redundant coordinate is implicitly taken into account through the
translational symmetry of the Hamiltonian). In quantum mechanics,
particles are described by wave functions. Then one has to separate
the non-normalizable part of the laboratory wave function, which
can be done using Jacobi coordinates. Another consequence is that,

in the c.m. frame, all points of space that satisfy m(1)
∑N (1)

i=1 r(1)
j +

m(2)
∑N (2)

i=1 r(2)
i = 0 (and only those points) are allowed. This couples

The inclusion of the c.m. correlations in the exchange-
correlation functional is the major difference with traditional
DFT [4,5] and previously developed multicomponent DFT
formalisms [8,16–20], and opens the way to the search for
a local c.m. correlations potential, which would a priori
be computationally much less costly than the projection
techniques used, for instance, in nuclear physics [12,21–23].
Note also that the inclusion of the c.m. correlations explains
why E

(l)
XC is a functional of both ρ

(1)
int and ρ

(2)
int , and not only of

ρ
(l)
int as one might have expected: those correlations necessarily

couple the particles (1) and (2), and thus their densities. (This
is underscored from another point of view in Sec. III D.)

We emphasize the fact that a part of the total c.m.
correlations is contained in E

(1)
XC and another part in E

(2)
XC .

Indeed, it is the interacting kinetic energy term as a whole that
contains explicitly the c.m. correlations, and this term is split
in both E

(1)
XC and E

(2)
XC . The decomposition we choose for the

energy functional is of course not unique. But even if it does
not include all the c.m. correlations in one specific functional,
its advantage is that the meaning of the obtained functionals
is clear and that it permits us to recover the functional forms
of “one kind of particle” traditional and internal DFT, in the
limits that are discussed in Sec. IV.

The internal coupling correlation energy between particles
of kinds (1) and (2) is defined as

E
(12)
C

[
ρ

(1)
int ,ρ

(2)
int

] =
∫

dr dr′ [γ (12)
int (r,r′) − ρ

(1)
int (r) ρ

(2)
int (r′)

]
× u(12)(r − r′). (23)

the zero-point motions and produces a purely quantum contribution
to the c.m. correlations.
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There is of course no exchange energy in Eq. (23) because
particles (1) and (2) are not identical. As this term does
not contain explicitly the c.m. correlations, the spirit of the
already developed approximations found in Refs. [8,16,20]
remains suitable within the formalism presented here, at least
for molecular systems, especially that of [16], which is directly
applicable to a coupling correlation energy written in the form
of Eq. (23).

The remaining task is to minimize the internal energy
(21) so as obtain the equations of motion (which define ρ

(l)
int).

Varying Eint[ρ
(1)
int ,ρ

(2)
int ] with respect to ϕ

(l)i∗
int and imposing the

(ortho-)normality of the {ϕ(l)i
int },

δ

δϕ
(l)i∗
int (r)

⎛
⎝Eint

[
ρ

(1)
int ,ρ

(2)
int

] −
2∑

m=1

N (m)∑
i=1

ε
(m)
i

(
ϕ

(m)i
int

∣∣ϕ(m)i
int

)⎞⎠ = 0

leads to “internal” Kohn-Sham equations (19) for the {ϕ(l)i
int }

with

v
(l)
S (r) =

∫
dr′ρ(l)

int(r
′)u(l)(r − r′) + U

(l/ l )
XC

[
ρ

(1)
int ,ρ

(2)
int

]
(r) + v

(l)
int(r) +

∫
dr′ρ(m)

int (r′)u(12)(r − r′)

+U
(m/l )
C

[
ρ

(1)
int ,ρ

(2)
int

]
(r) + U

(12/l )
C

[
ρ

(1)
int ,ρ

(2)
int

]
(r), for m �= l. (24)

We keep v
(l)
int for generality but recall that it can be set to zero

in the case of an isolated self-bound system. In addition to
the classical parts of the interaction [the Hartree potentials
for the (l) − (l) and (1)–(2) interactions, and the optional
external potentials] appear purely quantum potentials, which
are defined as follows.

The exchange-correlation potential for the particles of kind
(l) is

U
(l/ l )
XC

[
ρ

(1)
int ,ρ

(2)
int

]
(r) = δE

(l)
XC

[
ρ

(1)
int ,ρ

(2)
int

]
δρ

(l)
int(r)

. (25)

It is a functional of ρ
(1)
int and ρ

(2)
int , and not only of ρ

(l)
int, for the

reasons discussed above and linked to the c.m. correlations.
This potential contains the “standard” exchange-correlation
for the (l) − (l) interaction and the part of the c.m. correlations
that is contained in E

(l)
XC .

The other part of the c.m. correlations is included in E
(m�=l)
XC

(because of the decomposition we choose). Thus there also
appear complementary pure c.m. correlation potentials

U
(m/l )
C

[
ρ

(1)
int ,ρ

(2)
int

]
(r) = δE

(m)
XC

[
ρ

(1)
int ,ρ

(2)
int

]
δρ

(l)
int(r)

, for m �= l.

Finally, the coupling correlation potential is

U
(12/l )
C

[
ρ

(1)
int ,ρ

(2)
int

]
(r) = δE

(12)
C

[
ρ

(1)
int ,ρ

(2)
int

]
δρ

(l)
int(r)

. (26)

All those potentials are local, as expected, which is the
computational power of DFT. One can note that Eqs. (19) and
(24) are symmetrical under the exchange (1) ↔ (2).

Note that the first line of Eq. (24) contains the terms that
describe the interaction between the identical particles of kind
(l), which are close to those found in the “one kind of particle”
KS scheme [5]. The second line of Eq. (24) contains terms
that are specific to the KS equations for two kinds of particles.
They describe the interaction of the particles of kind (l) with
the particles of kind (m �= l).

