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Relations between matrix elements of different weak interactions and interpretation of the
parity-nonconserving and electron electric-dipole-moment measurements in atoms and molecules
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The relations between matrix elements of different (P ,T )-odd weak interactions are derived. We demonstrate
that similar relations hold for parity-nonconserving transition amplitudes and electron electric dipole moments
(EDMs) of atoms and molecules. This allows one to express P - and T -odd effects in many-electron systems
caused by different symmetry-breaking mechanisms via each other using simple analytical formulas. We use
these relations for the interpretation of the anapole moment measurements in cesium and thallium and for the
analysis of the relative contributions of the scalar-pseudoscalar CP -odd weak interaction and electron EDMs to
the EDMs of Cs, Tl, Fr, and other atoms and many polar molecules (YbF, PbO, ThO, etc.). Model-independent
limits on electron EDMs and the parameter of the scalar-pseudoscalar CP -odd interaction are found from the
analysis of the EDM measurements for Tl and YbF.
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I. INTRODUCTION

The study of the parity and time invariance violation
in atoms, molecules, and nuclei is a low-energy, relatively
inexpensive alternative to the high-energy search for new
physics beyond the standard model (see, e.g., a review [1]).
Accurate measurements of the parity nonconservation (PNC)
in atoms is one of the most promising ways of exploring this
path. It culminated in very precise measurements of the PNC
in cesium [2]. Interpretation of the measurements based on
accurate atomic calculations led to perfect agreement with
the standard model and put strong constraints on any new
physics beyond it [3,4] (see also review [1] for more detailed
discussion). First unambiguous measurement of the nuclear
P -odd anapole moment was also reported in the Cs PNC
experiment [2].

At present, the study of symmetry violations in atoms
and molecules goes mostly in three major directions (see,
e.g., [5]): (i) the PNC measurements for a chain of isotopes;
(ii) the measurements of nuclear anapole moments; and
(iii) the measurements of the (P ,T )-odd permanent electric
dipole moments of atoms and molecules. Interpretation of the
anapole moment and electric dipole moment (EDM) measure-
ments requires sophisticated atomic or molecular calculations.
The calculations are difficult and sometimes disagree with each
other. For example, the calculations of the thallium EDM by
Nataraj et al. [6] and by Sahoo et al. [7] disagree with earlier
calculations [8,9], calculations of the nuclear spin-dependent
PNC in cesium by Mani and Angom [10] disagree with earlier
calculations [11–14], etc. The difficulties are mostly due to the
strong interelectron correlations which need to be treated to all
orders of the many-body perturbation theory. The majority of
publications present the effect of one particular P - or CP -odd
interaction for a specific atom or a molecule. If another weak
interaction Hamiltonian is considered, the calculations are to
be done again.

The extraction of the nuclear anapole moment from the PNC
measurements for thallium [15] also presents a problem. The
analysis of the experimental data based on atomic calculations

favors a negative value for the thallium anapole moment
[15,16] while all nuclear calculations produce positive
values [17].

Since the analysis based on sophisticated atomic calcula-
tions is very complicated it is important to have additional
tools which may help to check the calculations for consistency
or even avoid the calculations. In the present paper we build
such tools by studying the relations between matrix elements
for different symmetry-breaking operators. We show that
using these relations the result for a specific operator can
be easily obtained analytically if the calculations for another
operator are available. The relations can also be used to
check different calculations for consistency. Additional benefit
comes from the need to separate the effects of different
sources to the PNC or EDMs of atoms or molecules in
the analysis of the experimental data. Recent measurements
of T and P violation in a YbF molecule [18] combined
with the Tl EDM measurement [19] would allow one to
obtain independent limits on electron EDM and CP -violating
interaction. However, the relative sign of these contributions
is different in different calculations [9,20]. This sign problem
is solved in the present work by calculating the ratio of the
matrix elements. Then independent limits on electron EDMs
and scalar-pseudoscalar CP -odd interaction are presented.

There is an active search for the CP -violating permanent
EDMs of polar molecules, such as YbF [18], PbO [21,22],
ThO [23], etc. Interpretation of the measurements requires
complicated molecular calculations. Most of the calculations
consider only one possible source of the molecular EDM:
electron EDMs or scalar-pseudoscalar CP -odd interaction. We
show that the analytical ratios of the matrix elements provide
a reliable link between molecular EDMs caused by different
sources. Therefore, if calculations exist for a particular CP -
odd operator, no new calculations are needed to find an EDM
caused by a different operator.

The approach developed in this paper is easy to apply when
matrix elements of the symmetry-breaking operator between
s1/2 and p1/2 single-electron states strongly dominate over
other matrix elements. This is the case for the PNC amplitudes

052108-11050-2947/2011/84(5)/052108(9) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.84.052108


V. A. DZUBA, V. V. FLAMBAUM, AND C. HARABATI PHYSICAL REVIEW A 84, 052108 (2011)

between atomic s states and for the EDM of atoms and
molecules caused by electron EDM or scalar-pseudoscalar
CP -odd weak interaction. We also use this approach for the
thallium anapole sign problem.

