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In analogy with the usual quantum state-estimation problem, we introduce the problem of state estimation
for a pre- and postselected ensemble. The problem has fundamental physical significance since, as argued by
Y. Aharonov and collaborators, pre- and postselected ensembles are the most basic quantum ensembles. Two
new features are shown to appear: (1) information is flowing to the measuring device both from the past and
from the future; (2) because of the postselection, certain measurement outcomes can be forced never to occur.
Due to these features, state estimation in such ensembles is dramatically different from the case of ordinary,
preselected-only ensembles. We develop a general theoretical framework for studying this problem and illustrate
it through several examples. We also prove general theorems establishing that information flowing from the
future is closely related to, and in some cases equivalent to, the complex conjugate information flowing from
the past. Finally, we illustrate our approach on examples involving covariant measurements on spin-1/2 particles.
We emphasize that all state-estimation problems can be extended to the pre- and postselected situation. The
present work thus lays the foundations of a much more general theory of quantum state estimation.
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I. INTRODUCTION

Quantum mechanics is usually formulated in terms of
initial conditions. The state |ψi〉 is given at time ti and then
evolves according to the Schrödinger equation. However, it
was realized in [1] that one could also use a time-symmetric
formulation in which one imposes both the initial condition
|ψi〉 at the initial time ti and the final condition 〈ψf | at final
time tf . For an exposition we refer to the review [2] and to [3]
where the concept of pre- and postselection has been extended
to multiple time states. Pre- and postselection gives rise to a
number of paradoxes and surprising effects that do not occur
in the standard formulation of quantum theory. Studying them
is a worthy endeavor: Pre- and postselected ensembles are
the most detailed quantum ensemble one can prepare, hence
arguably they are the fundamental quantum ensembles.

Independently of the above line of work, the past decades
have seen the development of quantum information theory and,
in particular, an in-depth study of quantum state estimation
(see, e.g., [4–11]). The general problem of state estimation
is, given an unknown quantum state ψ , to devise the best
procedure to estimate the state.

In the present paper we try to bring together these two lines
of inquiry. We consider the problem of estimating an unknown
ensemble, when both the pre- and the postselected states are
unknown. This differs from the usual state-estimation problem
because information is flowing to the observer both from the
past and from the future. In the first part of the paper we will
show how to formulate this problem. Two new features are
shown to appear: (1) information is flowing to the measuring
device both from the past and from the future; (2) because
of the postselection, certain measurement outcomes can be
forced never to occur. Due to these features, state estimation
in such ensembles is very different from the case of ordinary,
preselected-only ensembles. For instance, in the usual state-
estimation problem in which information arrives only from the
past, measurements are described by positive operator valued

measures (POVMs), whereas when information arrives both
from the past and from the future, measurements are described
by Kraus operators. In a second part of the paper, we prove
general theorems establishing that information flowing from
the future and the complex conjugate information flowing from
the past are closely related and, in some cases, equivalent.
In the final part of the paper, we illustrate this formalism
on examples involving covariant measurements on spin-1/2
particles.

Considerable work has already been devoted to studying
measurements on pre- and postselected ensembles. These
works have mainly focused on the counterintuitive results
which can be exhibited by “weak measurements” carried out
at an intermediate time, between fixed pre- and postselected
states [12]. This approach has applications for understanding
quantum paradoxes—see the theoretical and experimental
studies of Hardy’s paradox [13–15], of superluminal light
propagation [18,19], of polarization mode dispersion effects in
optical networks [20], of cavity QED [21], as well as the recent
approaches for measuring wave functions and trajectories of
quantum particles [16,17]. Other experimental investigations
of weak measurements are reported in [22]. In addition, it
was shown, following the initial suggestion of [23], that
weak measurements can have applications for high-precision
measurements. These include the first observation of the
spin Hall effect [24] and the observation of small transverse
deflections of a light beam [25]; see also the proposals for
measurements of charge [26] and of imaginary phase shifts
[27]. Note that, in all these works, the pre- and postselected
states are kept fixed, and it is the effects of the measurement
which are investigated.

Closely related to the present work is [28] where it was
shown that, in the presence of a fixed postselected state,
some (preselected) states can be estimated to extremely high
precision, with as consequence that the computational power of
pre- and postselected ensembles is equivalent to the complexity
class probabilistic polynomial time (PP). This shows that
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the presence of a postselected state can dramatically change
the state-estimation problem because certain measurement
outcomes can be forced never to occur. Another well-known
example which can be interpreted in the same way (see
discussion below) is the unambiguous state-estimation (USE)
problem [29–31].

Here we both formulate in full generality the problem
of state estimation in the presence of a postselected state
and introduce the new problem of estimating an unknown
pre- and postselected ensemble. At this stage we do not
know if this approach will have applications (e.g., for high-
precision measurements); rather, in this first work we are
interested in the conceptual issue of formulating this problem
and understanding its relation to the usual state-estimation
problem.

II. SETTING UP THE PROBLEM

A. Standard state-estimation problem

It will be useful to view the standard state-estimation
problem as a game played between Alice and Bob: Alice
chooses a parameter θ and Bob must try to guess the value
of θ , given access to a quantum state |ψ(θ )〉. We call θ̃ Bob’s
guess, which should be as close as possible (according to some
merit function F ) to the true value θ . We now define this game
with precision. To this end we introduce several additional
actors that follow the instructions of either Alice or Bob. The
whole state estimation problem consists of the following steps
[described graphically in panel (a) of Fig. 1]:

(1) Alice chooses a (multidimensional) parameter θ taken
from some set � according to a probability distribution p(θ ).
The set � and probability distribution p(θ ) are known to Bob.

(2) The first actor is the preparer. He receives from Alice
the value of θ and prepares a quantum state |ψ(θ )〉. The
dependency of the quantum state on the parameter θ [i.e.,
the function |ψ(θ )〉] is known to Bob.

(3) The second actor is the measurer who carries out a
measurement on the state provided by the preparer. The POVM
is chosen by Bob. Denote the outcome of the measurement by
k. The measurer sends the value of k to Bob.

(4) Finally, Bob outputs a guess θ̃(k) which depends on the
value of k. The quality of the guess is measured by some merit
function F (θ,θ̃ (k)).

The experiment is then repeated many times. Each time
Alice chooses a new value for θ according to the probability
distribution p(θ ). The quality of the state-estimation procedure
is measured by the average of the merit function F .

