
PHYSICAL REVIEW A 84, 052107 (2011)

Weak versus approximate values in quantum state determination
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We generalize the concept of the weak value of a quantum observable to cover arbitrary real positive operator
measures. We show that the definition is operationally meaningful in the sense that it can be understood within
the quantum theory of sequential measurements. In particular, we show that the weak value can be obtained
from a single measurement scheme. We then present a detailed analysis of the recent experiment [J. S. Lundeen
et al., Nature (London) 474, 188 (2011)] concerning the reconstruction of the state of a photon using weak
measurements. We compare their method with the reconstruction method through informationally complete
phase space measurements. In particular, we show that unlike with phase space measurements, the reconstruction
of a completely unknown state is not always possible using the method of weak measurements.

DOI: 10.1103/PhysRevA.84.052107 PACS number(s): 03.65.Ta, 03.65.Wj

I. INTRODUCTION

The weak value of a quantum observable, as defined
by Aharonov et al. [1], has always remained a somewhat
controversial concept despite the vast amount of attention it
has received over the years (see, e.g., Ref. [2] and references
therein). The purpose of this paper is to clarify this topic and
our goal is twofold. On one hand, we wish to show that the
weak values can be exhaustively explained within the quantum
theory of sequential measurements. On the other hand, in
view of the recent paper of Lundeen et al. [3], we wish to
compare the role of weak and approximate measurements in
quantum state determination. An additional motivation for the
paper comes from the desire to give a mathematically rigorous
treatment to this subject.

To this end we briefly recall the quantum theory of mea-
surement (Sec. II). We generalize the standard measurement
model of von Neumann [4] (for a survey, see Ref. [5]), so
that it can be applied to arbitrary real observables (as positive
operator measures) (Sec. III). We then generalize the concept
of the weak value of an observable to cover arbitrary real
observables and compare it with its approximative values
obtained from the relevant standard measurement (Sec. IV).
In this way our definition generalizes, not only the original
idea [1], but also the more recent works where positive operator
measures with discrete or even finite outcome spaces have
been considered [6,7]. As the next step, we use the theory of
sequential measurements to construct measurement schemes
that give the real and imaginary parts of the weak value as
limits of sequences of conditional averages (Sec. V). The
result for this general framework is thus in agreement with the
previous works [8–11]. We then take a step further and show
that it is possible to obtain the whole weak value from a single
measurement scheme by using a phase space observable as the
probe observable. Finally, we analyze the method of Lundeen
et al. for obtaining the pointwise values of the wavefunction
from weak measurements (Sec. VI). We discuss some of its
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shortcomings and present as an alternative approach the known
method of approximate sequential measurements.

Throughout the paper we denote by H the Hilbert space
associated with a physical system, and by L(H) and T (H) the
sets of bounded and trace class operators acting on H. The
concepts of states, observables, and the statistical duality they
define form the rudimentary frame of the description of the
system: a state ρ is (represented as) a positive (ρ � 0) trace
one (tr[ρ] = 1) operator, an observable is (represented as) a
normalized positive operator measure (POM) E : A → L(H)
(defined on a σ -algebra A of subsets of a set � of the values of
the observable), the probability measure A � X �→ pE

ρ (X) =
tr[ρE(X)] giving the measurement outcome statistics for the
observable E in the state ρ. Usually the value space (�,A) of
an observable is just the real Borel space (R,B(R)), which we
use subsequently. For a pure state (ρ = ρ2) we use also a unit
vector (vector state) representation ϕ ∈ H, ρϕ = ϕ.

II. QUANTUM MEASUREMENTS

Quantum theory of measurement operates on a hierarchy of
three levels of description reflecting the options of restricting
one’s attention to the outcome probabilities at the level of
the measured system, or taking into account the system’s
conditional state changes, or adopting the most comprehensive
level of modeling the interaction and information transfer
between the system and the probe. We shall briefly describe
these three levels since all of them play a role in our analysis;
for a more comprehensive survey, see, e.g., Ref. [12].

The crudest statistical level is the one described in the
Introduction. On the next level, one also describes the
conditional state changes of the system due to a measurement,
conditioned with respect to the pointer values. These changes
are most conveniently captured in the concept of an instrument
[13,14], that is, an operation valued measure I : B(R) →
L(T (H)). This means that each X ∈ B(R) determines a
positive contractive linear map I(X) : T (H) → T (H) and
I(X)(ρ) is the unnormalized conditional output state. Each
instrument determines uniquely the associated observable via
the formula tr[ρE(X)] = tr[I(X)(ρ)] or equivalently via the
dual instrument as E(X) = I(X)∗(I ).