C. Why do we introduce a number of orbitals equal
to the number of particles in the KS scheme?

The internal DFT formalism raises the following question
(we consider only one kind of fermion in this section
to simplify the discussion): since for a self-bound system
composed of N particles, only (N − 1) coordinates are
sufficient to describe internal properties, why do we introduce
N orbitals in the internal KS scheme? We mention that the
question of the number of orbitals to introduce in the KS
scheme also occurs in traditional DFT. Indeed, this number
is not imposed by the theory; it has been fixed “by hand”
to N orthonormal orbitals (introducing an auxiliary system
of N noninteracting particles). From now on, nothing would
fundamentally forbid us from introducing another number of
orbitals (eventually nonorthogonal with effective masses). This
would, of course, change the form of the KS energy functional,
which will “adapt” to the change of the number of orbitals.
More precisely, since to a chosen number M of orbitals
corresponds a specific definition of the noninteracting “kinetic
energy,” it would change the part of EXC[ρ] that corresponds
to the difference between the interacting kinetic energy and the
noninteracting “kinetic energy” [i.e., the second line of (22)],
that we note E�kin[ρ]. For instance, in the case where only
one KS orbital would be introduced, E

(M=1)
�kin [ρ] would be

drastically different from E
(M=N)
�kin [ρ], but it is easy to show

that the corresponding single KS equation would lead to
the exact interacting ground-state density, i.e., to the same
result as the one obtained by direct variation of the HK
functional by ρ, so that the noninteracting v-representability
is perfectly achieved (since the KS noninteracting “kinetic
energy” can then trivially be written as an explicit functional of
ρ (ϕ1 = √

ρ) and thus its variation is defined for all densities
for which

√
ρ is differentiable, including the interacting

v-representable ones).
Purely formally speaking, the question of the optimum

number of orbitals to introduce in the KS scheme can be re-
formulated as follows: Is the noninteracting v-representability
better achieved with a certain number of orbitals M (>1)? This
question is still open in traditional (and internal) DFT.
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But practically speaking, many advantages justify the
introduction of N orbitals:

(i) Even if only (N − 1) coordinates are sufficient to
describe the internal properties of a self-bound system, they
still describe a system of N particles. We thus have to introduce
N orthonormal orbitals if we want them to be interpreted
(to first order only) as single-particle orbitals and obtain a
scheme comparable to actual mean-field-like calculations with
effective interactions. In particular, the highest KS eigenvalue
εN is then the negative of the ionization (or the separation)
energy with the exact functional [28,29].

(ii) The antisymmetrization is explicit in terms of the N

particle coordinates only. Introduction of N orbitals permits
us to explicitly take into account the antisymmetrization in the
definition of ρ, while the antisymmetrization would be implicit
if another number of orbitals was introduced and thus more
difficult to obtain because it would have to be more precisely
taken into account in parametrizations of EXC[ρ].

(iii) It leads straightforwardly to the classical (pointlike)
limit (see Appendix D).

(iv) It a priori permits one to obtain, in the general case,
the noninteracting kinetic energy that is the closest to the
interacting kinetic energy (i.e., the smallest E

(M)
�kin[ρ]). Indeed,

E
(M=N)
�kin [ρ] contains only the correlations energy part of the

interacting kinetic energy, which is generally a correction. It is
essentially for quite small self-bound systems and within the

internal DFT formalism that E
(M=N)
�kin [ρ] can be more than a

correction, because it contains the c.m. correlations, which can
be large for those systems. Then, one track is to conserve N

orbitals and to develop precise parametrizations for E
(M=N)
�kin [ρ]

(which is not achieved by actual functionals); this would permit
us to preserve the advantages listed above. But the previous
discussion also opened the door to another possible track: study
whether the introduction of a number of orbitals M �= N (for
instance M = N − 1 with effective masses) would permit us to
obtain a smaller E

(M)
�kin[ρ], so that difficulties in parametrizing

E
(M)
�kin[ρ] would affect the result as little as possible. This goes

beyond the scope of this paper.

D. Link with previous multicomponent DFT formalisms

The previous multicomponent DFT formalisms found in
Refs. [16–19] have been developed without separation of the
c.m. motion, as already underlined in Ref. [18]. The definitions
of the energy functionals were based on the laboratory
wave function ψ and densities ρ(l). To understand the key
differences with those previous formalisms, we switch to
the Levy-Lieb constrained search formulation [27,30], within
which they have been developed. The corresponding energy
can be decomposed in a form similar to Eq. (21), where only
the definitions of E

(l)
XC and E

(12)
C change [i.e., the fourth line of

Eq. (21)] [16,18,19]:

E
(l)
XC

[
ρ

(1)
int ,ρ

(2)
int

] → E
(l)
XC[ρ(l)] = min

ψ (l)→ρ(l)
(ψ (l)|T̂ (l) + Û (l)|ψ (l)) − min

ψ
(l)
SD→ρ(l)

(
ψ

(l)
SD|T̂ (l)|ψ (l)

SD

) − E
(l)
H [ρ(l)],

E
(12)
C

[
ρ

(1)
int ,ρ

(2)
int

] → E
(12)
C [ρ(1),ρ(2)] = min

ψ→ρ(1),ρ(2)
(ψ |T̂ (l) + T̂ (2) + Û (1) + Û (2) + Û (12)|ψ) − min

ψ (1)→ρ(1)
(ψ (1)|T̂ (1) + Û (1)|ψ (1))

− min
ψ (2)→ρ(2)

(ψ (2)|T̂ (2) + Û (2)|ψ (2)) − E
(12)
H [ρ(1),ρ(2)]. (27)

The ψ are the interacting (N (1) + N (2))-particle states, the ψ
(l)
SD are the noninteracting N (l)-particle states (Slater determinants),

the ψ (l) are the interacting N (l)-particle states, and T̂ (l) = ∑N (l)

i=1
p̂

(l)2
i

2m(l) is the kinetic energy operator for particles of kind (l).

The interest of the introduction of the ψ (l) (and of the constrained search formulation) is that it permits us to define E
(l)
XC as a

functional of ρ(l) only (and not of both ρ(1) and ρ(2)). The constrained search formulation is by definition restricted to densities
and thus states that are normalizable (the variational principle being defined only for systems for which the wave function is
normalizable [27,31]). However, as the functionals are formulated in terms of the laboratory density (i.e., the c.m. motion is not
separated), the equations obtained after minimization of the energy functional should lead to full delocalization of the density.
Moreover, as the theory is not formulated in terms of internal properties, the c.m. correlations do not appear explicitly in the
functional.