The above scenario may seem overly complicated. How-
ever, the separation of the roles of the different actors will
become important in the pre- and postselected case.

Note that here and throughout this paper we neglect the
free (unitary) evolution between preparation and measurement.
Any such free evolution is supposed to be known to the parties
and can therefore be taken into account.

B. Estimating pre- and postselected ensemble

We now set up, in parallel with the standard state-estimation
problem, the problem of estimating a pre- and postselected
ensemble.

FIG. 1. State estimation. Panel (a) illustrates the usual formu-
lation of state estimation. The parameter θ is chosen by Alice.
It determines the quantum state |ψ(θ )〉 which is prepared by the
preparer. The state is then sent to the measurer who carries out a
quantum measurement, obtaining outcome k. The outcome is then
sent to Bob who, on the basis of the value k, tries to guess what
was the value of the parameter θ . His guess is denoted θ̃ (k). Panel
(b) illustrates the estimation of pre- and postselected ensemble.
The parameter θ is chosen by Alice. It determines the pre- and
postselected states |ψi(θ )〉 and 〈ψf (θ )|. These are prepared by the pre-
and postselectors respectively. The measurer carries out a quantum
measurement at an intermediate time, obtaining outcome k. The role
of the gate is to check if the pre- and postselections succeeded. Only
if the pre- and postselections succeeded is the outcome k of the
measurement sent to Bob. Upon receiving k, Bob tries to guess what
was the value of the parameter θ . His guess is denoted θ̃ (k).

First of all note that, although the aim of pre- and
postselection is to have a formulation in which past and future
play symmetric roles, it is often useful to rephrase the problem
in the language of usual quantum mechanics, in which the past
and future play nonequivalent roles. Then by imposing that
the postselection succeeds, one recovers a time-symmetric
formulation. In the following paragraphs we take this more
traditional point of view.

Once more, we view the estimate of a pre- and postselected
ensemble as a game played between Alice and Bob: Alice
chooses a parameter θ and Bob must try to guess the value
of θ , given access to a pre- and postselected ensemble
〈ψf (θ )||ψi(θ )〉. We call θ̃ Bob’s guess, which should be as
close as possible (according to some merit function F ) to the
true value θ . We now define this game with precision. To
this end we introduce several additional actors. The estimation
problem consists of the following steps [described graphically
in panel (b) of Fig. 1]:

(1) Alice chooses a (multidimensional) parameter θ taken
from some set � according to a probability distribution p(θ ).
The set � and probability distribution p(θ ) are known to
Bob. She sends the value of θ to the preselector and to the
postselector (see steps 2 and 4).

(2) The first actor is the preselector. He prepares a quantum
state |ψi(θ )〉. The dependency of the quantum state on the
parameter θ [i.e., the function |ψi(θ )〉] is known to Bob.

(3) The second actor is the measurer who carries out
a measurement on the state provided by the preselector.
The actions of the measurer are chosen by Bob. The result
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of the measurement consists of two pieces. First of all is
the classical data produced by the measurement. Call this
classical information k. Second is the quantum state of the
system, which is modified by the action of the measurement.
After the measurement is finished, the measurer sends the
classical information k to a logical gate (see step 5) and
sends the quantum state of the system to the postselector (see
step 4).

(4) The third actor is the postselector. He checks whether
or not the state sent to him by the measurer is 〈ψf (θ )|. He
does this by measuring an observable that has 〈ψf (θ )| as one
of its nondegenerate eigenstates. He sends the result of his
measurement to the gate (see step 5). The dependency of the
quantum state on the parameter θ [i.e., the function 〈ψf (θ )|]
is known to Bob.

(5) The gate receives the value k from the measurer and the
information on whether the postselection succeeded from the
postselector. If the postselection succeeded, then the gate sends
the result k of the measurement to Bob. If the postselection
failed, then the gate instructs the preselector, postselector, and
measurer that they must start over at step 2, the value of θ

being kept fixed.
(6) Finally, Bob outputs a guess θ̃(k) which depends on the

value of k. The quality of the guess is measured by some merit
function F (θ,θ̃ (k)).

In the present work we are interested in the information
contained in the pre- and postselected ensemble itself (i.e.,
in the conditional information), given that we succeeded to
prepare the ensemble. We want to exclude that information
about the probability to actually prepare the ensemble can be
used to estimate the ensemble. The role of the gate in the above
procedure is to make this condition explicit. Indeed, because
of the gate, Bob only receives the result of the measurement
if the pre- and postselection succeeded and does not have any
information on how many times steps 2, 3, 4 must be repeated
before the postselection succeeds.

Note that one can consider the case where the postselector
postselects a fixed state 〈0| which does not depend on θ , or
a combination 〈ψf (θ )|〈0| of a state which depends on θ and
a state that does not. We refer to these situations as the cases
where there is a “fixed postselected state.”

Note that, although the above setup is described within the
usual framework of quantum theory, with evolution going from
the past to the future, the final expressions for the quality of
the ensemble estimation by Bob will be time symmetric. The
pre- and postselected states will play the same role. This will
become apparent below.

III. STATE ESTIMATION IN PRESENCE OF FIXED
POSTSELECTED STATE

Before studying the general case, it is useful to consider
a simple situation; namely, the case in which the postselected
state is fixed (i.e., independent of θ ). Indeed this case is closest
to the usual state-estimation problem, and several interesting
results have already been obtained in the literature which can
help develop an intuition. For definiteness we denote the fixed
postselected state 〈0|. When the postselected state is fixed,
no information flows to the measurer from the future—there
simply is no information in the postselected state since there

is no uncertainty about it. So naively, one would expect that,
in this case, the estimation problem is identical to the standard
preselected-only case. However, as we now show, the existence
of a postselected state completely changes the state-estimation
problem.

One way to interpret this situation is that the measurer
can reject certain measurement outcomes for free. Namely,
if the measurement provides a useful outcome, the measurer
prepares the state |0〉, and the postselection will succeed. On
the contrary, if the measurement outcome is not useful, the
measurer prepares the state |1〉, the postselection will fail, and
he will be allowed to begin the measurement anew on a fresh
copy of the state.

In this context, a dramatic example is provided by the
problem of unambiguous state estimation [29–31]. Suppose
the preselector prepares one of two nonorthogonal states |ψ1〉
and |ψ2〉, while the postselector selects the fixed state 〈0|.
The task of Bob is to say either “the state is ψ1,” or “the
state is ψ2,” or “I do not know.” The constraint is that, if
one says that the state is ψ1 (ψ2), then one cannot make a
mistake.