II. SINGLE-ELECTRON MATRIX ELEMENTS OF WEAK
INTERACTION AND MANY-BODY EFFECTS

The PNC amplitude of an electric dipole transition between
states of the same parity |a〉 and |b〉 is equal to

E1PNC
ba =

∑
n

[ 〈b|d|n〉〈n|HPNC|a〉
Ea − En

+ 〈b|HPNC|n〉〈n|d|a〉
Eb − En

]
,

(1)

where d = −e
∑

i r i is the electric dipole operator and HPNC

is the operator of a P -odd CP -even weak interaction.
The EDM of an atom in state a is given by

da = 2
∑

n

〈a|d|n〉〈n|HCP |a〉
Ea − En

, (2)

where HCP is the operator of a CP -odd weak interaction.
States a, b, and n in Eqs. (1) and (2) are the many-electron

atomic states. However, we can start for simplicity from an
atom with one external electron above closed shells, keeping in
mind the cesium atom as an example. Then in the lowest order
of the perturbation theory in residual Coulomb interaction the
PNC amplitude and the EDM of the atom are given by Eqs. (1)
and (2) in which states a, b, and n are single-electron (e.g.,
Hartree-Fock) states. It is easy to see that all single-electron
matrix elements of weak interaction are proportional to each
other. Indeed, only short distances contribute to the value of the
matrix elements (see the Appendix for analytical estimations).
These distances are r < rN for the PNC interactions and for
the scalar-pseudoscalar CP -odd interaction (RN is nuclear
radius) and r � a0/Z for the electron EDM operator (a0 is
Bohr radius). On these distances the energy of the single-
electron state can be neglected compared to the nuclear
potential −Ze2/r and Dirac equations for all single-electron
states become identical. The only difference comes from the
normalization of the states. Suppose we have two different
operators of, say, CP -odd weak interaction HCP and H ′

CP .
If we establish proportionality between matrix elements for a
particular pair i,j of single-electron states

〈i|HCP |j 〉 = R〈i|H ′
CP |j 〉, (3)

then due to the proportionality of the wave functions on short
distances, the same proportionality, with the same value of R

would hold for any pair of single-electron states and for the
total EDM of atom (2). Furthermore, if the s1/2-p1/2 matrix
elements of the weak interaction strongly dominate over other
matrix elements, then the proportionality is not affected by the
many-body effects. Indeed, if other weak matrix elements are
neglected, then any many-body expression is a sum of terms
with one s1/2-p1/2 weak matrix element in each term. Since
all of them are proportional with the same proportionality
coefficient R the proportionality would hold for the sum as
well.

Table I shows the ratios of the 〈6s1/2|HW |6p1/2〉 matrix
elements for a cesium atom for different P -odd and CP -

TABLE I. The ratio of the matrix elements of the spin-dependent
to spin-independent P -odd weak interactions (R1) and scalar-
pseudoscalar CP -odd interaction to electron EDMs (R2) for the
6s,6p1/2 states of cesium with and without the inclusion of domi-
nating many-body effects. The ratios are stable whereas the matrix
elements change by up to two times. Units: κ/(−QW ) for R1 and
10−15CSP/de a.u. for R2.

Approximation R1 R2

RHF 〈ψHF
6s |HW |ψHF

6p 〉 4.78 8.96
RPA 〈ψHF

6s |HW + δVcore|ψHF
6p 〉 4.88 8.94

BOa 〈ψBO
6s |HW |ψBO

6p 〉 4.78 9.03
BO + CP b 〈ψBO

6s |HW + δVcore|ψBO
6p 〉 4.85 9.01

Analytical, Eqs. (A10), (A13), and (A15) 4.84 9.01

aBrueckner orbitals.
bBrueckner orbitals and core polarization.

odd operators of weak interaction HW in the relativistic
Hartree-Fock (RHF) approximation and with dominating
many-body effects included. The ratios are compared with the
analytical result presented in the Appendix. The many-body
effects include core-polarization (CP ) and Brueckner-type
correlations. Core polarization can be understood as the change
of the self-consistent core potential due to the effect of an
external field (weak interaction in our case). Its inclusion
above the Hartree-Fock level is often called the random-phase
approximation (RPA). Brueckner-type correlations are the
correlations which can be reduced to a redefinition of the
single-electron orbitals, replacing the Hartree-Fock ones by
the Brueckner orbitals (BO) [24]. In both cases of the P -odd
and CP -odd weak interactions the ratios of the matrix elements
are stable within 1–2 % accuracy whereas the matrix elements
change by up to two times.

III. PARITY NONCONSERVATION

A Hamiltonian describing a parity-nonconserving electron-
nuclear interaction can be written as a sum of spin-independent
(SI) and spin-dependent (SD) parts (we use atomic units: h̄ =
|e| = me = 1):

HPNC = HSI + HSD = GF√
2

(
−QW

2
γ5 + κ

I
α I

)
ρ(r), (4)

where GF ≈ 2.2225 × 10−14 a.u. is the Fermi constant of the

weak interaction, QW is the nuclear weak charge, α = ( 0 σ
σ 0 )

and γ5 = ( 0 −I−I 0 ) are Dirac matrices, I is the nuclear spin,

and ρ(r) is the nuclear density normalized to 1. The strength
of the spin-dependent PNC interaction is proportional to
the dimensionless constant κ which is to be found from
the measurements. There are three major contributions to κ

arising from (i) electromagnetic interaction of atomic electrons
with nuclear anapole moment [25], (ii) electron-nucleus spin-
dependent weak interaction [26], and (iii) a combined effect
of the spin-independent weak interaction and the magnetic
hyperfine interaction [27] (see also review [1]). In this work
we do not distinguish between different contributions to κ and
present the results in terms of total κ which is the sum of all
possible contributions.
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Within the standard model the weak nuclear charge QW is
given by [28]

QW ≈ −0.9877N + 0.0716Z. (5)

Here N is the number of neutrons and Z is the number of
protons.