Internal DFT overcomes those problems because it is based on the ground state internal wave function, which is by definition
always normalizable for self-bound systems, and is the one which defines the observables of experimental interest [6]. For better
comparison with the previous multicomponent DFT formalisms, we reformulate the energies E

(l)
XC and E

(12)
C defined in Sec. III B

within the constrained search formulation:

E
(l)
XC

[
ρ

(1)
int ,ρ

(2)
int

] = min
ψint→ρ

(1)
int ,ρ

(2)
int

(ψint|T̂ (l) + Û (l)|ψint) − min
ψ

(l)
SD→ρ

(l)
int

(
ψ

(l)
SD|T̂ (l)|ψ (l)

SD

) − E
(l)
H

[
ρ

(l)
int

]
,

E
(12)
C

[
ρ

(1)
int ,ρ

(2)
int

] = min
ψint→ρ

(1)
int ,ρ

(2)
int

(ψint|T̂ (1) + T̂ (2) + Û (1) + Û (2) + Û (12)|ψint)

− min
ψint→ρ

(1)
int ,ρ

(2)
int

(ψint|T̂ (1) + Û (1)|ψint) − min
ψint→ρ

(1)
int ,ρ

(2)
int

(ψint|T̂ (2) + Û (2)|ψint) − E
(12)
H

[
ρ

(1)
int ,ρ

(2)
int

]
. (28)
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The ψint are the interacting internal states which can be
expressed with (N (1) + N (2) − 1) Jacobi coordinates.4 The
ψ

(l)
SD are the noninteracting N (l)-particle states.
Note that the choice we made in Eq. (28) for the ψ̃

used in the minimization of (ψ̃ |T̂ (l) + Û (l)|ψ̃) is not unique
(because there is a cancellation between E

(l)
XC and E

(12)
C ). One

could, for instance, use interacting states ψ
(l)
int expressible with

(N (l) − 1) Jacobi coordinates which lead to ρ
(l)
int, instead of

the (N (1) + N (2) − 1) Jacobi coordinate state leading to ρ
(1)
int

and ρ
(2)
int .5 Even if formally correct, this is not the choice used

in Eq, (28), mainly because it would lead to interpretation
difficulties. Indeed, it amounts to considering that the particles
of kinds (1) and (2) have independent c.m. motions,6 while the
c.m. motion is common for the system as a whole. Moreover,
this would bring no gain because it would move the explicit
inclusion of total c.m. correlations to E

(12)
C , so that previously

developed approximations for this term [8,16,20] would not
be fully usable, contrary to the formulation proposed in this
paper. Another advantage of the decomposition we choose
in this paper is that it permits a clear link with “one kind
of particle” standard and internal DFT, which is discussed in
Sec. IV.

We now discuss the link with the slightly different work
found in Refs. [8,20]. First of all, this work is by its very
nature essentially suited for the description of molecular
systems, since the electronic coordinates are transformed to the
body-fixed frame independently from the nuclear coordinates.
[This “decoupling” is possible in molecular systems due
to the large difference of masses between electrons and
nuclei (see Appendix B); independent transformations are
no longer possible for a self-bound system where there is
no large difference of masses between the different kinds of
particles constituting it.] Second, this work treats the breaking
of rotational symmetry, which goes further than the other
multicomponent DFT formalisms. (We don’t treat rotational
symmetry in this article, but we are working on the problem.)
Third, the nuclear N (n)-body density is used as a basic variable
instead of the nuclear one-body density, for easier description
of collective phenomena, but it is of course less easy to handle
numerically for quite large systems.

The difficulty discussed above remains: Even if the elec-
tronic coordinates are transformed to the body-fixed frame,
since the c.m. wave function is not separated from the begin-
ning, all the densities are defined through a fully delocalized
wave function (for a ground state). But numerically speaking
this does not cause a real problem because:

(i) The KS step breaks by essence the translational sym-
metry, so that it forces the densities to become localized.

4Note that when the integrals involving ψint are written in the (N (1) +
N (2)) particle coordinates representation, following similar steps as
in Eq. (13), δ(R) appears explicitly.

5Since the c.m. motion is “subtracted” in our formalism, the most
pertinent interacting states to use are of course internal ones, i.e.,
expressible in terms of Jacobi coordinates.

6Indeed, following similar steps as in Eq. (13), the integral
(ψ (l)

int |T̂ (l) + Û (l)|ψ (l)
int ) can be written in terms of the N (l) coordinates

of particles (l). Then δ(R(l)) appears explicitly.

(ii) In Refs. [8,20], the KS scheme is formulated in
terms of the N (n)-body nuclear density and, in the presented
practical calculations, the nuclear c.m. has been separated at
a second step, leading to the inclusion of the c.m. correla-
tions in the corresponding N (n)-body auxiliary nuclear wave
function.

In the formalism presented in the present article, the c.m.
motion has been separated from the beginning, leading to a
proper formulation of the HK theorem in terms of the internal
densities and the explicit inclusion of the c.m. correlations in
the functional. This formalism is suited to study all self-bound
systems.

We now study thoroughly the application to molecular
systems, which permits us to make explicit the link between
this formalism and traditional DFT, and then detail the
application to atomic nuclei and mixtures of 3He and 4He
droplets.

IV. APPLICATION TO MOLECULAR SYSTEMS
AND LIMIT OF TRADITIONAL DFT

Electrons (we note l = e) are fermions, so that exchange
and correlations are included in the functional E

(e)
XC . Nuclei

(we note l = n) are approximated as pointlike and can be
fermions or bosons (in the latter case, the functional E

(n)
XC

contains only correlations and all the ϕ
(n)i
int are identical). The

internal potentials v
(l)
int can then describe internal effects of a

polarization potential (i.e., a voltage applied to the system),
for instance in the stationary case, or internal effects of lasers
used in molecular irradiation experiments, for instance in the
time-dependent case [32].

A. Simplification of the formalism due to the large
difference of masses

In molecular systems the nuclei are much heavier than
the electrons, i.e., m(n) 	 m(e). It thus should be a very
good approximation to consider R = R(n) and apply Jacobi
coordinates to the nuclear coordinates only, so that the nuclei
will be described by (N (n) − 1) Jacobi coordinates and will
carry all the c.m. correlations. As a consequence, the electrons
are not concerned by the redundant coordinates problem (i.e.,
the c.m. correlations) and remain described by N (e) coordinates
in the frame attached to the c.m. of the nuclei. See Appendix B
for better understanding of this mechanism from the point of
view of Jacobi coordinates and Appendix C from the point of
view of the functionals.

As a direct consequence, the electronic exchange-
correlation functional E

(e)
XC no longer contains explicitly the

c.m. correlations and its form becomes comparable to that of
the exchange-correlation functional of “one kind of particle”
traditional DFT [1] [see Eq. (C3)]. All the c.m. correlations
are explicitly included in the nuclear exchange-correlation
functional E

(n)
XC only and its form becomes comparable to

the form of the exchange-correlation functional of “one kind
of particle” internal DFT [6] [see Eq. (C4)]. Since it is
only the c.m. coupling between the particles (l) and (m �= l)
that produces a ρ

(m�=l)
int dependence in E

(l)
XC [see discussion
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following Eq. (22)], we have

δE
(l)
XC

[
ρ

(1)
int ,ρ

(2)
int

]
δρ

(m)
int (r)

= 0, for m �= l ⇒ E
(l)
XC

[
ρ

(l)
int

]
.

