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Revivals of zitterbewegung of a bound localized Dirac particle
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In this paper a bound localized Dirac particle is shown to exhibit a revival of the zitterbewegung (ZB) oscillation
amplitude. These revivals go beyond the known quasiclassical regenerations in which the ZB oscillation amplitude
is decreasing from period to period. This phenomenon is studied in a Dirac oscillator and it is shown that it is
possible to set up wave packets in which there is a regeneration of the initial ZB amplitude.
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I. INTRODUCTION

In the context of relativistic quantum mechanics there is a
surprising phenomenon that was introduced by Schrödinger in
1930 as zitterbewegung (ZB) [1]. He showed that there is a
rapid trembling motion of a Dirac particle around its otherwise
rectilinear average trajectory that is due to the interference
between negative- and positive-energy eigenvalues. There have
been many theoretical studies of ZB, but no direct observation
due to the fact that the predicted frequency and amplitude
are impossible to measure experimentally at present. Lock
showed that ZB has a transient character for a free localized
Dirac particle, pointing out that the ZB effect for a localized
wave packet in an external field depends on the eigenvalues
of the Hamiltonian [2]. Nowadays, there is an intense interest
in the ZB of electrons in semiconductors (see the review of
Zawadzki and Rusin [3] and references therein). Recently,
ZB has been studied in graphene [3–11] where it was related
to electric conductivity. In particular, revivals and ZB were
studied in the electric current in monolayer graphene in
a perpendicular magnetic field [10]. Gerritsma et al. [12]
simulated experimentally the electron ZB by means of trapped
ions and laser excitations by adjusting experimentally some
parameters of the Dirac equation.

On the other hand the quantum revival of wave packets is
an interference quantum phenomenon related to the relativis-
tic and nonrelativistic temporal evolution of wave packets.
Quantum revivals have been investigated theoretically in, for
example, atomic, molecular, and nonlinear systems [13–19]
and observed experimentally in many different quantum
systems, such as Rydberg atoms and molecules, and Bose-
Einstein condensates [16,20].

In what follows it is shown that there is a revival of the
ZB oscillation amplitude when a bound Dirac electron is
considered. A Dirac oscillator has been chosen to analyze this
behavior because it is exactly soluble and is a model that has
applications in several branches of physics (see Ref. [21] and
references therein). In this work it is demonstrated that besides
the ZB and quasiclassical oscillations studied previously by
other authors [22], there exists a revival or regeneration of the
ZB oscillation amplitude.

To describe quantum revivals, let us consider an initial wave
packet that is a superposition of eigenstates localized around
some energy level En0 . It is appropriate to expand the energy
around n0 if |n − n0|/n0 � 1,

En ≈ En0 + E′
n0

(n − n0) + E′′
n0

2
(n − n0)2 + · · · , (1)

and each term in the series defines an important time scale
Tcl = 2πh̄

|E′(n0)| , TR = 2πh̄
|E′′(n0)|/2 , where Tcl is associated with

the classical periodic motion of the wave packet and TR

is the revival time (the validity of this expansion has been
demonstrated in Refs. [14,23,24]). The wave packet initially
evolves quasiclassically with period Tcl and then spreads
and collapses; at later times, around TR , the wave packet
regenerates and reaches approximately its initial shape. For
times that are rational fractions of TR , the wave packets split
into clones of themselves [16,25]. After the revival time a new
cycle starts with quasiclassical behavior, collapses, fractional
revivals, and revivals. Revivals are usually analyzed using the
autocorrelation function A(t), which is the overlap between
the initial and the time-evolving wave packet. An alternative
approach in terms of uncertainty entropic relations has been
proposed [26].

II. REVIVALS OF ZITTERBEWEGUNG IN
A DIRAC OSCILLATOR

An appropriate system to discuss revivals of ZB for bounded
states is a 2 + 1 Dirac oscillator due to the fact that it is exactly
soluble and allows us to study this phenomenon in a simple
system. Thus we shall consider the Hamiltonian for a Dirac
oscillator [27] with frequency ω,

H = cα · (p − imωβr) + βmc2, (2)

where m is the rest mass of the Dirac particle (for example
an electron), α and β are the Dirac matrices, and c is the
speed of light. We shall introduce the complex coordinate as
in Ref. [21], z = x + iy, and using the usual creation and
annihilation operator notation in terms of z and z̄,

a = 1√
mωh̄

pz̄ − i

2

√
mω

h̄
z,

a† = 1√
mωh̄

pz + i

2

√
mω

h̄
z̄,

the Hamiltonian reads

H =
(

mc2 2c
√

mωh̄a†

2c
√

mωh̄a −mc2

)
. (3)
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It is not difficult to show that the energy eigenfunctions are
given by

|φ±
n 〉 =

⎛
⎝ ±

√
1
2 ± ξn|n〉

∓
√

1
2 ∓ ξn|n − 1〉

⎞
⎠, (4)

with

ξn = 1

2
√

1 + 4h̄ωn
mc2

(5)

and n = 0,1, . . . , and the energy spectrum is, in turn,

E±
n = ±mc2

√
1 + 4h̄ωn

mc2
. (6)