As is well known, in the standard unambiguous state
discrimination problem (i.e., without postselection), such
discrimination is possible for all pairs of states ψ1 and ψ2,
but the probability of success goes to zero as the states
|ψ1〉 and |ψ2〉 get closer and closer |〈ψ1|ψ2〉| → 1. However,
in the presence of postselection Bob can always succeed.
The procedure is for the measurer to perform the standard
(preselected-only) unambiguous state discrimination and then
prepare the system in the state |0〉 whenever the measurement
indicates ψ1 or ψ2, but prepare the system in state |1〉 whenever
the outcome is “I do not know.” The “I do not know”
cases will thus never pass postselection and will never be
counted.

A second spectacular example is taken from [28]. Suppose
that the preparer prepares n identical particles all prepared
in the same state |↑θ 〉 = cos θ/2|↑〉 + sin θ/2|↓〉. We are
promised that either θ ∈ S+ = [ε,π − ε] or θ ∈ S− = [−π +
ε, − ε] with 0 < ε < π/2. The task is to distinguish whether
θ belongs to set S+ or to set S−. We are allowed a small error
probability [say P (error) < 1/3]. If the measurer is promised
that there is a fixed postselected state 〈0|, then this task can
be solved with n = O((ln 1/ε) ln(ln 1/ε)) particles. On the
other hand in the usual formulation of state estimation with
no postselection one needs n = O(ε−2) particles. This is a
huge difference and has dramatic consequences: essentially
the same state-estimation problem is used in [28] to show that
a quantum computer with access to a postselected state 〈0| can
solve PP complete problems.

More generally, one can take any state-estimation problem
in the standard formulation and inquire how the quality of
the state-estimation changes if there is a fixed postselected
state 〈0|. Does one always get dramatic improvements as in
the above two examples? Below we will analyze the cases of
covariant measurements on n spin-1/2 particles in the state
|↑⊗n

� 〉, and of covariant measurements when the n spins are
in the state |↑⊗n/2

� ↓⊗n/2
� 〉 (for n even). We will see that, in

these cases, the presence of a fixed postselected state 〈0| can
sometimes give a small increase in fidelity, but nothing as
spectacular as in the above examples.
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Before presenting these results, we first give a general
framework for describing state estimation in the pre- and
postselected context.

IV. GENERAL FORMALISM

We give here general expressions for state estimation in
the presence of both pre- and postselection. In Sec. V we
argue why these are the natural generalizations of the standard
formalism.

A. Standard state estimation

For definiteness we first recall standard state-estimation
theory. In this case the most general measurement is a positive
operator valued measure (POVM) described by operators Mk

which are positive and sum to the identity:

Mk � 0,
∑

k

Mk = 1. (1)

The probability of finding outcome k if the state was |ψ〉 is

P (k|ψ) = 〈ψ |Mk|ψ〉. (2)

The average value of the merit function can then be expressed
as

F =
∫

dθp(θ )
∑

k

〈ψ(θ )|Mk|ψ(θ )〉F (θ,θ̃(k)). (3)

We note the well-known fact that POVMs with rank-one
operators are the most informative (for a proof see the
argument at the end of Sec. IV B).

B. State estimation with fixed postselected state

When there is a fixed postselected state (the situation
discussed in Sec. III), the preceding formalism must be
generalized. The probability of finding outcome k if the state
was |ψ〉 is

PM (k|ψ) = 〈ψ |Mk|ψ〉∑
k′ 〈ψ |Mk′ |ψ〉 , (4)

where the operators Mk are positive but no longer normalized
(we say they are “subnormalized”):

Mk � 0,
∑

k

Mk � 1. (5)

The average value of the merit function can then be expressed
as

F =
∫

dθp(θ )
∑

k

〈ψ(θ )|Mk|ψ(θ )〉∑
k′ 〈ψ(θ )|Mk′ |ψ(θ )〉F (θ,θ̃(k)). (6)

We now show that POVMs with rank-one operators are the
most informative, whether or not there is a fixed postselected
state. Consider an arbitrary POVM with elements Mk and
associated estimator θ̃ (k). Since the Mk � 0 are positive
operators, we can write them as Mk = ∑

j |mkj 〉〈mkj |, with
|mkj 〉 being unnormalized states. Consider the refined POVM
with elements Mkj = |mkj 〉〈mkj |. If to the refined POVM
element Mkj we associate the same estimator θ̃ (k) as for the
original POVM, then the value of the merit function does

not change [to see this note that the denominator in Eq. (6)
does not change when one replaces the original POVM by
the refined POVM with elements Mkj ]. Hence the value of the
merit functions for POVMs with rank-one elements are always
at least as large as the merit functions for unrefined POVMs.

C. Estimation of pre- and postselected ensembles

In the case of estimation of pre- and postselected ensembles,
the measurement operators are no longer POVM elements, but
Kraus operators. Kraus operators describe the most general
evolution of an open quantum system:

ρ →
∑

k

AkρA
†
k, (7)

and are normalized according to∑
k

A
†
kAk = 1. (8)

Kraus operators are the appropriate operators to describe
interaction with a pre- and postselected ensemble because
Kraus operators consist of a ket-bra which points both toward
the past and toward the future:

Ak =
∑

l

∣∣φl
k

〉〈
ϕl

k

∣∣. (9)

In addition, if there is a fixed postselected state, one must also
modify the normalization condition and replace the equality
in Eq. (8) by an inequality (we say the Kraus operators are
“subnormalized”).

We thus have for the probability of obtaining outcome k

conditional on the pre- and postselected states 〈ψf ||ψi〉:

PA(k|ψf ,ψi) = |〈ψf |Ak|ψi〉|2∑
k′ |〈ψf |Ak′ |ψi〉|2 , (10)

with the normalization∑
k

A
†
kAk = 1 no additional postselection, (11)

or ∑
k

A
†
kAk � 1 fixed postselected state. (12)

Note that, in this expression, 〈ψf | need not belong to the same
Hilbert space as |ψi〉, as Kraus operators allow the description
of the evolution of a system belonging to one Hilbert space
into a system belonging to another Hilbert space. The average
value of the merit function can then be expressed as

F =
∫

dθp(θ )
∑

k

|〈ψf (θ )|Ak|ψi(θ )〉|2∑
k′ |〈ψf (θ )|Ak′ |ψi(θ )〉|2 F (θ,θ̃(k)). (13)

V. INTERACTION BETWEEN SYSTEM
AND MEASURING DEVICE

We now go back to the setups presented in Sec. II and
argue why the expressions given in Secs. IV B and IV C are a
natural generalization of the Born rule to the case of pre- and
postselected ensembles. Note that we cannot provide a proof
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that they constitute the only possible generalization, but only
plausibility arguments.