The most detailed descriptions of measurements are given
by the measurement schemes where the coupling of the
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physical system and the probe (aka measuring apparatus)
is considered. More precisely, a measurement scheme is a
4-tuple M = 〈K,σ,�,Z〉, where K is the Hilbert space of
the probe, σ its initial state, � : T (H ⊗ K) → T (H ⊗ K)
a state transformation (i.e., a trace-preserving operation)
modeling the interaction between the system and the probe,
and Z : B(R) → L(K) the pointer observable (POM). Each
measurement scheme determines a unique instrument via

I(X)(ρ) = trK[�(ρ ⊗ σ )I ⊗ Z(X)], (1)

where trK[·] denotes partial trace over K. As a consequence, a
measurement scheme also determines uniquely the measured
observable E, and one has

tr[ρE(X)] = tr[I(X)(ρ)] = tr[�(ρ ⊗ σ )I ⊗ Z(X)]. (2)

In most cases, � can be given by a unitary operator U on H ⊗
K so that �(ρ ⊗ σ ) = U (ρ ⊗ σ )U ∗. It is often convenient to
allow the pointer observable Z to have different values than
the measured observable E has; in such a case one needs
to introduce a (measurable) pointer function f : R → R and
adjust Eqs. (1) and (2) accordingly, that is, replacing the set X

with f −1(X) for the pointer observable Z. It is a fundamental
result of the quantum measurement theory that each observable
E admits a measurement scheme in the sense of Eq. (2) [15].

We wish to emphasize that the correspondences between
measurement schemes and instruments, and instruments and
observables, are many-to-one, reflecting the obvious fact that
a given observable may be measured in various ways, as
well as that a given instrument may be realized by various
measurement schemes.

Now suppose that one wants to measure a pair of ob-
servables, E1 and E2, by performing their measurements
sequentially, for instance, first E1 and then E2. On the level
of instruments this leads to the sequentially composed instru-
ment I12 defined by I12(X × Y ) = I2(Y ) ◦ I1(X) [13,16]. On
the statistical level such a sequential measurement defines
the (sequential joint) observable M given by M(X × Y ) =
I1(X)∗[I2(Y )∗(I )]. In particular, the Cartesian margins of M
are

M1(X) = M(X × R) = E1(X),

M2(Y ) = M(R × Y ) = I1(R)∗(E2(Y )),

which shows the characteristic quantum feature that the first
measurement typically disturbs the subsequent one: the first
margin is the observable measured first, the second margin is
a smeared (or disturbed) version of the observable measured
second, smearing depending on the first measurement. It is
to be emphasized that the structure of a sequential joint
observable M does not depend on any details of the second
measurement.

III. GENERALIZED STANDARD MODEL

Let E : B(R) → L(H) be an observable to be measured. By
a special version [15] of the Naimark dilation theorem there
exists a Hilbert space H0, a unit vector ψ ∈ H0, and a spectral
measure PA : B(R) → L(H ⊗ H0), with the corresponding
selfadjoint (first moment) operator A = ∫

x dPA(x), such that

E(X) = V ∗
ψ PA(X) Vψ,

where Vψ : H → H ⊗ H0 is the embedding Vψ (ϕ) = ϕ ⊗ ψ ,
ϕ ∈ H. In particular, for any state ρ we have tr[ρE(X)] =
tr[ρ ⊗ |ψ〉〈ψ |PA(X)].

Let K = L2(R) be the Hilbert space of the probe. For
each λ > 0 define the state transformation �λ : T (H ⊗ K) →
T (H ⊗ K) via

�λ(ρ ⊗ σ ) = trH0 [e−iλA⊗P ρ ⊗ |ψ〉〈ψ | ⊗ σeiλA⊗P ],

where P is the momentum operator in K. Since P generates
spatial translations, it is natural to choose as the pointer
observable the position of the probe, represented by the
spectral measure PQ : B(R) → L(K) of the position operator
Q. Due to the coupling constant λ it is now convenient to
choose a pointer function f λ(x) = λ−1x. The 5-tuple Mλ =
〈K,σ,�λ,PQ,f λ〉 constitutes a measurement scheme with the
intention to measure the system observable E. We call this a
generalized standard model for E.