The PNC amplitude of an electric dipole transition between
states of the same parity |i〉 ≡ |JiFiMi〉 and |f 〉 ≡ |Jf Ff Mf 〉
is equal to

E1PNC
f i =

∑
n

[ 〈f |d|n〉〈n|HPNC|i〉
Ei − En

+ 〈f |HPNC|n〉〈n|d|i〉
Ef − En

]
,

(6)

where d = −e
∑

i r i is the electric dipole operator and F =
I + J is the total angular momentum.

Applying the Wigner-Eckart theorem we can express the
amplitudes via reduced matrix elements

E1PNC
f i = (−1)Ff −Mf

(
Ff 1 Fi

−Mf q Mi

)
〈Jf Ff ||dPNC||JiFi〉.

(7)

Detailed expressions for the reduced matrix elements of the
SI and SD PNC amplitudes can be found, e.g., in Refs. [29]
and [30]. For the SI amplitude we have

〈Jf ,Ff ||dSI||Ji,Fi〉

= (−1)I+Fi+Jf +1
√

(2Ff + 1)(2Fi + 1)

{
Ji Jf 1
Ff Fi I

}
×

∑
n

[ 〈Jf ||d||n,Jn〉〈n,Jn|HSI|Ji〉
Ei − En

+ 〈Jf |HSI|n,Jn〉〈n,Jn||d||Ji〉
Ef − En

]
. (8)

It is convenient to present the amplitude in a compact form:

〈Jf ,Ff ||dSI||Ji,Fi〉 = C(S1 + S2), (9)

where C ≡ C(Ff ,Jf ,Fi,Ji) is the angular coefficient and sums
S1 and S2 do not depend on Ff and Fi :

S1 =
∑

n

〈Jf ||d||n,Jn〉〈n,Jn|HSI|Ji〉
Ei − En

,

S2 =
∑

n

〈Jf |HSI|n,Jn〉〈n,Jn||d||Ji〉
Ef − En

.

For the SD PNC amplitude we have

〈Jf ,Ff ||dSD||Ji,Fi〉
= √

(I + 1)(2I + 1)(2Fi + 1)(2Ff + 1)/I

×
∑

n

[
(−1)Jf −Ji

{
Jn Ji 1
I I Fi

} {
Jn Jf 1
Ff Fi I

}
× 〈Jf ||d||n,Jn〉〈n,Jn||b||Ji〉

En − Ei

+ (−1)Ff −Fi

{
Jn Jf 1
I I Ff

}{
Jn Ji 1
Fi Ff I

}
× 〈Jf ||b||n,Jn〉〈n,Jn||d||Ji〉

En − Ef

]
, (10)

where b is the electron part of the SD weak interaction,

b = GF√
2
αρ(r)κ. (11)

Like in the spin-independent PNC amplitude (8), it is
convenient to present the SD amplitude in a compact form:

〈Jf ,Ff ||dSD||Ji,Fi〉 =
4∑

i=1

ciS
′
i . (12)

Here ci ≡ c(Ff ,Jn,Fi) (i = 1,2,3,4) are angular coefficients
which can be extracted from Eq. (10). Sums S ′

i do not depend
on Ff and Fi :

S ′
1 =

∑
n

〈Jf ||d||Jn〉〈Jn||b||Ji〉
En − Ei

,

S ′
2 =

∑
n

〈Jf ||d||J ′
n〉〈J ′

n||b||Ji〉
En − Ei

,

S ′
3 =

∑
n

〈Jf ||b||Jn〉〈Jn||d||Ji〉
En − Ef

,

S ′
4 =

∑
n

〈Jf ||b||J ′
n〉J ′

n||d||Ji〉
En − Ef

.

Equation (12) has more terms than Eq. (9) due to the electron
vector nature of the nuclear-spin-dependent operator.