The internal energy (21) thus becomes

Eint
[
ρ

(n)
int ,ρ

(e)
int

]

=
N (n)∑
i=1

(
ϕ

(n)i
int

∣∣∣∣ p2

2m(n)

∣∣∣∣ϕ(n)i
int

)
+

N (e)∑
i=1

(
ϕ

(e)i
int

∣∣∣∣ p2

2m(e)

∣∣∣∣ϕ(e)i
int

)

+E
(n)
H

[
ρ

(n)
int

] + E
(e)
H

[
ρ

(e)
int

] + E
(ne)
H

[
ρ

(n)
int ,ρ

(e)
int

]
+E

(n)
XC

[
ρ

(n)
int

] + E
(e)
XC

[
ρ

(e)
int

] + E
(ne)
C

[
ρ

(n)
int ,ρ

(e)
int

]
+

∫
drv(n)

int (r)ρ(n)
int (r) +

∫
drv(e)

int (r)ρ(e)
int (r), (29)

and the KS potentials (24) for the electrons and nuclei become

v
(e)
S (r) =

∫
dr′ρ(e)

int (r′)u(e)(r − r′) + U
(e/e)
XC

[
ρ

(e)
int

]
(r) + v

(e)
int (r)

+
∫

dr′ρ(n)
int (r′)u(en)(r − r′) + U

(en/e)
C

[
ρ

(e)
int ,ρ

(n)
int

]
(r),

v
(n)
S (r) =

∫
dr′ρ(n)

int (r′)u(n)(r − r′) + U
(n/n)
XC

[
ρ

(n)
int

]
(r) + v

(n)
int (r)

+
∫

dr′ρ(e)
int (r′)u(en)(r − r′) + U

(en/n)
C

[
ρ

(e)
int ,ρ

(n)
int

]
(r).

(30)

Since E
(e)
XC[ρ(e)

int ] is comparable to the exchange-correlation
functional of traditional DFT, standard approximations remain
pertinent, for example, the widely used local density approx-
imation (LDA)7 (see, e.g., Ref. [33]) or its extension to the
generalized gradient approximation (GGA) [34].

It remains an open problem to find satisfying numerically
manageable approximations for E

(n)
XC[ρ(n)

int ], which among
others would contain the c.m. correlation energy. It would
permit us to study molecular systems where the quantum
nature of the nuclei plays an important role (for example,
small molecules [14] and solid hydrogen [15]). The LDA
could not be used a priori to approximate it because the
nuclei are generally localized. It would probably be more
pertinent to start from an approximation which exploits
localization (and not delocalization as LDA does). A crude
approximation would be to do the maximum localization
approximation and replace, in the obtained functional, the
corresponding classical density by the true density of the
system. Appendix D details how to make properly the classical
(pointlike) approximation for self-bound systems, which is not
completely trivial because of the translational symmetry. Then,
the “kinetic energy correlations” part of E

(n)
XC (which contains

explicitly the c.m. correlations) disappears and γ
(n)
int (r,r′) −

ρ
(n)
int (r)ρ(n)

int (r′) → ∑N (n)

i=1 ρ
(n)i
int (r)ρ(n)i

int (r′), where ρ
(n)i
int = |ϕ(n)i

int |2

7That is, the maximum delocalization approximation (Fermi gas)
and replacement, in the obtained functional, of the Fermi gas density
by the true density of the system.

(see Appendix D). We thus obtain E
(n)
XC = −∑N (n)

i=1 E
(n)
H [ρ(n)i

int ],
which corresponds to the self-interaction correction to the
(n)-(n) Hartree energy, as noticed in Refs. [18,35] for
the standard case, and leads to the potential U

(n/n)
XC =

− ∫
dr′ρ(n)i

int (r′)u(n)(r − r′) when applied to the state ϕ
(n)i
int .

This approximation gives a single density dependence and
not an explicit total density dependence. (This dependence is
nevertheless implicit as soon as a local KS potential is imposed,
which is the aim of the optimized effective potential method
[36–38], because it implies ϕ

(n)i
int [ρ(n)

int ].) This necessitates extra
(numerically more costly) caution to ensure the orthonormality
of the {ϕ(n)i

int } (see, for example, Refs. [39–41]).
Even if this “maximally localized” approximation should

be used as a minima in the absence of other approximations, its
range of validity is not clear. Indeed, the width of the nuclear
single densities is not systematically very small [18,42].
Moreover, this approximation does not permit us to evaluate
the c.m. correlations contained in E

(n)
XC (because they disappear

in the classical limit, see Appendix D and footnote 3). Thus, the
question of a suitable approximation for E

(n)
XC as a functional

of the one-body total nuclear density, including the c.m.
correlations, remains open. A possible approach would be to
use the semiclassical approximation [43] instead of the crude
classical (pointlike) approximation.

Concerning E
(ne)
C [ρ(n)

int ,ρ
(e)
int ], we recall that the spirit of the

already developed approximations found in Refs. [8,16,20]
remain suitable within the formalism presented here, espe-
cially that of Ref. [16], but further developments are certainly
desirable.

Finally, one can note that the KS equations (19) and (30)
still remain symmetric under the exchange (e) ↔ (n), but the
forms of E

(n)
XC and E

(e)
XC (thus of U

(n/n)
XC and U

(e/e)
XC ) are different:

one contains explicitly the c.m. correlations whereas the other
one does not.

We now make further approximations that permit us
to recover traditional DFT and thus to understand better
the approximations inherent to this formalism and how to
eventually improve its results.

B. Further approximations that enable us to recover
traditional DFT

1. Electron-nuclear correlation energy neglected

We suppose that in the total internal energy (29), the
electron-nuclear correlation energy E

(en)
XC is negligible com-

pared to the other energies. This in particular implies that
|E(ne)

C | is much smaller than |E(n)
XC |. It is likely that this is a fair

approximation for a certain class of molecular systems, since
(i) E

(n)
XC should at least contain the (n)-(n) Hartree self-

interaction (as discussed above),
(ii) electrons and nuclei are different kinds of particles, and

(iii) nuclei are generally localized (thus not too far from
classical particles).