The instrument as well as the observable actually measured
are now easily computed from Eqs. (1) and (2) with the
adoption of the pointer function f λ. Since we consider their
λ-dependence we explicitly parametrize the instrument as well
as the observable by that only. For notational simplicity, we
assume that the initial probe state σ is a pure state given by
a unit vector φ. One obtains the associated instrument and its
dual

Iλ(X)(ρ) =
∫

X

trH0 [KxVψρV ∗
ψK∗

x ] dx, ρ ∈ T (H),

Iλ(X)∗(B) =
∫

X

V ∗
ψK∗

x (B ⊗ I )KxVψ dx, B ∈ L(H),

where

Kx =
√

λφ(−λ(A − x)) =
∫ √

λφ[−λ(y − x)] dPA(y),

for all x ∈ R. Note that the form of the dual instrument may
be considered as an analog of the Stinespring-Kraus repre-
sentation of a completely positive map [17]. The observable
actually measured by this scheme is a smeared version μλ ∗ E
of the desired one, E, where the convolution is defined as

μλ ∗ E(X) =
∫

μλ(X − x) dE(x), X ∈ B(R),

and the convolving probability measure is defined through
μλ(X) = 〈φ|PQ(λX)φ〉. In particular, the convolution may be
expressed more explicitly as

μλ ∗ E(X) =
∫
R

∫
X

|φ[λ(y − x)]|2 dy dE(x).

Note that for a state ρ the corresponding probability measure
is the usual convolution μλ ∗ pE

ρ of probability measures. In
particular, if the associated measures have densities g and h,
respectively, the density of the convolution is g ∗ h.

We wish to emphasize that although the generalized stan-
dard measurement model as well as the associated instrument
depend on the used Naimark dilation of E (aka ancilla) the
actually measured observable μλ ∗ E is independent of the
used dilation. In particular, this result remains valid if E is a
spectral measure (in which case no ancilla is needed).

The (generalized) standard model for an observable E
constitutes its approximate measurement in the sense that the
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actually measured observable μλ ∗ E is a convolution of E
with the probability measure μλ. The approximation depends
on μλ and the degree of approximation can be quantified in
many different ways, for instance, by the standard deviation
of μλ.

The set of possible values (i.e., measurement outcomes)
of the observable μλ ∗ E, namely the support of the POM,
supp(μλ ∗ E), is typically much bigger than the set of possible
values of E, supp(E). For instance, if E is a two-valued
spectral measure, supp(μλ ∗ E) can be anything from this
two-point set till the whole of R, depending on the support
of μλ. We call the numbers in supp(μλ ∗ E) the approximate
values of E obtained from the (generalized) standard model.
We also note that if one chooses the “smearing” measure μλ

such that its expectation (or average) value is zero then the
actually measured observable μλ ∗ E and the observable E
are statistically indistinguishable at the level of first moments
(expectation values). However, the two observables (POMs)
coincide if and only if μλ is a point measure concentrated
at the origin, a condition which is clearly impossible for our
specific measurement scheme Mλ.

IV. GENERALIZED WEAK VALUES

The sequential measurement scheme can be used as a
motivation for defining what Aharonov et al. called the weak
value of an observable [1]. The intuitive idea behind the
weak value is that by letting the strength of the interaction
between the object and probe in the first measurement
become sufficiently weak, the disturbance caused by the first
measurement on the subsequent one becomes negligible. The
price to be paid is that the first measurement becomes very
poor. In other words, the observable becomes more and more
smeared. However, by a clever choice of the probe state it is
possible to control the measurement so that the average value
of the first measurement remains the same.

The original line of reasoning can be generalized to cover
arbitrary pairs of observables. In order to make it rigorous, we
need some technical details concerning the operator integral
[18]. Let E : B(R) → L(H) be an observable. For all ψ,ϕ ∈ H
denote by Eψ,ϕ the complex measure X �→ 〈ψ |E(X)ϕ〉. Let
D(x,E) ⊂ H denote the subspace of those ϕ for which the
identity map x �→ x is Eψ,ϕ-integrable for all ψ ∈ H. The
first moment operator of E is then the linear operator E[1] :
D(x,E) → H defined as

〈ψ |E[1]ϕ〉 =
∫

x dEψ,ϕ(x), ϕ ∈ D(x,E),ψ ∈ H.

With these considerations, we can now define the weak value
of an observable.