The total PNC amplitude can be presented in a form
convenient for extraction of the values of κ from the PNC
measurements (see, e.g. [31,32])

EPNC = E(1 + R). (13)

Here E is the SI PNC amplitude given by Eq. (8) and R

is the ratio of the SD to SI PNC amplitudes. In this work
we are mostly interested in the values of R. Using compact
expressions (9) and (12) one can write

R = c1S
′
1 + c2S

′
2 + c3S

′
3 + c4S

′
4

C(S1 + S2)
. (14)

According to the discussion of the previous section, ratios of
the SD and SI weak matrix elements do not depend on the
principal quantum number n. Therefore, using the ratios

r1 = 〈Jn||b||Ji〉/〈Jn|HSI|Ji〉,
r2 = 〈J ′

n||b||Ji〉/〈Jn|HSI|Ji〉,
(15)

r3 = 〈Jf ||b||Jn〉/〈Jf |HSI|Jn〉,
r4 = 〈Jf ||b||J ′

n〉/〈Jf |HSI|Jn〉,
we can get rid of the sums S ′

1,S ′
2,S ′

3,S ′
4, involving the SD matrix

elements and replace them with the SI sums S1,S2:

R = (c1r1 + c2r2)S1 + (c3r3 + c4r4)S2

C(S1 + S2)

= (c1r1 + c2r2)S1/S2 + (c3r3 + c4r4)

C(S1/S2 + 1)
. (16)
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The only parameter in Eq. (14) which comes from numerical
calculations is the ratio S1/S2 of two different contribu-
tions to the SI PNC amplitude [see Eqs. (8) and (9)]. All
other parameters are given by analytical expressions. The
c1, c2, c3, c4, and C parameters are just angular coefficients.
The ratios r1, r2, r3, and r4 can also be approximated by
analytical expressions which will be discussed below.

The expression (14) can be further simplified in an
important case of an ns-n′s transition (e.g., the 6s-7s transition
in Cs). On a few percent level of accuracy the s-p3/2 matrix
elements of the SD PNC interaction can be neglected [32].
This means that r2 = r4 = 0. We also have r1 = r3 = r and
Eq. (16) is reduced to

R = r
c1S1/S2 + c3

C(S1/S2 + 1)
. (17)

Substituting r from Eq. (A10) leads to

R = 4.90(1 − 0.073Z2α2)
c1S1/S2 + c3

C(S1/S2 + 1)

κ

(−QW )
. (18)

QW is the weak nuclear charge. As in Eq. (14) the only
parameter which comes from numerical calculations is the
ratio S1/S2. On the other hand, knowing the value of R

for at least two hyperfine structure (hfs) components of the
PNC transition is sufficient for extraction of κ from the
measurements.

A. PNC in cesium

Experimental values for the two different hfs components
of the parity nonconserving 6s-7s transition in cesium are [2]

EPNC(6sF=4-7sF=3) = 1.6349(80) mV/cm,
(19)

EPNC(6sF=3-7sF=4) = 1.5576(77) mV/cm.

To extract κ we use Eq. (13) and calculate R for these
two transitions using Eq. (18). To do so we note that
Jf = Ji = Jn = 1/2, QW = −73.19 [see Eq. (5)] and take
S1/S2 = −0.3459 from Ref. [33]. This leads to the system of
equations

E(1 + 0.067 39κ) = 1.6349(80),
(20)

E(1 − 0.059 37κ) = 1.5576(77).

The solution for κ is κ = 0.382(56). This result is in good
agreement with the values κ = 0.393(56) from Ref. [11] and
κ = 0.375(56) from Ref. [12].1 Accurate calculations similar
to what is reported in our previous work for Ba+, Yb+, and
Ra+ [32] lead to the value κ = 0.376 which is in perfect
agreement with the all-order calculations of Ref. [12]. This is
an illustration of the accuracy of the analysis based on the ratio
of the matrix elements. The value κ = 0.382 coming from
this analysis differs by less than 2% from the value κ = 0.376
coming from the accurate calculations. This difference is due to
two simplifications: (a) neglecting the s-p3/2 matrix elements

1Refs. [11] and [12] use different definitions of κ. The conversion
factors are (I + 1/2)/(I + 1) for Ref. [11] and I for Ref. [12]. I is
nuclear spin, I = 7/2 for 133Cs.

of the SD weak interaction, and (b) assuming that the ratio of
the matrix elements is the same for all single-electron states.

Recent relativistic coupled-cluster calculations of the nu-
clear spin-dependent PNC in Cs [10] report the values of
the SD PNC matrix elements which are about 30% smaller
than those of the all-order calculations of Ref. [12]. This is
in disagreement not only with this work but with all earlier
calculations of the SD PNC in cesium [11–14]. Given the
proportionality of the matrix elements of the SI and SD weak
interactions discussed above, the results of Ref. [10] are also
in disagreement with all most accurate calculations of the SI
PNC in cesium (see, e.g., [3,4,33]). The latter calculations
have accuracy better than 0.5% and are used to test the standard
model in Cs PNC experiments [2] where the accuracy is 0.35%.

B. Anapole moment of thallium

The value of the nuclear anapole moment of thallium, ex-
tracted from the measurements of the PNC in the 6p1/2-6p3/2

transition [15] is in disagreement with the results of nuclear
calculations (see, e.g., Ref. [17]). The analysis of the exper-
imental data based on simple single-electron approximations
gives the value κa = −0.22 ± 0.30 [15]. The analysis based
on sophisticated many-body calculations gives a very close
value of κa = −0.26 ± 0.27 [16]. On the other hand, the “best
value” obtained in nuclear calculations is κa = 0.24 [17]. To
extract the sign of κa from the experiment one needs the
relative sign of SI and SD amplitudes. Here we show that
simple analysis with the use of the analytical ratio of the
matrix elements of the weak interactions supports the findings
of Refs. [15,16] leaving the problem of sign disagreement
unsolved.