To derive the above expressions for the probability of
obtaining the outcome k, we go back to the general setup
described in Sec. II and Fig. 1(b) and describe it in the standard
quantum formalism.

To simplify the problem, let us first note that, if there is a
fixed postselected state, then we can, without loss of generality,
take it to be a single qubit. Indeed, in this case the most general
procedure is for the postselector to postselect that the state
belongs to a subspace. Denote by � the projector onto this
subspace and by |�〉 the state just before projection onto �. We
now describe an equivalent postselection in which only a single
qubit is used. First we add to the system space an ancillary qubit
initially in the state |0〉. The state is thus |�〉 ⊗ |0〉. Next we
carry out the unitary

U = � ⊗ |0〉〈0| + (1 − �) ⊗ (|1〉〈0| + |0〉〈1|)
(i.e. a controlled-NOT gate), where the projection onto � acts
as control. Finally, we postselect that the qubit is in state |0〉.
The probability of success of this postselection is exactly the
same as the original one, hence the two methods are equivalent.

We now go back to the general setup described in Sec. II
and Fig. 1(b). Let |ψi〉S ∈ HS be the initial state of the system.
We adjoin to HS two additional Hilbert spaces. First, there is
the Hilbert space HR of the measurement register. The initial
state of the measurement register is |0〉R . If the final state is
|k〉R , then the outcome of the measurement will be k. Second
there is the Hilbert space of single qubit HP which is used in
case there is a fixed postselection. The initial state of this qubit
is |0〉P . The fixed postselection will succeed if the final state
of this qubit is still |0〉P . The initial state is thus

|ψi〉S ⊗ |0〉R ⊗ |0〉P , (14)

where the subscripts denote to which Hilbert space each state
belongs. The action of the measurer can be described by a
unitary evolution U that entangles the Hilbert spaces HS , HR ,
and HP . This yields the state

U |ψi〉S ⊗ |0〉R ⊗ |0〉P
=

∑
k

∑
x=0,1

[1S ⊗ |k〉R〈k| ⊗ |x〉P 〈x|]U |ψi〉S ⊗ |0〉R ⊗ |0〉P

=
∑

k

∑
x=0,1

(Akx |ψi〉S) ⊗ |k〉R ⊗ |x〉P , (15)

where unitarity of U imposes that∑
kx

A
†
kxAkx = 1S. (16)

Consider first the case where the only postselected state is
the fixed state P 〈0|. The probability to find the register in state
k and for the postselection to succeed is

P (k,x = 0|ψi) = 〈ψi |A†
k0Ak0|ψi〉. (17)

Because of the presence of the gate that checks that the
postselection succeeded, the relevant quantity is the probability

to find the register in state k conditional on the postselection
having succeeded. This is

P (k|ψi,x = 0) = 〈ψi |A†
k0Ak0|ψi〉∑

k′ 〈ψi |A†
k′0Ak′0|ψi〉

= 〈ψi |Mk|ψi〉∑
k′ 〈ψi |Mk′ |ψi〉 ,

(18)

where Mk = A
†
k0Ak0 are POVM elements. They are hermitian,

positive Mk � 0, and subnormalized:
∑

k Mk � 1. We thereby
obtain the formalism of Sec. IV B.

Consider now the case where one postselects both that the
final state is S〈ψf | and that there is the fixed postselected state
P 〈0|. The amplitude of finding state S〈ψf ⊗R 〈k| ⊗P 〈0| is
〈ψf |Ak0|ψi〉. The probability of this event is

P (k,x = 0,ψf |ψi) = |〈ψf |Ak0|ψi〉|2. (19)

Because of the presence of the gate that checks that the
postselection succeeded, the relevant quantity is the probability
to find the register in state k conditional on the postselections
having succeeded. This is

P (k|ψi,ψf ,x = 0) = |〈ψf |Ak0|ψi〉|2∑
k′ |〈ψf |Ak′0|ψi〉|2 , (20)

where the operators Ak0 are arbitrary, except for the condition∑
k A

†
k0Ak0 � 1S .

Note that, if there is no fixed postselection onto P 〈0|, then
the above calculation carries through with the Hilbert space HP

(and hence the index x) omitted. One then obtains the standard
normalization for the Kraus operators

∑
k A

†
kAk = 1S .1

Note that, if the postselected state 〈ψf | belongs to a
different Hilbert space then the preselected state |ψi〉, then
the above calculation carries through unchanged, except that
one must enlarge the Hilbert space to contain both the spaces
of the initial state and that of the final state.

The above analysis thus leads to the formalism of Sec. IV C.

VI. INFORMATION FLOW FROM PAST
AND FROM FUTURE

A. Two theorems

How well can we estimate the parameter θ in the above
situations? Obviously, the estimation can be done better in the
pre- and postselected ensemble than if one is given the prese-
lected state |ψi(θ )〉 only, since the postselected state provides
additional information. But how much more information? We
now show that the relevant comparison is with the preselected

1In some cases, the postselection of a state 〈ψf | by itself implies
the existence of a fixed postselection. For instance, suppose that
〈ψf | = α〈0| + β〈1| belongs to a two-dimensional subspace of a
three-dimensional space with basis 〈0|,〈1|,〈2|. Then whenever the
measurer does not want an outcome to occur, he prepares the state
|2〉, and the postselection never occurs. On the other hand, it may
be that the Hilbert space to which 〈ψf | belongs is intrinsically two
dimensional (e.g., polarization of a photon). In this case there is a
difference between the presence or not of a fixed postselection. For
this reason we keep the two notions distinct in the present paper.
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tensor product state |ψf (θ )〉 ⊗ |ψi(θ )〉, where |ψ〉 is the state
obtained by complex conjugating the coefficients of |ψ〉 in a
basis: |ψ〉 = ∑

k ck|k〉 → |ψ〉 = ∑
k ck|k〉.