Definition 1. Let E,F : B(R) → L(H) be observables, ϕ ∈
D(x,E), ‖ϕ‖ = 1 and let Y ∈ B(R) be such that 〈ϕ|F(Y )ϕ〉 �=
0. The weak value of E in a vector state ϕ conditioned by F(Y )
is

Ew[ϕ,F(Y )] = 〈ϕ|F(Y )E[1]ϕ〉
〈ϕ|F(Y )ϕ〉 . (3)

Note that the domain D(x,E) of the first moment operator
E[1] contains as a subspace the square-integrability domain
D̃(x,E) consisting of those ϕ ∈ H for which the function

x �→ x2 is integrable with respect to the positive measure Eϕ,ϕ .
In general, these two domains may be different, that is, the in-
clusion D̃(x,E) ⊂ D(x,E) may be proper. In a typical case one
has either D̃(x,E) = D(x,E) or D̃(x,E) = {0}. For instance,
if E = μ ∗ PA for some spectral measure PA and probability
measure μ such that the first moment μ[1] = ∫

x dμ(x) exists,
then D(x,E) = D(A) and E[1] = A + μ[1]I . Furthermore,
D̃(x,E) equals either D(A) = D(x,E) or {0} depending on
whether or not the second moment μ[2] = ∫

x2 dμ(x) is
finite [19]. As for the weak value, if μ[1] = 0 and F(Y ) is
a one-dimensional projection, that is, F(Y ) = |η〉〈η| for some
unit vector η ∈ H, we obtain the familiar expression

Ew[ϕ,F(Y )] = 〈ϕ|F(Y )E[1]ϕ〉
〈ϕ|F(Y )ϕ〉 = 〈η|Aϕ〉

〈η|ϕ〉 .

Formally, the generalization of Definition 1 to mixed states
is straightforward. Indeed, for a state ρ such that tr[F(Y )ρ] �= 0
we can define the weak value of E conditioned by F(Y ) as

Ew[ρ,F(Y )] = tr[F(Y )E[1]ρ]

tr[F(Y )ρ]
, (4)

provided that F(Y )E[1]ρ is a trace class operator. However,
since typically E[1] is an unbounded operator, this requirement
is in general highly nontrivial. To avoid these technical
difficulties, we restrict our attention to pure states keeping in
mind that on a formal level the calculations can be carried out
using, e.g., the spectral decomposition ρ = ∑∞

j=0 wj |ϕj 〉〈ϕj |
for the state.

V. WEAK VALUES FROM SEQUENTIAL
MEASUREMENTS

We will now proceed by showing that the general definition
of a weak value is operationally meaningful. As the first
step, we will show that the real and imaginary parts can be
obtained as conditional averages in two different sequential
measurement schemes in the limit of zero interaction strength.
This generalizes the known results into this more general
situation. In the second part, we will show how a single scheme
using a phase space observable for the pointer can be used to
obtain the whole weak value. We prove our results in the
case that the initial state ϕ belongs to the square-integrability
domain D̃(x,E). Whether or not similar results hold for an
arbitrary ϕ ∈ D(x,E) remains an open question.

A. Real and imaginary parts from separate measurements

Consider the generalized standard measurement scheme
Mλ and suppose that after this measurement, realizing the
observable μλ ∗ E, we perform (an exact) measurement of F
thus obtaining the (sequential joint) observable Mλ : B(R2) →
L(H). If we then postselect only the values (x,y) with y ∈ Y

[for a fixed Y for which 〈ϕ|Mλ
2(Y )ϕ〉 �= 0] and normalize the

probabilities, we end up with a conditional probability measure

X �→ 〈ϕ|Iλ(X)∗[F(Y )]ϕ〉
〈ϕ|Iλ(R)∗[F(Y )]ϕ〉 = 〈ϕ|Mλ(X × Y )ϕ〉

〈ϕ|Mλ
2(Y )ϕ〉 .
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We now claim that the real part of the weak value is obtained
by taking the average of the above measure and then taking
the limit of zero interaction strength, that is,

Re {Ew[ϕ,F(Y )]} = lim
λ→0

∫
x

〈ϕ|Iλ(dx)∗[F(Y )]ϕ〉
〈ϕ|Iλ(R)∗[F(Y )]ϕ〉 . (5)