If we keep only s1/2-p1/2 matrix elements of the weak
interaction for both SI and SD interactions, then the general
expression (16) can be reduced to

R(F,F ′) = r
c(F,F ′)
C(F,F ′)

, (21)

where r is one of the ratios ri , Eq. (15), which corresponds to
the s1/2-p1/2 weak matrix elements, and c(F,F ′) and C(F,F ′)
are corresponding angular coefficients. Comparing Eq. (13) to
the parametrization used in [16] [R ≡ Im(E1PNC/M1)],

R(F,F ′) = C(Z)[QW − 6κξ (F,F ′)], (22)

and substituting Eq. (A10) into Eq. (21), we get for the
parameters ξ ,

ξ (F,F ′) = −0.817(1 − 0.073Z2α2)
c(F,F ′)
C(F,F ′)

. (23)

Corresponding values of ξ are compared in Table II with the
results of the many-body calculations of [16]. We see that both
calculations give very close results leaving no room for a sign
error.

IV. EDM OF ATOMS AND MOLECULES

Table III shows the ratio of the s1/2-p1/2 matrix elements of
the electron EDM operator (A15) to the scalar-pseudoscalar
CP -odd operator (A13) for eight different atoms calculated
using analytical formulas presented in the Appendix. The
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TABLE II. Parameters ξ (F,F ′) of the nuclear spin-dependent
PNC amplitude in the 6p1/2(F )-6p3/2(F ′) transitions in thallium.

F F ′ This work Ref. [16]

0 1 0.947 1.10
1 1 −0.325 −0.462
1 2 −0.325 −0.348

results for cesium and thallium are in good agreement with
the many-body calculations of Ref. [9], and the result for Yb+
is in excellent agreement with the many-body calculations
of Ref. [36] for the YbF molecule. We stress that the table
compares the ratios of the single-electron matrix elements
obtained with a simple analytical formula to the ratios of the
EDMs obtained with sophisticated many-body calculations.
These results provide an unambiguous link between the sign
and value of two different contributions to the EDM of atoms
and molecules which have a heavy atom from Table III.

A. EDM of polar molecules

Polar molecules have strong interatomic electric fields
which enhance the effect of electron EDMs and lead to
molecular EDMs which are several orders of magnitude larger
than those in atomic systems. An experimental search is in
progress for YbF [18], PbO [21,22], and ThO [23], while
other molecules are also discussed in the literature (see, e.g.,
[34]). Interpretation of the measurements requires molecular
calculations. Table IV shows the results of most recent or
most accurate calculations for some polar molecules. More
detailed data are presented for the YbF molecule for which the
EDM measurements were recently reported [18]. The effects of
electron EDM and scalar-pseudoscalar CP -odd interaction are
considered. The results are presented in terms of the CP -odd
parameters Wd and Wc,

Wd = 〈�0|He|�0〉/de, (24)

Wc = 〈�0|HSP |�0〉/CSP. (25)

TABLE III. The ratio of the s1/2-p1/2 matrix elements of the
electron EDM operator (A15) to that of the scalar-pseudoscalar
CP -odd operator (A13). Numerical results for EDMs of Cs, Tl, and
YbF are also given for comparison. Units: de/(CSP10−18e cm). (For
other isotopes R′ = A′R/A).

Ratios

Z Atom Analytical Numerical

37 85Rb 228
55 133Cs 158 163a

56 138Ba+ 152
70 173Yb+ 114 115b

81 205Tl 89 83c

82 208Pb 88
87 211Fr 83
90 232Th 75

aCs atom, Ref. [9].
bYbF molecule, Ref. [36].
cTl atom, Ref. [9].

TABLE IV. CP -odd interaction constants Wd and Wc for some
polar molecules and their ratios. Effective electric field Eeff is
presented together with Wd (〈He〉 = Wdde = −Eeff de). The results
of present paper are shown in bold.

Eeff Wd Wc Wd/Wc

Molecule (GV/cm) (1024 Hz/e cm) (kHz) (1018/e cm)

BaF 6.1a −3.0a −20 152
6.4 −3.1 − 21b 152

YbF 31c −15c −120c 125
19d −9.1d −82d 111
26e −12.6e −111 114
25f −12f −104f 115
25g −12g −108g 111
25h −12.1h −106 114
32a −15a −132 114
23 −11 −92b 114

HgF 95a −46a −511 90
PbF −31a 15a 170 88
PbO a(1) 26.2i −13i −144 88
PbO B(1) 33i −16i −182 88
PbO a(1) 23a −11a −125 88
ThO 104a −50a −662 75
ThF+ 90a −44a −587 75

aReference [34].
bReference [35].
cReference [37].
dReference [38].
eReference [39].
fReference [36].
gReference [40].
hReference [41].
iReference [42].

To compare with other works one should keep in mind that
most of them present WS instead of Wc, where

WS = 2

ks

〈�0|H SP|�0〉. (26)

The constants ks and CSP of the strength of the CP -
odd interaction are related by Zks = ACSP. Factor 2 in
the definition of WS (26) is absent in some of the
papers.