Some intuition for this mapping can be obtained by recall-
ing that in a pre- and postselected ensemble, the preselected
state arrives from the past, whereas the postselected state
arrives from the future. It is thus natural that it behaves
like the time reversal of a preselected state. And time
reversal is realized mathematically by complex conjugation.
Another motivation follows from the remark made in [3] that
it is possible to realize a pre- and postselected ensemble
〈ψf (θ )||ψi(θ )〉 by: (A) preselecting the tensor product state
|ψf (θ )〉 ⊗ |ψi(θ )〉, (B) postselecting the maximally entangled
state

∑
k〈k| ⊗ 〈k| (where |k〉 is the basis in which the complex

conjugation is defined), and (C) at intermediate times acting
only on the second system.

Thus, both lines of reasoning suggest that, to a postselected
state 〈ψf |, we should associate the preselected complex
conjugate state |ψf 〉. The following results put this intuition
on a firm basis. To state them we use the following notation:

Denote by |φ〉 ∈ Hd and |ψ〉 ∈ Hd ′
states belonging to

Hilbert spaces of dimension d and d ′, respectively. Denote by
|φ〉 the state obtained from |φ〉 by complex conjugation in a
(fixed but arbitrary) basis. Consider a subnormalized POVM
acting on the tensor product space Hd ⊗ Hd ′

with rank-one
elements: Mk = |mk〉〈mk|,

∑
k Mk � 1. The probability of

outcome k when the state is the tensor product |φ〉 ⊗ |ψ〉 is
given by Eq. (4):

PM (k|φψ) = |〈mk|φ〉 ⊗ |ψ〉|2∑
k′ |〈mk|φ〉 ⊗ |ψ〉|2

. (21)

Consider a subnormalized completely positive (CP) map
described by Kraus operators Ak : Hd ′ → Hd ,

∑
k A

†
kAk � 1.

The probability of finding outcome k using operators Ak in the
pre- and postselected ensemble 〈φ||ψ〉 is given by Eq. (10):

PA(k|φψ) = |〈φ|Ak|ψ〉|2∑
k |〈φ|Ak|ψ〉|2 . (22)

Then we have:
Theorem 1. For any subnormalized rank-one POVM

Mk , there exists a subnormalized CP map Ak such that
PA(k|φψ) = PM (k|φψ). Conversely, for any subnormalized
CP map Ak , there exists a subnormalized POVM Mk , such
that PM (k|φψ) = PA(k|φψ).

This result, combined with the fact that rank-one POVM’s
are always the most informative (see end of Sec. IV B),
shows that the problem of estimating the unknown preselected
state |φ〉|ψ〉 in the presence of a fixed postselected state is
completely equivalent to estimating the pre- and postselected
state 〈φ||ψ〉 in the presence of a fixed postselected state.

In the case where there is no fixed postselected state, we
have implication in one direction only:

Theorem 2. For any normalized rank-one POVM Mk

(
∑

k Mk = 1), there exists a normalized CP map Ak

(
∑

k A
†
kAk = 1) such that PA(k|φψ) = PM (k|φψ).

This result shows that the problem of estimating the un-
known preselected state |φ〉|ψ〉 without any fixed postselection

is always at least as hard as estimating the pre- and postselected
state 〈φ||ψ〉 (without any fixed postselection).

One would expect that the converse of Theorem 2 should
not hold, since the presence of some postselection should
give additional discriminating power. Below we show that
this intuition is correct and provide an example showing that
the converse of Theorem 2 does not hold; that is, in some
cases estimating the unknown preselected state |φ〉|ψ〉 without
any fixed postselection is harder than estimating the pre- and
postselected state 〈φ||ψ〉 without any fixed postselection.

B. Proof of theorems

Proof of Theorem 1. Part (1): Consider the rank-one
subnormalized POVM Mk = |mk〉〈mk|. We will construct the
Kraus operators Ak so that the probabilities of outcomes of
measurement Ak , PA(k|φψ), are identical to the probabilities
of outcomes of the measurement M: PA(k|φψ) = PM (k|φψ).

Let us rewrite

|〈mk|φ〉|ψ〉|2 =
∣∣∣∣∣∣
∑
αβ

mk
αβ〈α|φ〉〈β|ψ〉

∣∣∣∣∣∣
2

, (23)

where mk
αβare the coefficients of |mk〉 in basis |α〉 ⊗ |β〉,

mk
αβ = 〈mk||α〉 ⊗ |β〉, (24)

and |α〉 is the basis in which complex conjugation of |φ〉 is
defined. Let us now consider the Kraus operators

Ak =
∑
αβ

|α〉〈β|Ak
αβ, (25)

with the choice

Ak
αβ = mk

αβ/
√

d, (26)

where d is the dimension of the Hilbert space of state |φ〉. (The
reason for this choice of normalization will appear below.) We
then have

|〈φ|Ak|ψ〉|2 = 〈φ| ⊗ 〈ψ |Mk|φ〉 ⊗ |ψ〉/d. (27)

Inserting this identity into Eqs. (21) and (22) proves the
equality PA(k|φψ) = PM (k|φψ).

Note that we have
∑

kα A
k

αβ ′Ak
αβ = ∑

kα mk
αβ ′mk

αβ/d. Using
the subnormalization

∑
k Mk � 1, and the fact that the partial

trace preserves inequalities between matrices (i.e., if A and B

act on H ⊗ H ′, and A � B, then TrHA � TrHB), we have∑
kα

A
k

αβ ′A
k
αβ �

∑
α

δββ ′/d = δββ ′ , (28)

where the inequality is taken to be a matrix inequality, not an
inequality for each ββ ′. This implies that the Kraus operators
are also subnormalized

∑
k A

†
kAk � 1.

Part (2): Consider the subnormalized Kraus operators
Ak . We will construct a rank-one POVM Mk = |mk〉〈mk|
such that the probabilities of outcomes of measurement Mk ,
PM (k|φψ) are identical to the probabilities of outcomes of
the measurement Ak: PM (k|φψ) = PA(k|φψ). The argument
is essentially the reverse of the argument given in part (1).
We write the Kraus operators and POVM elements using the
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notation of Eqs. (24) and (25) and choose the mk
αβ according

to

mk
αβ = cAk

αβ, (29)

where c > 0 is a constant we will fix below. With this choice
we have

〈φ| ⊗ 〈ψ |Mk|φ〉 ⊗ |ψ〉 = c2|〈φ|Ak|ψ〉|2 (30)

Inserting this identity into Eqs. (21) and (22) proves the
equality PA(k|φψ) = PM (k|φψ).