However, the range of validity of this approximation is not
presently perfectly clear. Indeed, there exist molecular systems
for which the electron-nuclei correlations are important for the
description of some physical properties [16]. Then one has to
remain at the previous step.
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Within this approximation the total internal energy becomes

Eint
[
ρ

(n)
int ,ρ

(e)
int

]
=

N (n)∑
i=1

(
ϕ

(n)i
int

∣∣∣∣ p2

2m(n)

∣∣∣∣ϕ(n)i
int

)
+

N (e)∑
i=1

(
ϕ

(e)i
int

∣∣∣∣ p2

2m(e)

∣∣∣∣ϕ(e)i
int

)

+E
(n)
H

[
ρ

(n)
int

] + E
(e)
H

[
ρ

(e)
int

] + E
(ne)
H

[
ρ

(n)
int ,ρ

(e)
int

]
+E

(n)
XC

[
ρ

(n)
int

] + E
(e)
XC

[
ρ

(e)
int

]
+

∫
drv(n)

int (r)ρ(n)
int (r) +

∫
drv(e)

int (r)ρ(e)
int (r), (31)

and the KS potentials (30) become

v
(e)
S (r) =

∫
dr′ρ(e)

int (r′)u(e)(r − r′) + U
(e/e)
XC

[
ρ

(e)
int

]
(r)

+ v
(e)
int (r) +

∫
dr′ρ(n)

int (r′)u(en)(r − r′),

v
(n)
S (r) =

∫
dr′ρ(n)

int (r′)u(n)(r − r′) + U
(n/n)
XC

[
ρ

(n)
int

]
(r)

+ v
(n)
int (r) +

∫
dr′ρ(e)

int (r′)u(en)(r − r′). (32)

We see that for the electrons we have recovered the traditional
“one kind of particle” KS potential (as U

(e/e)
XC does not contain

the c.m. correlations), with, in standard notation [1–5],

vext(r) = v
(e)
int (r) +

∫
dr′ρ(n)

int (r′)u(en)(r − r′). (33)

The potential vext contains the arbitrary one-body internal
potential v

(e)
int and the Hartree part of the electron-nuclear

interaction (which is a functional of the nuclear one-body
density ρ

(n)
int ), and vext is thus a functional of v

(e)
int and ρ

(n)
int , which

is allowed by traditional DFT. (Traditional DFT is valid for
any vext that is not a functional of the electronic wave function,
thus density, and that leads to a bound state.) The potential vext,
which is internal for (self-bound) molecular systems, becomes
external for the pure electronic problem. This permits us to
understand why traditional DFT is particularly well suited for
the description of the electrons (only) in a molecular system,
in the frame attached to the c.m. of the nuclei.

Note that contrary to what is sometimes thought, traditional
DFT does not, strictly speaking, involve the a clamped nuclei
approximation (and thus not the Born-Oppenheimer approxi-
mation either). Indeed, traditional KS equations (from which
follow the ϕ

(e)i
int ) do not necessarily depend parametrically

on the nuclear positions. One is allowed to use an external
potential of the form (33), so that the nuclei are described with
a spatial width (i.e., quantum-mechanically), and to specify
another equation that defines ρ

(n)
int . It is when this last equation

is not specified (for instance, if we simply impose that each
nuclei is represented by a Gaussian of fixed width) or when
the nuclei are treated classically (see next section) that the
total molecular energy should be calculated for various nuclear
configurations (various mean positions of the Gaussians in the
first case) to deduce the configuration of minimum energy.
In the most general case, the considerations of this section
permit one to understand that, from the point of view of
the KS potential, traditional DFT fundamentally requires
that the electron-nuclear correlation energy E

(ne)
XC [ρ(n)

int ,ρ
(e)
int ]

is neglected but not necessarily the clamped nuclei
approximation.

Concerning the nuclear potential v
(n)
S , note that it is similar

to the “one kind of particle” internal KS potential (as c.m.
correlations are included in E

(n)
XC), with (using the notations

of [6])

vint(r) = v
(n)
int (r) +

∫
dr′ρ(e)

int (r′)u(en)(r − r′).

2. Classical (pointlike) nuclei

A quantum treatment of the nuclei may be necessary for
an accurate description of small molecules [14] and certain
molecular systems of intermediate size. For larger molecular
systems, a classical treatment of the nuclei is generally
sufficient because the nuclei become more and more localized
in {r} and {p} spaces. A further approximation is to suppose
that the nuclei are perfectly localized in both spaces. The
Appendix D shows how to make this approximation properly
in the case of self-bound systems. We note {r(ncl)

i ,p(ncl)
i }, the

positions and momenta of the classical nuclei in the c.m.
frame, i.e., satisfying

∑N (n)

i=1 r(ncl)
i = 0 and

∑N (n)

i=1 p(ncl)
i = 0.

We pose |ϕ(n)i
int (r)|2 → δ(r − r(ncl)

i ) and |ϕ(n)i
int (p)|2 → δ(p −

p(ncl)
i ), so that ρ

(n)
int (r) → ∑N (n)

i=1 δ(r − r(ncl)
i ) and ρ

(n)
int (p) →∑N (n)

i=1 δ(p − p(ncl)
i ). The total internal energy (31) becomes

(remember that only a Hartree self-interaction correc-
tion remains in E

(n)
XC at the classical pointlike limit, see

Sec. IV A, and that in the stationary case each p(ncl)
i should

be null)

Eint
[
ρ

(e)
int ,

{
r(ncl)
i

}]
=

N (e)∑
i=1

(
ϕ

(e)i
int

∣∣∣∣ p2

2m(e)

∣∣∣∣ϕ(e)i
int

)
+ E

(e)
H

[
ρ

(e)
int

] + E
(e)
XC

[
ρ

(e)
int

]

+
∫

drv(e)
int (r)ρ(e)

int (r) +
N (n)∑
i=1

∫
drρ(e)

int (r)u(en)
(
r − r(ncl)

i

)

+
N (n)∑

i>j=1

u(n)
(
r(ncl)
i − r(ncl)

j

) +
N (n)∑
i=1

v
(n)
int

(
r(ncl)
i

)
, (34)

and the electronic KS potential (32) becomes

v
(e)
S (r) =

∫
dr′ρ(e)

int (r′)u(e)(r − r′) + U
(e/e)
XC

[
ρ

(e)
int

]
(r)

+ v
(e)
int (r) +

N (n)∑
i=1

u(en)(r − r(ncl)
i

)
, (35)

which now depends parametrically on the nuclear positions
{r(ncl)

i }. Thus the {ϕ(e)i
int } and ρ

(e)
int also depend parametrically

on the {r(ncl)
i }. We recover a traditional “one kind of particle”

DFT equation [1–5] with a classical nuclear background:

vext(r) = v
(e)
int (r) +

N (n)∑
i=1

u(en)
(
r − r(ncl)

i

)
.

The nuclear KS equations become obsolete in the stationary
case. Indeed, classical pointlike nuclei have no zero point
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motions, so that they fall to the bottom of the potential well,
and the ground state of the whole molecule can be found
by minimization of the total internal energy (34) for various
nuclear configurations {r(ncl)

i }.