Most of the calculations of the molecular EDMs include
only one of the CP -odd effects: that of the electron EDM or the
scalar-pseudoscalar interaction. We use the relations between
the matrix elements of the two CP -odd Hamiltonians to fill
the gaps in the table. Corresponding results are shown in bold.
For example, according to Ref. [34] the effect of electron EDM
in the YbF molecule is Wd = −15 × 1024 Hz/e cm. Using the
ratio Wd/Wc = 114 × 1018/e cm for Yb+ from Table III we
found that the effect of the scalar-pseudoscalar interaction is
Wc = −132 kHz.

B. Extraction of the electron EDM and the parameter of the
scalar-pseudoscalar C P-odd interaction from the EDM

measurements for YbF and Tl

Recent measurements of T and P violation in the YbF
molecule [18] combined with the Tl EDM measurement
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[19] and the data from Table III allows one to obtain
independent limits on the electron EDM and the CP -violating
interaction. The values of the electron EDM extracted from the
experimental data for Tl [19] and YbF [18] under assumption
that there is no other contribution to atomic and molecular
EDM read

Tl : de = (6.9 ± 7.4) × 10−28e cm, (27)

YbF : de = (−2.4 ± 5.7 ± 1.5) × 10−28e cm. (28)

In fact, there are other contributions from the CP -odd
electron-nucleus interactions. Here we consider only the
scalar-pseudoscalar interaction (A11). Other contributions
should be small due to the constraints obtained from the EDM
measurements for mercury [43]. Using data from Table III one
can rewrite Eqs. (27) and (28) as

Tl : de+1.2×10−20CSP = (6.9 ± 7.4) × 10−28e cm,

(29)

YbF : de+8.8×10−21CSP = (−2.4±5.7±1.5)×10−28e cm.

(30)

Solving these equations for de and CSP leads to

de = (−2.8 ± 3.0) × 10−27e cm, (31)

CSP = (3.0 ± 3.0) × 10−7. (32)

The limit (31) for de is significantly weaker than those
presented in Eqs. (27) and (28). This is because the values
of the ratios of the matrix elements of the two operators are
very close for Tl and Yb (see Table III). The most fortunate
case leading to the strongest limits for de and CSP would
correspond to very different values of the ratio, preferably
with the different sign. However, the formulas (A15) and
(A13) and the data in Table III show that this is not possible.
The ratio is always positive and slowly decreases with Z. A
slightly different value of the ratio should be expected for the
EDM of radium in the excited metastable 7s6d 3D2 state. The
EDM of radium in this state is strongly enhanced [44] due
to the proximity of the 7s7p 3P 0

1 state (the energy interval
is ∼5 cm−1) and is proportional to the 〈7p3/2|HCP |6d3/2〉
matrix element of the CP -odd interaction HCP . However,
the value of this matrix element is strongly dominated
by the core-polarization effect which in turn is mostly due
to the s1/2-p1/2 matrix elements between the core and excited
states. Therefore, the ratio of the two contributions is not very
different from what was considered above for Tl and YbF.

C. EDM of Tl and Fr

The EDM of thallium due to electron EDMs and scalar-
pseudoscalar CP -odd interaction was recently calculated in
our paper [9]. The ratio of the two contributions was found to
be 83de/(CSP10−18e cm) which is in good agreement with the
analytical result of this paper: Wd/Wc = 89/(10−18e cm). The
EDM enhancement factor is −582 [9] which is in very good
agreement with the value −585 found in earlier calculations by
Liu and Kelly [8]. The EDM enhancement factor for thallium
was also calculated in the more recent work of Ref. [6] and
found to be −466 (dTl = −466de) which is about 25% smaller
than the results mentioned above. The EDM of thallium due to

the scalar-pseudoscalar CP -odd interaction calculated by the
same group earlier (dTl = −4.06 × 10−18CSPe cm [7]) is also
smaller than in the other calculations of Refs. [9] and [20]. On
the other hand, the ratio of the two contributions is 115 [in
units of de/(CSP10−18e cm)] which is significantly larger than
the analytical and numerical values of 89 and 83 (same units,
see Table III).

The EDM enhancement factor for francium was calculated
in Ref. [49] and found to be 910(46): d(Fr) = 910(46)de.
This value is in good agreement with the value of 894.93
found in more recent calculations [50]. Using the value
d(Fr) = 910(46)de and the ratio of the electron-EDM matrix
element to the scalar-pseudoscalar interaction presented in
Table III we can now reconstruct another contribution to the
EDM of francium:

d(Fr) = 11 × 10−18CSPe cm. (33)

It is interesting to note that the calculation of the nuclear spin-
dependent PNC amplitude between hyperfine components of
the ground state of francium presented in Ref. [29] involves
the same sum as expression (2) for the EDM of the atom.
Therefore, we can reconstruct the EDM enhancement factor
for Fr using the results of Ref. [29] and proportionality between
matrix elements of the nuclear spin-dependent interaction (A9)
and the electron EDM operator (A15). This leads to d(Fr) =
854de which is in good agreement with the value d(Fr) =
910(46)de of Ref. [49]. This is a good consistency test of both
calculations.