First notice that limλ→0
〈
ϕ
∣∣Iλ(R)∗[F(Y )]ϕ

〉 = 〈ϕ|F(Y )ϕ〉,
so it is sufficient to consider only the numerator for which
we define �λ(X) = 〈

ϕ
∣∣Iλ(X)∗[F(Y )]ϕ

〉
. Now by assuming

that φ ∈ D(Q) and ϕ ∈ D̃(x,E) [the latter being equivalent
to ϕ ⊗ ψ ∈ D(A) = D(x,PA)], and by using the translation
covariance of position we can show that e−iλA⊗P ϕ ⊗ ψ ⊗ φ ∈
D(x,I ⊗ I ⊗ PQ) for all λ � 0. It follows that the required
average value is given by

�λ[1] = 1

λ

〈
e−iλA⊗P ϕ ⊗ ψ ⊗ φ

∣∣F(Y ) ⊗ I ⊗ Qe−iλA⊗P

×ϕ ⊗ ψ ⊗ φ
〉
.

If we then make the assumptions that 〈φ|Qφ〉 = 0 and φ ∈
D(QP ) ∩ D(PQ), we can calculate the limit λ → 0. Using
again the translation covariance of position, we can actually
calculate the limit in a rigorous manner and obtain

lim
λ→0

�λ[1] = i 〈E[1]ϕ|F(Y )ϕ〉〈φ|PQφ〉
− i〈F(Y )ϕ|E[1]ϕ〉〈φ|QPφ〉. (6)

Here we have used the fact that the operator identity V ∗
ψAVψ =

E[1] holds on the square-integrability domain D̃(x,E) [20].
We immediately see that a sufficient condition for the above

limit to be proportional to the real part of the weak value is
that 〈φ|{Q,P }φ〉 = 0, where {·,·} denotes the anticommutator.
A similar condition was also found in Ref. [21], where it
was expressed as vanishing current density. However, we
wish to obtain the strict equality and therefore we pose the
more restrictive condition 〈φ|QPφ〉 = i

2 . Such a condition

is satisfied for instance by a Gaussian φ(x) = 1√
�

√
2π

e
− x2

4�2 .

Under these assumptions Eq. (5) is clearly valid, which
shows that at least the real part of the (generalized) weak
value is accessible via measurements. We summarize these
considerations in the form of a proposition.

Proposition 1. Let Iλ be the instrument defined by the
measurement scheme Mλ = 〈K,φ,�λ,PQ,f λ〉 where φ ∈
D(QP ) ∩ D(PQ) is such that 〈φ|Qφ〉 = 0 and 〈φ|QPφ〉 =
i
2 . Then

lim
λ→0

∫
x

〈ϕ|Iλ(dx)∗[F(Y )]ϕ〉
〈ϕ|Iλ(R)∗[F(Y )]ϕ〉 = Re

〈ϕ|F(Y )E[1]ϕ〉
〈ϕ|F(Y )ϕ〉 (7)

for all ϕ ∈ D̃(x,E).
In order to obtain the imaginary part, consider the mea-

surement schemeN λ = 〈K,φ,�λ,PP ,f λ〉, which differs from
Mλ by the pointer observable: instead of monitoring shifts in
the probe’s position we now observe the boosts the probe
obtains. Note that at this point the initial probe state is also
arbitrary. This change has a significant effect on the scheme.
In particular, the measured observable becomes a trivial one,
X �→ 〈φ|PP (λX)φ〉I , meaning that no information is gained
about the object system. However, this does not mean that the
measurement does not affect the state of the system. Indeed,

the instrument J λ associated with this scheme is nontrivial, as
can be seen from the dual form

J λ(X)∗(B) =
∫

X

|
√

λφ̂(λx)|2 V ∗
ψL∗

x(B ⊗ I )LxVψ dx,

where Lx = e−iλ2xA and B ∈ L(H).
Now suppose that we again perform a sequential measure-

ment where the second observable is F. Then the calculations
for the conditional average value and the limit of zero
interaction are performed as before. In particular, by denoting
�λ(X) = 〈ϕ|J λ(X)∗[F(Y )]ϕ〉 and by assuming that φ ∈ D(P )
with 〈φ|Pφ〉 = 0 we find that

lim
λ→0

�λ[1] = 2 〈φ|P 2φ〉Im 〈F(Y )ϕ|E[1]ϕ〉,

so that by assuming that 〈φ|P 2φ〉 = 1
2 we get the desired result.