3. A method to improve the results of traditional DFT

The previous considerations permit us to set up a method to
improve the results of traditional DFT in the molecular case:

(i) Start from the classical nuclei approximation described
in Sec. IV B 2, with electrons described by “one kind of
particle” DFT and parametrized by the nuclear positions. This
is what is done in most of the practical calculations. This is
essentially suited for molecular systems whose nuclei are very
localized, i.e., quite large molecular systems.

(ii) If this is not enough, for instance, in the case of
relatively small molecules where quantum effects associated
with the nuclei play a role, skip to the approximation
described in Sec. IV B 1. The nuclei are then treated quantum
mechanically but the electron-nuclear correlation energy is
neglected. There remain the (n)-(n) Hartree interaction with at
least a self-interaction correction, until other more satisfactory
nuclear exchange-correlation functionals (including the c.m.
correlations) are available. The electrons still satisfy “one kind
of particle” traditional KS equations, but the corresponding
orbitals are no longer parametrized by the nuclear positions.

(iii) If this is still not enough, for instance, in cases where
the electron-nuclei correlations play an important role, add the
electron-nuclear correlation energy as described in Sec. IV A,
using, for instance, the approximation proposed in Ref. [16]
(but further developments appear desirable). The obtained
equations go beyond “one kind of particle” traditional and
internal KS equations because of the coupling correlation term
E

(ne)
C [ρ(n)

int ,ρ
(e)
int ].

V. ON THE APPLICATION TO ATOMIC NUCLEI
AND MIXTURES OF 3HE AND 4HE DROPLETS

When the masses of each species constituting the self-
bound system are not very different (for instance, in the case
of protons and neutrons in an atomic nucleus or mixtures
of 3He and 4He droplets), one cannot do the approximations
presented in the previous section, because the c.m. correlations
couple all the particles, and the complete formalism presented
in Sec. III B has to be used.

One interest of the application of multicomponent internal
DFT formalism to protons and neutrons is to give a fundamen-
tal justification to the use of internal density functionals for
stationary mean-field-like calculations of nuclei with effective
interactions [12], showing that there exists an ultimate local
potential which contains the c.m. correlations and permits
one to reproduce the exact internal densities of the protons
and neutrons.8 It gives a more fundamental justification than
the Hartree-Fock (HF) framework to the stationary nuclear
mean-field-like calculations. Indeed, HF does not contain
quantum correlations, nor does it treat correctly the redundant

8Protons and neutrons are both fermions, so that the two functionals
E

(l)
XC should contain exchange and correlations.

coordinate problem, which introduces a spurious coupling
between internal properties and c.m. motion [21,44]. A way
to overcome this problem in the stationary case is to perform
projected HF (projection before variation on c.m. momentum),
which permits restoration of Galilean invariance, but at
the price of abandoning the independent-particle description
[12,21–23] and at a large numerical cost. The internal DFT
formalism demonstrates that the c.m. correlations can be taken
into account through a local potential, a priori numerically
much less costly than the projection techniques.

We emphasize that for nuclear systems, the v
(l)
int are generally

zero. It is the dependence on the initial state that allows, in
the time-dependent case, a description of, for instance, the
collision of two nuclei in the frame attached to the total c.m.
of the nuclei [32].

We mention that the point of view often adopted in nuclear
physics is that the protons and neutrons are the same kinds
of particles, leading to isospin considerations [44]. From this
point of view, it is rather the inclusion of the isospin in “one
kind of particle” internal DFT that would give KS equations
comparable to nuclear mean-field-like calculations.

The application of multicomponent internal DFT to mix-
tures of 3He and 4He droplets9 also permits us to give a
fundamental justification to the mean-field-like calculations
done to describe those systems [13]. Since the c.m. correlations
are, to our knowledge, still not treated in existing calcula-
tions of helium droplets, this work opens the way to their
inclusion.

VI. CONCLUSION

We have generalized the internal DFT formalism and
Kohn-Sham scheme to multicomponent self-bound systems,
treating correctly their fundamental translational symmetry.
The formalism we obtained applies to the description of
molecular systems where the nuclei are treated explicitly,
atomic nuclei and mixtures of 3He and 4He droplets. The main
difference with traditional DFT is the explicit inclusion of the
quantum center-of-mass correlations (due to the zero-point
motion) in the functional.

The application to molecular systems where the nuclei are
treated explicitly permits us to clarify the approximations that
underly traditional “one kind of particle” DFT and KS scheme
(i.e., electron-nuclei correlation energy neglected) and why
this formalism is essentially suited for the description of the
electrons (only) in the frame attached to the c.m. of the nuclei.
We also set up a method to improve the results of traditional
DFT in the case of molecular systems.

The application to atomic nuclei and mixtures of 3He and
4He droplets provides a step toward a fundamental justification
to the use of effective interactions that are functionals of
the one-body densities of each species in mean-field-like
calculations.

Finally, we mention the questions that remain open:

93He are fermions, so that the corresponding E
(l)
XC functional should

contain exchange and correlations. 4He are bosons, so that the
corresponding E

(l)
XC functional should contain only correlations and

the corresponding orbitals ϕ
(l)i
int should be identical (for condensates).
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(i) The search for a general functional that describes the
c.m. correlations and leads to a local KS potential is continuing.
It would give a numerically advantageous alternative to
the projection techniques used in nuclear physics to restore
Galilean invariance. It could also be used to improve the
description of helium droplets and nuclei in molecular systems.

(ii) In the case of molecular systems, it appears desirable to
find more satisfactory functional forms for the nucleus-nucleus
correlation energy E

(n)
XC[ρ(n)

int ] than the simple self-interaction
correction to the Hartree energy obtained through the crude
classical (pointlike) approximation. One way could be to
use semiclassical approximations. It also appears desirable
to pursue the search of functionals for the electron-nuclear
correlation energy E

(ne)
C [ρ(n)

int ,ρ
(e)
int ].

(iii) The generalization of this work to the time-dependent
case is not completely trivial and is under investigation,
following the considerations of Refs. [32,45].

(iv) The question of the noninteracting v-representability
according to the number of orbitals introduced in the KS
scheme merits further study.