A superposition state is constructed that consists of two
wave packets as the initial particle wave packet,

|�0〉 = 1√
2

(|�−〉 + |�+〉), (7)

where the above wave packets are defined as the linear
combination

|�+〉 =
∑

n

c+
n |φ+

n 〉, |�−〉 =
∑

n

c−
n |φ−

n 〉, (8)

each of them centered around a given eigenvalue E+
n0

and E−
n0

,
respectively, with coefficients distributed in Gaussian form
(c+

n = c−
n = cn) as

cn =
√

1

π
√

σ
e−(n−n0)2/2σ . (9)

We can write the temporal evolution of the initial wave
packet as

|�0(t)〉 = 1√
2

∑
n

(c+
n |φ+

n 〉eiE+
n t/h̄ + c−

n |φ−
n 〉eiE−

n t/h̄), (10)

taking into account that

|�±(t)〉 =
∑

n

(c±
n |φ±

n 〉eiE±
n t/h̄. (11)

The series expansion in Eq. (1) should be interpreted in
the context of the temporal evolution of the wave packet.
If we replace the value of En by the expansion in Eq. (1)
in Eq. (11) we can see that each term in the exponential
(except the first) defines an important characteristic time
scale. The first term is unimportant because it is an overall
phase. The following two terms define the classical periodicity
and the revival time, respectively [14,23,24].

Therefore, the corresponding classical period and the
revival time for |�〉 yield, straightforwardly,

Tcl = π

ω

√
1 + 4h̄ω

mc2
n0 (12)

and

TR = πmc2

h̄ω2

(
1 + 4h̄ω

mc2
n0

)3/2

. (13)

To calculate the period of ZB the temporal evolution of the
x and y components of the velocity are determined, which

are given by 〈vj 〉 = 〈i[H,rj ]/h̄〉 (j = x,y), where σx and σy

are the Pauli matrices. For the wave packet |�0〉, after some
algebra and taking into account that |n〉 is an orthonormal set,
the temporal evolution for the velocities is given by

〈vx〉 = 2
∞∑

n=0

cncn+1{ηn cos[(En + En+1)t/h̄]

− νn cos[(En − En+1)t/h̄]}, (14)

〈vy〉 = 0, (15)

where ηn = γnγn+1 + δnδn+1 and νn = γnδn+1 + γnδn+1, with

γn =
√

1
2 + ξn and δn =

√
1
2 − ξn for n = 0,1,2, . . . . Several

types of oscillatory motion emerge for the velocity evolution.
The first term in the vx temporal evolution is weighted
by cos[(En + En+1)t/h̄], which is responsible for the ZB
oscillatory motion. The ZB period is estimated using Eq. (1),
which enables us to write En + En+1 ≈ 2En0 [10] and then

TZB = πh̄/|En0 | = πh̄

mc2
√

1 + 4h̄ω
mc2 n

. (16)

The second term in the vx temporal evolution is weighted by
cos[(En − En+1)t/h̄], which lets us extract different periodici-
ties in the velocity temporal evolution. Using Eq. (1) again, we
obtain other oscillatory scales En − En+1 ≈ E′

n0
(n − n0) +

E′′
n0

(n − n0)2 + · · ·, which are given by Tcl and TR .
The velocity behavior is clearly illustrated in Fig. 1. The

value 〈vx〉 is numerically computed as a function of time for the
temporal evolution of the initial wave packet |�0〉 with n0 = 30
and σ = 3.0 and for an oscillator frequency ω = 103 a.u.
(Throughout, the results are generated in atomic units
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FIG. 1. Time dependence of 〈vx〉 for the initial wave packet
with σ = 3, n0 = 30, and oscillator frequency ω = 103, for which
TZB = 6.15 × 10−5, Tcl = 8.54 × 10−3, and TR = 1.19 (all in a.u.).
The vertical dotted lines stand for (a) TZB periods, (b) Tcl periods, and
(c) TR periods.
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FIG. 2. Coefficients [Eq. (9)] for (a) n0 = 30, σ = 3, (b) n0 = 15,
σ = 3, and (c) n0 = 10, σ = 20.

m = h̄ = e = 1.) The initial wave packet [see Eqs. (7)–(9)]
have been constructed, with the level population given in
Fig. 2(a). We observe in Fig. 1(a) that there is an oscillatory
behavior for the TZB time scale. For greater time scales we
can see in Fig. 1(b) that quasiclassical oscillations appear
to be enveloping the ZB oscillations whose amplitude is
decreasing from period to period. This behavior was previously
observed in Ref. [22]. Finally, in Fig. 1(c) we can clearly
see a new time-scale oscillation TR , which is enveloping the
previous oscillations, and it is apparent that for t = mTR/2 (for
m = 1,2, . . .) there is a revival of the ZB oscillation amplitude
[Fig. 1(c)] and the quasiclassical oscillations.

