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Assessing thermalization and estimating the Hamiltonian with output data only
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I consider the generic situation where a finite number of identical test systems in varying (possibly unknown)
initial states are subjected independently to the same unknown process. I show how one can infer from the output
data alone whether the process in question induces thermalization and, if so, which constants of the motion
characterize the final equilibrium states. In case thermalization does occur and there is no evidence for constants
of the motion other than energy, I further show how the same output data can be used to estimate the test systems’
effective Hamiltonian. For both inference tasks I devise a statistical framework inspired by the generic techniques
of factor and principal component analysis. I illustrate its use in the simple example of qubits.
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I. INTRODUCTION

Controversies over the apparent dichotomy between micro-
scopic reversibility and macroscopic irreversibility are as old
as statistical mechanics itself and continue to the present day,
as exemplified by the popular Ref. [1] and the ensuing vivid
debate [2]. Broadly speaking, the issue can be tackled “bottom
up” or “top down.” The bottom-up approach, which has been
pursued by the majority of researchers, involves specifying (or
at least imposing constraints on) some microscopic Hamilto-
nian and subsequently studying the evolution of those degrees
of freedom that are deemed “macroscopic,” “accessible,” or
otherwise “relevant” to the problem at hand. This line of
research has of late enjoyed cross fertilization with topical
areas such as nanoscale thermodynamics [3–6], quantum
many-body physics [7–12], and quantum information [13–16],
leading to some powerful new results. They confirm that the
eventual thermalization of a quantum system is a universal
phenomenon which holds true for virtually all Hamiltonians
and sensible choices for the relevant degrees of freedom
[17–20]. The rather generic assumptions that are needed
amount to (i) excluding the special case of isolated systems
with highly regular, completely integrable dynamics and (ii)
introducing some form of coarse graining, such as limiting the
resolution of realistic preparation and measurement devices
[17] or tracing out the degrees of freedom of a bath [18].
Coarse graining entails that information about the microstate
is siphoned off from the retained to the discarded degrees
of freedom. This leakage becomes irreversible whenever the
dynamics of the latter is sufficiently fast and irregular, leading
to an effective memory loss on time scales much shorter than
those pertaining to the evolution of the relevant degrees of
freedom [21].

In contrast, the lesser-known top-down approach, pio-
neered by Jaynes for classical statistical mechanics [22]
and subsequently generalized [23], refrains from considering
any specifics of the underlying microscopic dynamics and
instead derives macroscopic irreversibility from the very basic
requirement—essential to the scientific method—that macro-
scopic experiments be reproducible. The central argument
is very simple: An experiment is reproducible if its initial
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preparation uniquely determines its final outcome, i.e., if
merely on the basis of their initial values one can predict with
certainty the final values of the relevant degrees of freedom.
Since a prediction cannot possibly contain more information
than the data on which it is based, the final values of the
relevant degrees of freedom cannot carry more information
than do their initial values. So in the course of a reproducible
experiment the amount of missing information about the
system’s microstate, and hence the entropy, can only increase.
There are other top-down approaches which are similar in
spirit, yet which rather than from “reproducibility” start from
different primitives like “adiabatic accessibility” [24].

Reversing the top-down logic, violations of the second law
may well occur; but such violations are never reproducible and,
with increasing system size, become exceedingly unlikely.
Experiments that purport to violate the second law in a
reproducible fashion must presuppose the preparation of
some special (say, highly correlated) initial state, or else
some peculiar prior history of the system (such as in the
classic example of spin echoes [25]). The apparent systematic
violation of the second law then stems from the fact that the
experimenter actually controls degrees of freedom other than
the supposedly relevant ones, either directly in the present or
through specific interventions in the past.

Despite their seemingly different outlooks, the bottom-up
and top-down approaches both revolve around the pivotal
issue of memory loss. They either show (bottom up) or
simply postulate (top down) that in realistic experiments the
relevant degrees’ remote history has no influence on their
future evolution and thus can be safely disregarded. This
intimate connection between irreversibility and memory loss
is captured succinctly in Landauer’s principle [26], which has
spawned another highly interesting line of research [27–31].