For the Gaussians we have 〈φ|P 2φ〉 = 1
4�2 , so that the above

condition is satisfied with the choice �2 = 1
2 for the variance.

Once again we summarize this as a proposition.
Proposition 2. Let J λ be the instrument defined by the

measurement scheme N λ = 〈K,φ,�λ,PP ,f λ〉 where φ ∈
D(P 2) is such that 〈φ|Pφ〉 = 0 and 〈φ|P 2φ〉 = 1

2 . Then

lim
λ→0

∫
x

〈ϕ|J λ(dx)∗[F(Y )]ϕ〉
〈ϕ|J λ(R)∗[F(Y )]ϕ〉 = Im

〈ϕ|F(Y )E[1]ϕ〉
〈ϕ|F(Y )ϕ〉 (8)

for all ϕ ∈ D̃(x,E).

B. Weak value from a single measurement

At the heart of quantum mechanics lies the fact that not all
pairs of observables admit joint measurements. In particular,
since position and momentum do not have a joint observable,
the above schemes cannot be simply combined by choosing a
pointer observable M : B(R2) → L(H), which would give PQ

and PP as its Cartesian margins. However, this problem can
be overcome by replacing the sharp position and momentum
observables with a pair of smeared ones (μ ∗ PQ,ν ∗ PP ). In
this case, the observables have a joint observable exactly when
there exists a positive trace one operator T such that μ(X) =
tr[T PQ(−X)] and ν(Y ) = tr[T PP (−Y )] [22], in which case
we denote μ = μT and ν = νT . One joint observable is then
always given by the covariant phase space observable GT :
B(R2) → L(H) generated by T , that is,

GT (Z) = 1

2π

∫
Z

WqpT W ∗
qp dqdp, Z ∈ B(R2), (9)

where Wqp = ei
qp

2 e−iqP eipQ are the Weyl operators. The
structure and properties of covariant phase space observables
have been studied extensively and are well understood [23,24]
(see also Refs. [25,26]). For practical purposes it should be
noted that any GT can in principle be measured by using a
quantum optical eight-port homodyne detector, provided that
one can prepare a single mode electromagnetic field in a state
T (for a detailed analysis, see Ref. [27]).

The simplest example of a covariant phase space ob-
servable is G|0〉, the observable generated by the ground
state of the harmonic oscillator, or the vacuum state, |0〉.
The corresponding probability density is then the Husimi Q

function of the state and is widely used in quantum optics.
For the present purpose, however, the important feature of
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this observable is that the margins agree with position and
momentum at the level of first moments, i.e., μ|0〉 ∗ PQ[1] = Q

and ν|0〉 ∗ PP [1] = P . Since the determination of the weak
value requires only averaging, it is possible to use this single
observable as a pointer for the scheme. One only needs to
make sure that all of the conditions of Propositions 1 and 2
for the probe state are satisfied. This can be accomplished
by choosing the state to be the vacuum which in the

coordinate representation is given by φ0(x) = ( 1
π

)1/4e− x2

2 .
We also use the same notation f λ for the two-dimensional
pointer function, f λ(x,y) = (λ−1x,λ−1y). This then results in
the measurement scheme M|0〉 = 〈K,|0〉,�λ,G|0〉,f λ〉 whose
associated instrument we denote by I |0〉. It follows that the
marginal instruments I |0〉

1 (X) = I |0〉(X × R) and I |0〉
2 (Y ) =

I |0〉(R × Y ) can be expressed in the dual form as

I |0〉
1 (X)∗(B) =

∫
μ|0〉[λ(X − x)] Iλ(dx)∗(B)

I |0〉
2 (Y )∗(B) =

∫
ν|0〉[λ(Y − y)]J λ(dy)∗(B),

for all B ∈ L(H), where it is understood that

Iλ(dx)∗(B) = V ∗
ψK∗

x (B ⊗ I )KxVψ dx,

J λ(dy)∗(B) = |
√

λφ0(λy)|2 V ∗
ψL∗

y(B ⊗ I )LyVψ dy,

where now Kx = √
λφ0{−[λ(A − x)]} and we have used the

fact that φ̂0 = φ0. The calculations for the averages and the
limits are now identical to the previous one. Therefore, we
can again summarize these considerations in the form of a
proposition.