(v) It would be interesting to apply the same reasoning to
rotational invariance to formulate the theory in terms of the
internal density with respect to the body-fixed frame (some-
times also called “intrinsic” one-body density [46]). Indeed,
even if this density is not directly observable experimentally,
there is some indirect experimental evidence for the existence
of rotational symmetry-breaking states in nuclear rotational
bands. Such a work would certainly shed some light on the
symmetry-breaking question.
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APPENDIX A: JACOBI COORDINATES FOR PARTICLES
OF DIFFERENT KINDS

We consider a system of N particles of different kinds. We
start from the set of conjugate laboratory coordinates {ri} and
{pi}, associated to the masses {mi}, with i = 1, . . . ,N . The
Jacobi coordinates are (α = 1, . . . ,N − 1)

(i) the c.m. position R = 1∑N
i=1 mi

∑N
i=1 miri , conjugated to

the total momentum P = ∑N
i=1 pi ,

(ii) the relative positions (relative to the c.m. of the
i − 1 other particles) ξα = rα+1 − 1∑α

i=1 mi

∑α
i=1 miri , conju-

gate to the relative momenta τα = 1∑α+1
i=1 mi

(pα+1
∑α

i=1 mi −
mα+1

∑α
i=1 pi). If we note

∑N
i=1 mi = M the total mass and

μα = mα+1
∑α

i=1 mi∑α+1
i=1 mi

the relative mass, we can decompose the

kinetic energy as
∑N

i=1
p2

i

2mi
= P2

2M
+ ∑N−1

α=1
τ 2
α

2μα
.

APPENDIX B: SIMPLIFICATION OF THE JACOBI
COORDINATES WHEN ONE KIND OF PARTICLE

IS MUCH HEAVIER THAN THE OTHER

We suppose that m(1) 	 m(2). Then if N (2) is not much
larger than N (1) and/or R(2) is not very far away from R(1),
which is the case for molecular systems, one can simplify (2) in

R = 1

N (1)

N (1)∑
i=1

r(1)
j = R(1), (B1)

so that the c.m. of the whole system coincides with the c.m.
R(1) of the particles (1) only. Moreover, Jacobi coordinates
(3) and reduced masses (7) can be simplified in

for α ∈ [1; N (1) − 1] :

ξα = r(1)
α+1 − 1

α

α∑
i=1

r(1)
i = ξ (1)

α and μα = α

α + 1
m(1),

for i ∈ [1; N (2)] :

ξN (1)−1+i = r(2)
i − R(1) = r′(2)

i and μN (1)−1+i = m(2),

where the (N (1) − 1) coordinates ξ (1)
α appear as Jacobi

coordinates specific to the particles of kind (1) only, and the
remaining N (2) coordinates r′(2)

i appear naturally as the coor-
dinates of each N (2) single particles (2) in the c.m. frame. Thus
we see that we obtain an equivalent result if we apply Jacobi
coordinates to the heavy particles only and if we describe each
light particle by its coordinates in the frame attached to the c.m.
of the heavy particles. As a consequence, the redundant coor-
dinate problem, and thus the c.m. correlations, concerns only
the heavy particles. This explains why those correlations
should not appear in the exchange-correlation energy
functional of the light particles (for instance, the electrons in
a molecule).

APPENDIX C: EXCHANGE-CORRELATION
FUNCTIONALS WHEN ONE KIND OF PARTICLE

IS MUCH HEAVIER THAN THE OTHER

In the molecular case, as R = R(n), for any function
f (r(e)

1 , . . . ,r(e)
N (e) ) that depends on the electronic coordinates

only, we have

If =
∫

dr(n)
1 · · · dr(n)

N (n)dr(e)
1 · · · dr(e)

N (e)δ(R)

×∣∣ψint
(
r(n)

1 , . . . ,r(n)
N (n) ; r(e)

1 , . . . ,r(e)
N (e)

)∣∣2

× f
(
r(e)

1 , . . . ,r(e)
N (e)

)
=

∫
dr(e)

1 · · · dr(e)
N (e)f

(
r(e)

1 , . . . ,r(e)
N (e)

)∣∣ψ (e)
int

(
r(e)

1 , . . . ,r(e)
N (e)

)∣∣2
,

where we have defined the local part of the N (e)-body
electronic density as∣∣ψ (e)

int

(
r(e)

1 , . . . ,r(e)
N (e)

)∣∣2 =
∫

dr(n)
1 · · · dr(n)

N (n)δ(R(n))

× ∣∣ψint
(
r(n)

1 , . . . ,r(n)
N (n) ; r(e)

1 , . . . ,r(e)
N (e)

)∣∣2
. (C1)

This makes it clear that If is no longer explicitly affected by (or
no longer contains explicitly) the c.m. correlations. Indeed, the
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δ(R(n)) does not directly affect the integral over the electronic
coordinates. The c.m. correlations are included only implicitly
through |ψ (e)

int |2.
More generally, we consider an operator F̂ that acts on the

electronic coordinates only (we write F̂ (r(e)
1 , . . . ,r(e)

N (e) ) in {r}
representation). We find

IF̂ =
∫

dr(n)
1 · · · dr(n)

N (n)dr(e)
1 · · · dr(e)

N (e)δ(R)

×ψ∗
int

(
r(n)

1 , . . . ,r(n)
N (n) ; r(e)

1 , . . . ,r(e)
N (e)

)
F̂

(
r(e)

1 , . . . ,r(e)
N (e)

)
×ψint

(
r(n)

1 , . . . ,r(n)
N (n) ; r(e)

1 , . . . ,r(e)
N (e)

)
=

∫
dr(e)

1 · · · dr(e)
N (e)ψ

(e)∗
int

(
r(e)

1 , . . . ,r(e)
N (e)

)
F̂

(
r(e)

1 , . . . ,r(e)
N (e)

)
×ψ

(e)
int

(
r(e)

1 , . . . ,r(e)
N (e)

)
, (C2)

where ψ
(e)
int is defined such as

ψ
(e)∗
int

(
r(e)

1 , . . . ,r(e)
N (e)

)
F̂

(
r(e)

1 , . . . ,r(e)
N (e)

)
ψ

(e)
int

(
r(e)

1 , . . . ,r(e)
N (e)

)
=

∫
dr(n)

1 · · · dr(n)
N (n)δ(R(n))ψ∗

int

(
r(n)

1 , . . . ,r(n)
N (n) ; r(e)

1 , . . . ,r(e)
N (e)

)
× F̂

(
r(e)

1 , . . . ,r(e)
N (e)

)
ψint

(
r(n)

1 , . . . ,r(n)
N (n) ; r(e)

1 , . . . ,r(e)
N (e)

)
.

This definition complies with (C1) (when F̂ → f ). As above,
we see that IF̂ is not explicitly affected by the c.m. correlations.
(Those correlations are included only implicitly through the
“electronic wave function” ψ

(e)
int .)