Note that we have
∑

k mk
α′β ′mk

αβ = c2 ∑
k A

k

α′β ′Ak
αβ � 0,

which is a positive operator. By choosing c sufficiently small,
we can ensure that

∑
k Mk � 1. �

Proof of Theorem 2. Consider the rank-one normalized
POVM Mk = |mk〉〈mk|,

∑
k Mk = 1. We will construct nor-

malized Kraus operators Ak so that the probabilities of
outcomes of measurement Ak , PA(k|φψ), are identical to the
probabilities of outcomes of the measurement M: PA(k|φψ) =
PM (k|φψ). We proceed exactly as in the proof of Theorem 1,
part 1 and, in particular, make the choice of Kraus elements
Eq. (26) (with the same normalization). Then we have equality
in Eq. (28) which shows that the Kraus operators are also
normalized. �

C. Example showing that converse of Theorem 2 does not hold

The following example showing that the converse of
Theorem 2 does not hold is based on a version of the
unambiguous state discrimination problem.

Denote by |ψ±〉 = α|0〉 ± β|1〉 two nonorthogonal states.
Denote the orthogonal states by |ψ⊥

± 〉 = β|0〉 ∓ α|1〉. Simi-
larly, denote by |φ±〉 = √

1 − ε2|0〉 ± ε|1〉 two nonorthogonal
states. All coefficients α > β > 0, ε > 0 are real, and all states
are normalized: α2 + β2 = 1. We will be interested in the case
where α,β are fixed and ε is very small: 0 � ε  1. Note that,
for a counter example, it is in principle sufficient to consider the
case when ε = 0. However, this case is special since the states
|φ±〉 are then equal and carry no information. By considering
the cases when ε > 0, we show that counterexamples are rather
common.

Consider the problem in which one receives either the
states |ψ+〉|φ+〉, or the states |ψ−〉|φ−〉. The measurement
can have three outcomes: +, − ,0. Outcome + can only
occur if the state was |ψ+〉|φ+〉 [i.e., PM (+|−) = 0]. Out-
come − can only occur if the state was |ψ−〉|φ−〉 [i.e.,
PM (−|+) = 0]. Outcome 0 can occur in all cases. The
aim is to minimize the probability of occurrence of out-
come 0. The theory of USE [29–31] shows that the opti-
mal discrimination probabilities without fixed postselection
are PM (+|+) = PM (−|−) =

√
1 − (α2 − β2)2(1 − 2ε2)2 =√

1 − (α2 − β2)2 + O(ε2) where we expand to first order in ε2,
and PM (0|+) = PM (0|−) = 1 −

√
1 − (α2 − β2)2 + O(ε2).

Now consider the related problem where some of the
information is flowing from the future. The aim is to dis-
tinguish between the two ensembles 〈φ+||ψ+〉 and 〈φ−||ψ−〉.
The measurement, given by Kraus operators, can have three
outcomes: +, − ,0. Outcome + can only occur if the ensemble
is 〈φ+||ψ+〉 [i.e., PA(+|−) = 0]. Outcome − can only occur
if the ensemble is 〈φ−||ψ−〉 [i.e., PA(−|+) = 0]. Outcome 0

can occur in all cases. The aim is to minimize the probability
of occurrence of outcome 0. To this end we consider the Kraus
operators A+ = |0〉〈ψ⊥

− |/
√

2α2, A− = |0〉〈ψ⊥
+ |/

√
2α2, and

A0 = |1〉〈0|
√

1 − β2/α2. One checks that A
†
+A+ + A

†
−A− +

A
†
0A0 = 1. One easily computes that PA(+|+) = PA(−|−) =

1 − O(ε2) and PA(0|+) = PA(0|−) = O(ε2).
Thus, in this example, in the absence of fixed postselection,

the outcome 0 occurs with probability PM (0|+) = PM (0|−) =
O(1) when all the information comes from the past and occurs
with probability PA(0|+) = PA(0|−) = O(ε2) when some of
the information flows from the future. The gain is dramatic.
The origin of the gain is that the states |φ±〉 contain very
little information, since ε is small, but when the state 〈φ±| is
postselected, it can be used to strongly decrease the probability
of occurrence of the unwanted outcome 0.

VII. COVARIANT MEASUREMENTS
ON SPIN-1/2 PARTICLES

A. Stating the problem

We illustrate the above formalism by the case of covariant
measurements on spin-1/2 particles. Suppose that the param-
eter to be estimated is a direction uniformly distributed on
the sphere: θ ≡ � ∈ S2. This direction is encoded in the pre-
and postselected state of spin-1/2 particles. The spins are
polarized in the direction � or the opposite direction −�.
The task is to estimate the direction �. To each outcome k

of the measurement one thus associates a guessed direction
�̃(k). The quality of the estimate is gauged with the fidelity
F = cos2 �/2 where � is the angle between the true direction
� and the guessed direction �̃.

When there is no postselection the solution of this state-
estimation problem is well known; see [5–11]. We summarize
some of these results. Throughout this section we denote by
N the total number of spins.

(1) When the initial state consists of N parallel spins |↑⊗N
� 〉,

the optimal fidelity is (N + 1)/(N + 2).
(2) When the initial state |↑⊗N/2

� ↓⊗N/2
� 〉 consists of N/2

spins in direction � and N/2 spins in direction −� (here N

is even), the optimal fidelity is 0.7887 for N = 2, 0.8848 for
N = 4, and 0.9235 for N = 6.

(3) There is an optimal encoding of the direction � into
states of the form R�|ψ〉, where R� is the rotation that maps
direction +z onto the direction �̃. In the case of N spins,
the optimal fidelity for the optimal choice of ψ is 0.7887 for
N = 2, 0.8873 for N = 4, and 0.9306 for N = 6.
The standard approach to these estimation problems is to
use covariant measurements. By covariant measurements we
mean that there exists a POVM element M�̃ for each possible
guessed direction �̃ ∈ S2. These POVM elements are related
to each other by M�̃ = R�̃Mz̃R

†
�̃

where R�̃ is the rotation
that maps direction +z onto direction �̃ and Mz̃ is the POVM
element associated to the guessed direction +z.