Proposition 3 Let I |0〉 be the instrument defined by the
measurement scheme M|0〉 = 〈K,|0〉,�λ,G|0〉,f λ〉 and let I |0〉

1

and I |0〉
2 be its marginal instruments. Then

lim
λ→0

∫
x

〈
ϕ
∣∣I |0〉

1 (dx)∗[F(Y )]ϕ
〉

〈
ϕ
∣∣I |0〉

1 (R)∗[F(Y )]ϕ
〉 = Re

〈ϕ|F(Y )E[1]ϕ〉
〈ϕ|F(Y )ϕ〉 (10)

and

lim
λ→0

∫
y

〈
ϕ
∣∣I |0〉

2 (dy)∗[F(Y )]ϕ
〉

〈
ϕ
∣∣I |0〉

2 (R)∗[F(Y )]ϕ
〉 = Im

〈ϕ|F(Y )E[1]ϕ〉
〈ϕ|F(Y )ϕ〉 (11)

for all ϕ ∈ D̃(x,E).

VI. STATE RECONSTRUCTION METHODS

A. Reconstructing the wavefunction via weak measurements

In Ref. [3], Lundeen et al. reported an experiment where
they claim to have measured the pointwise values of the
wavefunction of a photon using weak measurements. Though
the localization of photons is at best problematic, their
state determination method deserves attention. To avoid the
question of photon localization, we consider a spin- 1

2 particle.
In the original experiment the part of the inner degree of
freedom was played by the polarization of the photon.

Consider the position of the particle in, say, the z direction,
so that the spacial part of the Hilbert space can be taken to
be H = L2(R). Now as a “probe” we take the spin-degree of
freedom,K = C2, with the initial state |+〉. In order to measure

the pointwise value of the wavefunction, we divide the position
space into disjoint intervals (Ii)i∈N with the assumption that
the intervals are of equal length and the center is labeled by xi .
For each interval we will then perform a weak measurement of
the two-valued observable 1 �→ Qi = PQ(Ii),0 �→ I − Qi =
PQ(R \ Ii), thus scanning the whole position space. In order
to accomplish the weak measurement, the position and spin of
the particle are coupled via the unitary transformation

�α(ρ ⊗ σ ) = e−iαQi⊗σy ρ ⊗ σeiαQi⊗σy .

In particular, an initial vector state ϕ ⊗ |+〉 evolves into a
superposition

�α = Qiϕ ⊗ (cos α|+〉 + sin α|−〉) + (I − Qi)ϕ ⊗ |+〉. (12)

As the pointer observable we choose either σx or σy or, more
precisely, their two-valued spectral measures Pσj , j = x,y.
We have thus arrived at the measurement schemes Mi

j =
〈K,|+〉,�α,Pσj 〉, i ∈ N, j = x,y.

After the first measurement we measure the momentum PP

of the system and postselect the values that lie in the small
interval Jε = (− ε

2 , ε
2 ). The conditional probabilities are then

given by

{±1} �→ 〈�α|PP (Jε) ⊗ Pσj ({±1})�α〉
〈�α|PP (Jε) ⊗ I�α〉 . (13)

Now if we calculate the conditional average, and perform
additional scaling by the factor 2 sin α [which corresponds
to using a pointer function f (x) = x

2 sin α
], then in the weak

limit α → 0 we arrive at the two values

ξi = Re〈ϕ|PP (Jε)Qiϕ〉, (14)

ηi = Im〈ϕ|PP (Jε)Qiϕ〉, (15)

where ξi and ηi refer to the measurements of σx and σy ,
respectively, with the fixed position interval Ii . The claim of
Ref. [3] is that Eqs. (14) and (15) give the real and imaginary
parts of the wavefunction at the point xi , that is,

ϕ(xi) � constant〈ϕ|PP (Jε)Qiϕ〉. (16)

This is the more precise meaning of Eqs. (2) and (3) in Ref. [3].
It is now straightforward to show that for a sufficiently regular
ϕ, such as a compactly supported C∞ function with ϕ̂(0) �= 0,
Eq. (16) is true when the lengths of the intervals approach zero.