This phenomenon is illustrated with another example. In
Fig. 3 an initial localized wave packet with a different value
of the parameter n0 = 15 is considered [that is, with the level
population given in Fig. 2(b)]. Then Tcl and TR are smaller as
ω is smaller and we observe that TZB is somewhat lower than
in the preceding case, as expected from Eqs. (12), (13), and
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FIG. 3. Time dependence of 〈vx〉 for the initial wave packet with
σ = 3, n0 = 15, and oscillator frequency ω = 103, for which TZB =
8.16 × 10−5, Tcl = 6.4 × 10−3, and TR = 0.5 (all in a.u.). The vertical
dotted lines stand for (a) TZB periods, (b) Tcl periods, and (c) TR

periods.
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FIG. 4. Time dependence of 〈vx〉 for the initial wave packet
with σ = 20, n0 = 10, and oscillator frequency ω = 103, for which
TZB = 9.46 × 10−5, Tcl = 5.55 × 10−3, and TR = 0.33 (all in a.u.).
The vertical dotted lines stand for (a) TZB periods, (b) Tcl periods, and
(c) TR periods.

(16), respectively. Again, a revival of the ZB amplitude can be
observed [Fig. 3(c)].

Moreover, it should be stressed that the appearance of
revivals of the ZB oscillation amplitude depends on the shape
of the initial wave packet, i.e., we have to work with a localized
wave packet. If we consider a broader wave packet around
lower energies ±En0 , with n0 = 10 and σ = 20 (Fig. 4) [see
level population in Fig. 2(c)], we observe in Fig. 4(a) that
there is an oscillatory behavior similar to Figs. 1 and 3 for the
first quasiclassical periods where the ZB oscillation amplitude
is greater when the |〈vx〉| is greater. Next, however, we can
observe a quasiclassical modulation that disappears in three
classical periods [Fig. 4(b)] and we will have ZB, but there is
no regeneration of the initial ZB amplitude (≈ 3.8 a.u.). For
much longer times the revival or quasiclassical behavior never
appears (it has been checked it from 0 to 10TR).

Finally, in Fig. 5 the periods in terms of the parameter ω

have been studied. We can see that TR > Tcl > TZB, TZB is
almost constant for all ω, and Tcl and TR increase when ω

decreases. In addition, when ω is smaller the temporal scales
move away form each other quickly. In fact, the revival of the
ZB amplitude appears later. The revival of the ZB amplitude
will disappear when ω = 0 (which corresponds to Lock’s result
[2]). Note that in this limit case the ZB would be approximately
10−4 a.u. These results are an extension for a bound Dirac
particle of the results found for massless quasiparticles in
graphene in a perpendicular magnetic field [10].

It should be noted that the existence of revivals of the wave
packet and, consequently, of the same initial quasiclassical
behavior of 〈vx〉 and ZB oscillation amplitude is due to (i)
the way in which it has been constructed as a superposition
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FIG. 5. (Color online) Temporal scales TZB, Tcl, and TR vs ω (all
in a.u.) for n0 = 30.

of two wave packets localized around two given eigenvalues
E+

n0
and −E−

n0
and (ii) the fact that the Dirac oscillator has

electron-hole symmetry (E+
n = −E−

n ), which is an essential
property to obtain Eqs. (14) and (15).

Furthermore, a natural generalization of this result could
be done as follows. If we consider a bound Dirac particle
with a nonlinear spectrum E±

n in n and with electron-hole
symmetry, we expect that the localized Dirac particle exhibits
a revival of the ZB oscillation amplitude. Although it is an open
problem to prove this assertion, it could be justified since one
can always consider an initial wave packet as a superposition

of two localized wave packets, with the coefficients centered
around a mean value n0 with |n − n0| � n0, and obtain an
analogous behavior to Eq. (14) for the temporal evolution
of the velocities. It should be remarked that the condition
E+

n = −E−
n is an essential point to have definite and visible

temporal scales. If the initial wave packet is more localized
and the n0 value is higher, the revival of the ZB oscillation
amplitude will be sharper due to the fact that the regeneration
will be more accurate because the Taylor expansion is more
accurate too.

III. CONCLUSION

In summary, we have studied the wave-packet dynamics
for a Dirac oscillator demonstrating that for some particular
election of the initial wave packet there is a regeneration or
revival of the ZB oscillation amplitude apart from the quasi-
classical modulation of ZB in which the oscillation amplitude
is decreasing. These revivals appear to be associated with a
nonlinearity in the relativistic eigenvalue spectrum. When the
frequency of the oscillation is smaller, the regeneration appears
at longer times. In the limit of frequency zero, that is, for a free
Dirac particle, the regenerations disappear because in the case
of the free Dirac particle the spectrum is continuous rather
than discreet. We conjecture that this result may appear in any
bound Dirac particle with electron-hole symmetry.
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