Here we consider the problem of estimating the unknown
preselected state |↑⊗n

� ↓⊗m
� 〉 in the presence of a fixed

postselected state, or the unknown pre- and postselected
ensemble 〈↑⊗k

� ↓⊗l
� ||↑⊗(n−l)

� ↓⊗(m−k)
� 〉 in the presence of a fixed

postselected state.
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Covariant measurements can also be used in the case of
measurements on pre- and postselected ensembles. In the
usual approach to state estimation used in [5–11] one can
show that covariant measurements perform at least as well as
any other measurements. We have not been able to show this
in the present case because of the more complicated form
of the fidelities. However, covariant measurements are an
interesting category to consider because they allow for detailed
calculations. Here we will restrict ourselves to covariant
measurements. We do not know if noncovariant measurements
could perform better for the problems considered here.

We therefore consider subnormalized POVM elements that
are related through M�̃ = R�̃Mz̃R

†
�̃

, or subnormalized Kraus

operators that are related through A�̃ = R�̃Az̃R
†
�̃

, where R�̃

is the rotation that maps direction +z onto direction �̃.

B. Covariant measurements and equivalence between
information flowing from past and future

We note that spin-1/2 states pointing in opposite directions
are related through convex conjugation and the action of a
fixed unitary: |↓�〉 = iσy |↑�〉. Therefore, theorems 1 and 2
apply. We also expect theorems 1 and 2 to apply if we restrict
ourselves to covariant measurements. We now show that this
is indeed the case.

Theorem 3. The relations and equivalences between esti-
mation of preselected ensembles and pre- and postselected
ensembles expressed in theorems 1 and 2 also hold if one
considers covariant measurements (as defined above) on the
ensembles |↑⊗n

� ↓⊗m
� 〉 and 〈↑⊗k

� ↓⊗l
� ||↑⊗(n−l)

� ↓⊗(m−k)
� 〉, for any

k,l, with n,m fixed.
Proof of Theorem 3. The proof follows easily from the

proofs of theorems 1 and 2.
Note that, without changing the state-estimation problem,

we can consider the equivalent ensembles |↑⊗n
� ↑⊗m

� 〉 and

〈↑⊗k
� ↑⊗l

� ||↑⊗(n−l)
� ↑⊗(m−k)

� 〉 since they differ from the original
ensemble only by fixed unitaries.

A covariant rank-one POVM element on the above state has
the form M�̃ = |m�̃〉〈m�̃| with

|m�̃〉 = (U�̃)⊗n(U�̃)⊗m|mz̃〉, (31)

with U�̃ being the 2 × 2 matrix that takes a spin 1/2 pointing
in the z direction to the �̃ direction. Similarly, a covariant
Kraus operator acting on the above state has the form

A�̃ = (U�̃)⊗k(U�̃)⊗lAz̃(U
†
�̃

)⊗(n−l)(U�̃

†
)⊗(m−k). (32)

The key to the proofs of theorems 1 and 2 are the mappings
Eqs. (26) and (29) between rank-one POVM elements and
Kraus operators. It is easy to see by direct substitution
that these mappings conserve the covariant character of the
measurements. That is, if we take a covariant rank-one POVM
element of the form of Eq. (31) and insert it in Eq. (26), we
obtain a covariant Kraus operator of the form of Eq. (32).
Similarly, if we take a covariant Kraus operator of the form
of Eq. (32) and insert it in Eq. (29), we obtain a covariant
rank-one POVM element of the form of Eq. (31). Therefore
Theorem 3 holds. �

C. Preselected parallel spins and fixed postselected state

We now discuss two examples involving preselected en-
sembles of spin-1/2 particles with fixed postselection. In the
first example we obtained an analytical result for an arbitrary
number N of spins, while for the example of Sec. VII D
we had to resort to a symbolic math program and only
obtained (numerical) results for N � 6 spins. We discuss the
calculations for the first example in detail and treat the second
example more succinctly.

In this subsection we consider the case where the spins are
preselected in the state |↑⊗N

� 〉 and there is a fixed postselected
state 〈0|. The fidelity can be expressed as

F
pre
|| = 1

4π

∫
d�

∫
d�̃

〈↑⊗N
�

∣∣R�̃Mz̃R
†
�̃

∣∣↑⊗N
�

〉
cos2 �/2∫

d�̃
〈↑⊗N

�

∣∣R�̃Mz̃R
†
�̃

∣∣↑⊗N
�

〉 ,

(33)

where Mz̃ is the POVM acting on the spins when the guessed
direction is +z, normalized according to∫

d�̃ R�̃Mz̃R
†
�̃

� 1. (34)

We note that we can rewrite |↑⊗N
� 〉〈↑⊗N

� | = R�|↑⊗N
z 〉

〈↑⊗N
z |R†

� to obtain

F
pre
|| = 1

4π

∫
d�

∫
d�̃

〈↑⊗N
z

∣∣R†
�R�̃Mz̃R

†
�̃
R�

∣∣↑⊗N
z

〉
cos2 �/2∫

d�̃
〈↑⊗N

z

∣∣R†
�R�̃Mz̃R

†
�̃
R�

∣∣↑⊗N
z

〉 .

(35)

Note also that the integrals over � and �̃ can be replaced
by integrals over the whole SU(2) group using the uniform
Haar measure (since any rotation can be decomposed into a
rotation around z, a rotation that brings z to �, and a rotation
around �) to obtain

F
pre
|| =

∫
dU

∫
dŨ

〈↑⊗N
z

∣∣U †ŨMz̃Ũ
†U

∣∣↑⊗N
z

〉
cos2 �/2∫

dŨ
〈↑⊗N

z

∣∣U †ŨMz̃Ũ †U
∣∣↑⊗N

z

〉
=

∫
dU

∫
dŨ

〈↑⊗N
z

∣∣ŨMz̃Ũ
†∣∣↑⊗N

z

〉
cos2 �/2∫

dŨ
〈↑⊗N

z

∣∣ŨMz̃Ũ †
∣∣↑⊗N

z

〉
=

∫
dŨ

〈↑⊗N
z

∣∣ŨMz̃Ũ
†∣∣↑⊗N

z

〉
cos2 �/2∫

dŨ
〈↑⊗N

z

∣∣ŨMz̃Ũ †
∣∣↑⊗N

z

〉 , (36)

where in the second line we have absorbed the rotation U into
the rotation Ũ , and where in the last line we recall that � is
the angle between the z axis and the direction onto which the
z axis is rotated by rotation Ũ . Note how the use of covariant
measurements has enabled an important simplification: in
going from Eq. (33) to Eq. (36) we have removed one integral.
Equation (36) can be reexpressed as

F
pre
|| = TrCMz̃

TrDMz̃

, (37)

where

C =
∫

dŨŨ †∣∣↑⊗N
z

〉〈↑⊗N
z

∣∣Ũ cos2 �/2 (38)
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and

D =
∫

dŨŨ †∣∣↑⊗N
z

〉 〈↑⊗N
z

∣∣Ũ . (39)

Now recall that, without loss of generality, the POVM elements
can be taken to be rank-one Mz̃ = |mz̃〉〈mz̃|. Upon varying
with respect to the components of |mz̃〉, one obtains the
equations

C|mz̃〉 = λD|mz̃〉,

with

λ = TrCMz̃

TrDMz̃

.