The proposed method has obvious limitations as a method
of state determination. Even after scanning through all the
disjoint intervals Ii , the method can succeed only for those state
vectors ϕ for which PP (Jε)ϕ �= 0. Indeed, if the momentum
of the system is localized outside the vicinity of the origin,
then PP (Jε)ϕ = 0 and no information can be obtained from
the measurement. As an example, consider the superposition
ϕ̂ = 1√

2
[χ(−3/2,−1/2) + χ(1/2,3/2)], where χI denotes the char-

acteristic function of the interval I . That is, ϕ̂ is a kind of
two-slit state in momentum space. The corresponding position
representation is then ϕ(x) = 2√

πx
cos(x) sin(x/2). For this

state one clearly has PP (Jε)ϕ = 0 provided that ε < 1
2 and the

state could not be determined. Thus, this method is far from
being generally valid. Moreover, if it happens for instance that
PP (Jε)ϕ = ϕ, then it is known from the basic Fourier theory
that all the component vectors Qiϕ, i ∈ N, are nonzero and
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one has to scan through all the intervals Ii in order to determine
the state. Now a simple example is given by ϕ̂ = 1√

ε
χJε

, that is,
a state which is well localized around the origin in momentum

space. The position representation gives ϕ(x) =
√

2
επ

sin(
ε
2p)
p

.

If we choose, for instance, ε = 1
4 , we obtain

〈ϕ|PQ((−10,10))ϕ〉 =
∫ 10

−10
|ϕ(x)|2 dx � 0.67.

This shows that even after scanning the position space interval
(−10,10), only “approximately 2

3 of the state” is reconstructed.
The above discussion shows that the state reconstruction

method via weak measurements clearly has its limitations
when it comes to determining a completely unknown state.
In general, some a priori knowledge concerning the state is
needed in order to be reassured of the applicability of the
method. However, it should be pointed out that if one is indeed
interested in determining the actual pointwise values of the
wavefunction, then an advantage of this method is that the
data does not need to be processed; the value appears directly
as the conditional average.

B. Informationally complete sequential measurements

As an alternative and completely general method of state
reconstruction, we present the more common approximate
sequential measurement of position and momentum where
the weak limit is not taken. Consider again the standard
measurement scheme Mλ with the exception that we take the
position PQ to be the observable we wish to measure so that no
dilation is needed and the transformation �λ becomes the usual
unitary transformation. The observable actually measured is
thus a smeared position μλ ∗ PQ.

Suppose that after the measurement Mλ, a momentum
measurement is performed. This results in a sequential joint
observable G : B(R2) → L(H), which is in fact a covariant
phase space observable whose generating operator is de-
termined by the state of the probe system, T = |φλ〉〈φλ|,
where φλ(x) = √

λ φ(−λx). Moreover, the measurement of an
arbitrary GT can be realized as such a sequential measurement
by choosing the probe state appropriately.

From the point of view of state reconstruction, the co-
variant phase space observables are extremely useful since
a large class of them are known to be informationally
complete [28], meaning that the initial state of the system
is uniquely determined by the measurement outcome statistics
of this observable. Indeed, if the generating operator satisfies
tr[T Wqp] �= 0 for almost all (q,p) ∈ R2, the observable GT

is informationally complete [29]. In the sequential scheme,
we immediately see that by choosing the probe state to be,
for instance, a Gaussian, it is possible to determine the state
of the object system with a single measurement scheme.
We once again point out that a well-known quantum optical
implementation of this measurement scheme is provided by an
eight-port homodyne detector with a strong local oscillator.

In comparison to the reconstruction method via weak
measurement, the phase space method has its advantages.
The most important aspect is that the method is completely
general. Indeed, an arbitrary state is uniquely determined by
the statistics provided that the requirement of informational
completeness is satisfied. The measured distribution itself is
then, of course, a representation of the state and, at least in
some cases, it can be used directly to calculate some other
quantities which are of interest. However, one is typically
interested in some other representation of the state, such
as its matrix elements with respect to a given basis. In
such a case, one often needs heavy processing of the data
and this likely leads to errors. A common concern in these
reconstruction algorithms is that there is no way of making sure
that the reconstructed state, that is, its matrix representation,
is positive.

VII. CONCLUSIONS

We have generalized concepts and obtained new results
concerning the weak value of a quantum observable. We
have constructed a measurement scheme that generalizes the
standard model to the case of an arbitrary real observable.
We have then defined the weak value of an observable in
this general context and have shown that the weak value can
be obtained from sequential measurements. In particular, we
have shown that a single measurement scheme with a phase
space observable as the pointer can be used to obtain the
weak value. We have also considered the determination of
an unknown quantum state using both weak and approximate
measurements. We have analyzed the state reconstruction
method of Ref. [3] and discussed some of its shortcomings.
As an alternative we have presented the well-known method
of informationally complete phase space measurements.
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