Reading the papers citing our works (see, e.g., [6,50])
reveals the need to clear up some points about our method of
calculations. For example, the atomic electric field interacting
with electron EDMs is calculated in [9] and [49] as a derivative
of the total potential which includes both nuclear and electron
parts. The formula E = Zer/r3 for the leading contribution
to the atomic electric field presented on first page of [49] may
make an impression that only the nuclear field is included.
However, the formula (2) a few lines below clearly includes
screening functions Q(r) and P (r) for both the nuclear
Coulomb and the external electric field. By the way, the
inclusion of the electron electric field changes the matrix
elements of the electron EDM for thallium by only 0.4%. This
is because the main contribution comes from short distances
where the electron electric field is small since the electron
potential rapidly tends to a constant inside the 1s orbital.
Therefore, we include only the nuclear electric field in the
analytical analysis [formula (A15) in the Appendix] while
keeping both contributions in the numerical calculations.

The authors of [6] claim that the atomic core is strongly
contracted in the V N−3 starting approximation used in our
calculations [9]. In fact, it is not. Figure 1 shows the outermost
5d5/2 core function of Tl calculated in the V N−3 and V N−1

approximations. The difference between the functions is very
small. This is due to the fact that the valence 6s and 6p

electrons are located outside of the atomic core. Their charge
distribution creates an almost constant potential and no electric
field inside the sphere where all inner electrons are located.
Therefore, the valence electrons have practically no effect on
the core wave functions (see [45] for a detailed discussion).
The change is even smaller for other core functions. The core
functions enter the configuration-interaction (CI) Hamiltonian
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FIG. 1. The 5d5/2 core function of Tl calculated in V N−3 (solid
line) and V N−1 (dashed line) approximations.

via core potential Vcore to which all core electrons contribute
(from 1s to 5d). The difference for Vcore in the V N−3 and
V N−1 approximations is very small [45]. Moreover, the
corresponding corrections to the CI Hamiltonian have been
included in [9] using the many-body perturbation theory
approach.

As is well known, the eigenstates of a Hamiltonian do not
depend on the basis one uses. The valence states are indeed
different in the V N−3 and V N−1 approximations. However,
this should have no effect on the final results as long as the
saturation of the basis for valence states is achieved. There
are only two conditions the basis states must satisfy: (a) they
must be orthogonal to the core, and (b) they must constitute a
complete set of states. Therefore, it does not matter whether
valence states are calculated in the V N−3 or V N−1 potential
or by any other method [e.g., a popular basis ψn(r) = rnψ0(r)
[46]], the final results should be the same. If there is any
difference in the results, the most likely reason for this is the
incompleteness of the basis set.

In spite of no difference in the final results there is a good
reason for the use of the V N−3 approximation—the simplicity
and good convergence of the many-body perturbation theory
(MBPT) for the core-valence correlations. This is the only
approximation that has no subtraction diagrams [47,48]. To
be more precise, we should state that the condition for the
absence of the subtraction diagrams is that the potential used
to calculate single-electron core states and the potential of
the core in the CI Hamiltonian are exactly the same. In the
case of the thallium atom treated as a three-valence-electron
system this corresponds to the V N−3 approximation. When any
other approximation is used one has to include the subtraction
diagrams.

Large energy denominators suppress the value of the
correlation terms in the V N−3 approximation ensuring good
convergence of the MBPT [45]. There must be large cancella-

tion between subtraction and other diagrams to ensure the same
final results if any other initial approximation is used. This
is very similar to the well-known fact that the Hartree-Fock
basis is the best choice for any MBPT calculations. Zero-order
results might be better in some other approximation, however,
strong cancellation between subtraction and other diagrams
would lead to poor convergence of the MBPT.

The authors of [6] claim that the major drawback of our
work [9] is the inclusion of the core-valence correlations in
the second order only. However, the correlations between
the valence electrons and core electrons below the 6s state
are small, which is evident from the fact that their inclusion
changes the EDM of Tl by only 3% [9]. Therefore, only the
correlations between three valence electrons should be treated
to all orders. This is done in [9] to a very high precision using
the CI technique.

V. CONCLUSION

We have demonstrated the proportionality relations be-
tween the nuclear-spin-dependent and spin-independent PNC
effects in atoms and the scalar-pseudoscalar and the electron
EDM contributions to the EDMs of atoms and molecules. The
relations are given by the simple analytical formulas and can be
used to express one symmetry-breaking effect through another.
Using these relations and accurate calculations of the spin-
independent PNC we have confirmed earlier interpretations
of the nuclear anapole measurements in cesium and thallium.
We have also confirmed the ratio of the scalar-pseudoscalar
CP -odd and electron EDM contributions to the EDMs of
Cs, Tl, and other atoms and some polar molecules. Using
the relations we found the scalar-pseudoscalar contribution to
the EDM of the francium atom and the scalar-pseudoscalar
and electron EDM contributions to the EDMs of many polar
molecules. Using experimental limits on the EDMs of thallium
and YbF we found model-independent limits on the electron
EDMs and the constant of the scalar-pseudoscalar CP -odd
interaction.
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APPENDIX: MATRIX ELEMENTS OF THE WEAK
INTERACTION

1. Wave function

We use single-electron wave functions in the form

ψ(r)njlm = 1

r

(
fv(r)	(n)jlm

iαgv(r)	̃(n)jlm

)
, (A1)

where n is the principal quantum number and an index v

replaces the three-number set n,j,l; α is the fine-structure
constant.