All this makes it clear, from a complementary point of view
of that presented in Appendix B, that the c.m. correlations
should no longer appear explicitly in the electronic exchange-
correlation functional (22). Indeed, it can be rewritten with the
previous notation,

E
(e)
XC = 1

2

∫
dr dr′ [γ (e)

int (r,r′) − ρ
(e)
int (r) ρ

(e)
int (r′)

]
u(e)(r − r′)

+
N (e)∑
i=1

[ ∫
dr(e)

1 · · · dr(e)
N (e) ψ

(e)∗
int

(
r(e)

1 , . . . ,r(e)
N (e)

)

× p(e)2
i

2m(e)
ψ

(e)
int

(
r(e)

1 , . . . ,r(e)
N (e)

) −
(

ϕ
(e)i
int

∣∣∣∣ p2

2m(e)

∣∣∣∣ϕ(e)i
int

) ]
,

(C3)

whose form is similar to that of traditional DFT [1]. Using the
same kind of reasoning for the nuclei, we obtain

E
(n)
XC = 1

2

∫
dr dr′ [γ (n)

int (r,r′) − ρ
(n)
int (r) ρ

(n)
int (r′)

]
u(n)(r − r′)

+
N (n)∑
i=1

[ ∫
dr(n)

1 · · · dr(n)
N (n) δ(R(n))ψ (n)∗

int

(
r(n)

1 , . . . ,r(n)
N (n)

)

× p(n)2
i

2m(n)
ψ

(n)
int

(
r(n)

1 , . . . ,r(n)
N (n)

)−(
ϕ

(n)i
int

∣∣∣∣ p2

2m(n)

∣∣∣∣ϕ(n)i
int

)]
,

(C4)

which explicitly contains all the c.m. correlations and whose
form is similar to that of internal DFT [6].

APPENDIX D: THE CLASSICAL (POINTLIKE) LIMIT
IN THE INTERNAL DFT FORMALISM

To lighten the notation and since it is sufficient for the
considerations of this paper, we consider only one kind of
particle in this section. The generalization to many kinds of
particles is straightforward.

1. Classical limit for the densities

The classical (pointlike) limit for a N-body density |ψ̃ |2 is
usually obtained by assuming

|ψ̃(r1, . . . ,rN )|2 → 1

N !

∑
P

N
i=1ρ

(cl)i(rP (i)), (D1)

where the {ri} are the coordinates of the N particles, P the
possible permutations of those coordinates, and

ρ(cl)i(r) = δ
(
r − r(cl)

i

)
(D2)

are the classical densities of each particle i (the r(cl)
i being their

classical positions). Of course, this approximation breaks the
translational invariance so that it can be fundamentally justified
only for densities |ψ̃ |2 that are not translationally invariant (and
are symmetric under the exchange of two particles, of course).
It thus cannot be fundamentally justified for the laboratory
N-body density |ψ |2 of a self-bound system, nor for its internal
N-body density |ψint|2 expressed with the particle coordinates
{ri}, because they are both translationally invariant.

For self-bound systems, it is in fact for the c.m. frame
N-body “density” δ(R)|ψint(r1, . . . ,rN )|2 that the classical
approximation can fundamentally be justified. Indeed, this
“density” is obviously not translationally invariant (the δ(R)
fixes the c.m. in position space and amounts to move in the c.m.
frame) and is symmetric under the exchange of two particles
(as |ψint|2 satisfies this symmetry). It is non-null only for the
{ri} that satisfy R = ∑N

i=1 ri = 0 (i.e., the {ri} become the
c.m. frame coordinates).

In the same way, for a classical system described in the c.m.
frame, 1

N!

∑
P N

i=1ρ
(cl)
i (rP (i)) is non-null only for the {r(cl)

i }
that satisfy

∑N
i=1 r(cl)

i = 0. Thus, for self-bound systems the
proper way to do the classical approximation is to replace

δ(R)|ψint(r1, . . . ,rN )|2 → 1

N !

∑
P

N
i=1ρ

(cl)i
int (rP (i)) (D3)

with

N∑
i=1

r(cl)
i = 0 and ρ

(cl)i
int (r) = δ

(
r − r(cl)

i

)
. (D4)

Inserting this approximation in the definitions of Sec. II B, we
obtain the classical (pointlike) limits of the one- and two-body
internal densities

ρ
(cl)
int (r) =

N∑
i=1

ρ
(cl)i
int (r),

(D5)

γ
(cl)
int (r,r′) = ρ

(cl)
int (r)ρ(cl)

int (r′) −
N∑

i=1

ρ
(cl)i
int (r)ρ(cl)i

int (r′).
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2. Classical limit for the kinetic energy terms

We define the one-body density in {p} space of the
interacting system as

ρint(p) = N

∫
dp1 . . . dpNδ(P) |ψint(p1, . . . ,pN )|2 δ(pi − p),

where P = ∑N
i=1 pi is fixed to zero, so that ρint is defined in

the c.m. frame. The interacting internal kinetic energy can then
be written(

ψint

∣∣∣∣∣
N−1∑
α=1

τ 2
α

2μα

∣∣∣∣∣ ψint

)
=

∫
dp

p2

2m
ρint(p).

The one-body density in {p} space of the noninteracting (KS)
system is defined as [1]

ρS
int(p) =

∫
drdr′ expip(r−r′)/h̄

N∑
i=1

ϕi
int(r)ϕi∗

int(r
′),

so that the kinetic energy of the noninteracting system can be
written

N∑
i=1

(
ϕi

int

∣∣∣∣ p2

2m

∣∣∣∣ϕi
int

)
=

∫
dp

p2

2m
ρS

int(p).

Even if the one-body densities in the {r} space of the interacting
and noninteracting systems are the same, it is not the case for

the one-body densities in the {p} space, i.e., ρint(p) �= ρS
int(p)

(the difference is due to the quantum correlations). Thus
in the general case, the difference between interacting and
noninteracting internal kinetic energies that appear in EXC

[see second line of Eq. (22)] is not null:(
ψint

∣∣∣∣∣
N−1∑
α=1

τ 2
α

2μα

∣∣∣∣∣ ψint

)
−

N∑
i=1

(
ϕi

int

∣∣∣∣ p2

2m

∣∣∣∣ ϕi
int

)

=
∫

dp
p2

2m
(ρint(p) − ρS

int(p)) �= 0. (D6)

But since the mean total momenta of the interacting and non-
interacting systems should be equal, the classical (pointlike)
limit (obtained supposing that the system is perfectly localized
in both {r} and {p} spaces) gives

ρint(p) = ρS
int(p) =

N∑
i=1

δ
(
p − p(cl)

i

)
,

where the p(cl)
i are the classical momenta of the particles in the

c.m. frame, which satisfy
∑N

i=1 pcl
i = 0 (in the stationary case,

pcl
i = 0 of course). Thus, in the classical limit, the “kinetic

energy-exchange correlations” part of EXC [i.e., the second
line of Eq. (22)], which contains explicitly the c.m. correlations
in {r} representation, disappears.
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