Hence the maximum fidelity F
pre
|| is given by the

largest solution λ of det(C − λD) = 0 [compare with
Eq. (37)].

It remains to compute the matrices C and D. To this end
we note that the vector |↑⊗N

z 〉 has total angular momentum
S = [N

2 (N
2 + 1)]1/2 and that, under rotation, the total angular

momentum does not change. We can thus restrict our analysis
to the space of total angular momentum S = [N

2 (N
2 + 1)]1/2

whose dimension is N + 1. A convenient basis of this space
are the eigenvectors of Sz which we denote |m〉, m =
−N/2, . . . ,N/2.

If U is the rotation that takes direction +z to direction θ ,
ϕ, then

U †∣∣↑⊗N
z

〉 =
N/2∑

m=−N/2

cosN/2+m

(
θ

2

)
sinN/2−m

(
θ

2

)

×e−i(N/2−m)ϕ

√(
N

N/2 − m

)
|m〉 (40)

and cos �
2 = cos θ

2 . Inserting these expressions into Eqs. (38)
and (39) and integrating over ϕ and then θ with the
uniform measure over the sphere yields that the matrices
C = m+N/2+1

(N+1)(N+2)δmm′ and D = 1
N+1δmm′ are both diagonal in

this basis. The maximum fidelity [i.e., the largest solution of
det(C − λD) = 0] is therefore

max F
pre
|| = N + 1

N + 2
. (41)

Thus, if the direction � is encoded into N parallel spins, then
the presence of a fixed postselected state does not help one in
estimating the direction �, at least if we restrict ourselves to
covariant measurements.

D. Preselected antiparallel spins and fixed postselected state

Let now consider the case where the spins are preselected
to be antiparallel; that is, to be in the state |↑⊗N/2

� ↓⊗N/2
� 〉 (for

N even) and there is a fixed postselected state 〈0|. In this case,
the fidelity reads

F
pre
anti|| = 1

4π

∫
d�

∫
dR

〈↑⊗N/2
� ↓⊗N/2

�

∣∣RMz̃R
†∣∣↑⊗N/2

� ↓⊗N/2
�

〉
cos2 �/2∫

dR
〈↑⊗N/2

� ↓⊗N/2
�

∣∣RMz̃R†
∣∣↑⊗N/2

� ↓⊗N/2
�

〉 . (42)

Using exactly the same reasoning as above one can bring this
to the form

F
pre
anti|| = TrC ′Mz̃

TrD′Mz̃

, (43)

where

C ′ =
∫

dŨŨ †∣∣↑⊗N/2
� ↓⊗N/2

�

〉 〈↑⊗N/2
� ↓⊗N/2

�

∣∣Ũ cos2 �/2

and

D′ =
∫

dŨŨ †∣∣↑⊗N/2
� ↓⊗N/2

�

〉 〈↑⊗N/2
� ↓⊗N/2

�

∣∣Ũ .

The maximum fidelity is given by the largest solution λ

of det(C ′ − λD′) = 0. In this case the computation of the
matrices C ′ and D′ is more complicated. Using a symbolic
mathematics program, we could compute these matrices for
N = 2,4,6, yielding for the optimal fidelities F

pre
anti|| = 0.7887

for N = 2, 0.8873 for N = 4, and 0.9306 for N = 6.
Thus we see that in the case of covariant measurements on

antiparallel spins, the presence of a fixed postselected ancilla
leads to a small improvement in the fidelity (we can go from
case 2 above to the optimal fidelities case 3 above). At present
we do not understand why sometimes there is an improvement
and sometimes not.

VIII. CONCLUSION

In summary we have raised the question of state estimation
in pre- and postselected ensembles and setup a general
formalism for this problem. In the examples we studied we
found two main processes that play a role:

(1) The measurer uses the future to dump into it the results
he does not want. No attempt at all is made to use information
coming from the future.

(2) The measurer tries to use the information from the future
and no attempt at all is made to use the future as a dump.

In general, a measurement procedure may combine these
two ideas.

Our first general result, Theorem 1, shows that, when the
future can be used to dump unwanted results, then information
coming from the future and the complex conjugate information
coming from the past are equivalent. This was illustrated by
the examples involving covariant measurements on spin-1/2
particles discussed in Sec. VII. Our second general result,
Theorem 2, shows that, when the future cannot be used to dump
unwanted results, then information coming from the future
is always at least as informative as the complex conjugate
information coming from the past.

Obviously this is only a first study of estimating pre- and
postselected ensembles. Our results and examples show that
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sometimes the presence of a fixed postselection or the presence
of information flowing from the future can dramatically im-
prove the precision with which states can be estimated, but that
in other cases the improvement is small, or even nonexistent.
(For instance, compare the dramatic gain in [28] with the
absence of gain in the example of Sec. VII C for two very
related state-estimation problems.) Future investigations will
tell us when information coming from the future can be more
informative than the complex conjugate information coming
from the past, when using the future as a dump (i.e., having a
fixed postselected state 〈0|) helps and when it does not, etc.

Finally, let us comment on the conceptual implications of
pre- and postselection. The dynamics of physical systems are
invariant under time reversal. But the “measurement postulate”
of quantum mechanics breaks this invariance. The theory of
pre- and postselection is an attempt to correct this and to have
a theory of microphysics that is genuinely invariant under time
reversal. But as [28] and the present work show, this approach
has dramatic consequences. The hierarchy of computational

complexity and much of the structure of quantum information
break down. For instance, since two states which are arbitrarily
close together can be distinguished with certainty, an analog
of Holevo’s theorem will not hold. Defining a unit of quantum
information in the pre- and postselected setting (analog to the
usual qubit) is thus bound to be far more complicated and
involve significant conceptual steps.

We do not know what the solution to this conundrum
is. Is it possible to formulate a genuinely time invariant
and satisfactory theory of microphysics? If so, how deep a
reformulation of physics will it require?
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