We need s1/2 and p1/2 wave functions inside the nucleus to
calculate matrix elements. Following Ref. [51] we assume
uniform distribution of the electric charge inside a sphere
of radius RN . Taking formulas for the s1/2 and p1/2 wave
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functions from Ref. [51] and keeping terms up to Z2α2 we
come to the following expressions:

fs(x) = Asx

(
1 − 3

8
Z2α2x2

)
,

gs(x) = −AsZ
x2

2

(
1 − x2

5

)
,

(A2)

fp1/2 (x) = ApZα2 x2

2

(
1 − x2

5

)
,

gp1/2 (x) = Apx

(
1 − 3

8
Z2α2x2

)
.

Here x = r/RN , where RN is the nuclear radius. As and
Ap are the normalization factors. They can be found by
matching Eq. (A2) to the atomic wave functions at short
distances outside of the nucleus (see, e.g., [52]). The use of
the semiclassical wave functions presented in [52] leads to
approximate expressions

As = (1 + γ )(2ZRN )γ

(1 − 0.375Z2α2)
√

Z
(2γ + 1)ν1.5
s

,

(A3)

Ap =
√

Z(2ZRN )γ

(1 − 0.375Z2α2)
(2γ + 1)ν1.5
p

,

where γ = √
1 − Z2α2, 
 is the gamma function, and ν is

the effective principal quantum number: the single-electron
energy of state n is εn = −1/(2ν2

n). Note that normalization
factors (A3) are needed only to compare the matrix elements
of the electron EDM to other matrix elements. For cases not
involving electron EDMs there is exact cancellation of the
normalization factors. Therefore, their uncertainty does not
contribute to the uncertainty of the final results.

2. PNC matrix elements

The matrix element of the SI PNC HSI interaction [the first
term in Eq. (4)] is

〈κ1|HSI|κ2〉 = i
GF QW

2
√

2
αδ−κ1,κ2

∫
(f1g2 − g1f2)ρ(r)dr.

(A4)

Substituting Eq. (A2) for the s1/2-p1/2 transition and assuming
uniform nuclear charge distribution we get

〈s1/2|HSI|p1/2〉 = i
GF QW

2
√

2

αρ0AsApRN

3
(1 − 0.34Z2α2).

(A5)

Here As and Ap are given by Eq. (A3) and

ρ0 = 3

4πR3
N

. (A6)

The matrix element of the SD PNC b operator (11) is

〈κ1||b||κ2〉 = −i
GF κ√

2
α〈−κ1||C1||κ2〉

∫
[(κ2 − κ1 + 1)f1g2

− (κ1 − κ2 + 1)g1f2]ρ(r)dr. (A7)

The reduced matrix element of the spherical harmonic Ck is

〈κa||Ck||κb〉 = (−1)jb+1/2
√

(2ja + 1)(2jb + 1)

× ξ (la + lb + k)

(
jb ja k

−1/2 1/2 0

)
,

ξ (x) =
{

1 x is even
0 x is odd.

(A8)

For the s1/2-p1/2 transition and uniform nuclear charge
distribution we have

〈s1/2||b||p1/2〉 = −i
GF κ√

2
α

√
2

3
ρ0AsApRN (1 − 0.41Z2α2).

(A9)

The ratio of Eq. (A9) to Eq. (A5) is

〈s1/2||b||p1/2〉/〈s1/2|HSI|p1/2〉

≈ 6

√
2

3

κ

(−QW )
(1 − 0.073Z2α2). (A10)

3. Scalar-pseudoscalar C P-odd interaction

The Hamiltonian of the scalar-pseudoscalar electron-
nucleon (T ,P )-odd interaction can be written as [1]

H SP = i
GF√

2
ACSPγ0γ5ρN (r), (A11)

where GF is the Fermi constant, A = Z + N is the nuclear
mass number, Z is the number of protons, and N is the
number of neutrons. CSP = (ZCSP

p + NCSP
n )/A, where CSP

p

and CSP
n are the parameters of the scalar-pseudoscalar (T ,P )-

odd interaction for protons and neutrons, and γn are the Dirac
matrices.

〈a|H SP|b〉 = −GF√
2
αACSPδ−κa,κb

∫
(fagb + gafb)ρN dr.

(A12)

Substitution of the functions (A2) leads to

〈s1/2|H SP|p1/2〉 = −GF ACSP

3
√

2
αAsApρ0RN (1 − 0.56Z2α2).

(A13)

Here As and Ap are given by Eq. (A3) and ρ0 is given by
Eq. (A6).

4. Electron EDM

The Hamiltonian for the electron EDM interacting with
internal atomic electric field Eint can be written as [52]

He = −de(γ0 − 1)� · Eint, (A14)

where

� =
(

σ 0
0 σ

)
,

and Eint is the internal atomic electric field. The s1/2-p1/2

matrix element can be found in Ref. [53]:

〈s1/2|He|p1/2〉 = − 4Z3α2de

γ (4γ 2 − 1)(νsνp)3/2
. (A15)
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