In the present paper I wish to add yet another, and rather
practical, perspective on the issue of thermalization. When
a novel quantum system is fabricated and investigated in
the laboratory for the first time, its precise dynamics and
possibly even its constants of the motion are not known
in advance. (Of course, there is generally some theoretical
expectation; but whether this will be confirmed or refuted
by actual measurements is not a priori clear.) A particular
experiment might then be aimed at assessing whether a
certain process leads to thermalization and, if so, which set of
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thermodynamic variables characterizes the final equilibrium
state. Operationally, one might do this by assembling multiple
samples, each consisting of identically prepared copies of the
system. Each sample is prepared in a different initial state
and subjected to the process in question. If thermalization
does occur, subsequent quantum-state tomography [32] on all
samples will reveal that, modulo random fluctuations, their
respective final states are distributed on some low-dimensional
submanifold of state space. This submanifold is composed
of states of the Gibbs form ρ ∝ exp(−∑

a λaGa), with the
observables {Ga} being the constants of the motion. Their
expectation values or the associated Lagrange parameters,
respectively, then constitute the appropriate set of thermody-
namic variables. This approach to assessing thermalization is
based on output data only and does not require tight control
over the initial states of the various samples.

In a real-world setting, the system in question might be
difficult to manufacture, and the above idealized procedure
difficult to execute. Specifically, it might only be possible to
prepare a small number of samples, which in turn are small
in size. As a consequence, there will be just a few data points
in state space, which moreover have non-negligible error bars.
Reconstructing the Gibbs manifold and hence the constants
of the motion on the basis of such imperfect measurement
data then becomes a nontrivial statistical inference task. In
purely statistical terms, this is a situation where noisy data
in some high-dimensional space (the tomographic images in
state space) are presumed to be explained by a small number
of latent variables (the expectation values of the constants of
the motion), effectively reducing the dimensionality of the
data. In such a generic setting, the task is to infer the optimal
dimension and orientation of the lower-dimensional latent
space. Problems of this type can be tackled with a variety
of statistical techniques such as factor analysis or principal
component analysis [33–40]. In the present paper, I build on
these generic techniques to develop a statistical framework
tailored to the task of assessing whether thermalization has
occurred and, if so, inferring the most plausible set of constants
of the motion.

Whenever the above statistical analysis suggests that ther-
malization has indeed occurred and that there is one constant
of the motion only, this single constant of the motion is by
default the Hamiltonian. The same statistical framework can
then be used to estimate that Hamiltonian. This estimation
procedure is based on studying thermal properties rather than
time evolution, and it uses only output rather than input-output
data. Therefore, it is very different in its approach from the
usual quantum-process tomography [41–50] and Hamiltonian
tomography [51–55]. As the second key result of the present
paper, I lay out this “thermal” estimation procedure for the
Hamiltonian and illustrate its use in a simple example.

The remainder of the paper is organized as follows.
In Sec. II, I present the general statistical framework for
assessing thermalization along with the key approximations
made. In Sec. III, I turn to the rather common case where
the Hamiltonian is the sole constant of the motion and
explain how in this case one can infer the most plausible
Hamiltonian from the data. In Sec. IV, I put the general
framework to use in the simple example of qubits, both
to assess their thermalization and to estimate the pertinent

Hamiltonian. Finally, in Sec. V, I conclude with a brief
discussion.

II. ASSESSING THERMALIZATION

Let R denote the number of distinct samples and Ni ,
i = 1, . . . ,R, the size of the ith sample. After the samples
have undergone the process in question they are all subjected
to quantum-state tomography, which may or may not be infor-
mationally complete. Let {Fb} denote the set of observables
whose totals are ascertained in a tomographic experiment (by
performing measurements on each member of the sample and
adding up the results, or via global measurements on the
entire sample), and {f i

b } the associated sample means gleaned
from the ith sample. Finally, let the quantum state σ denote a
possible prior bias as to the samples’ final state [56]; in case of
complete prior ignorance, this is simply taken to be the totally
mixed state.

The hypothesis to be tested is whether the totality of ex-
perimental data D ≡ {f i

b } can be explained by the expectation
values of some smaller set of observables {Ga}, the presumed
constants of the motion. Associated with these presumed
constants of the motion and with the measured observables
are subspaces G := span{1,Ga} and F := span{1,Fb} of the
space of observables (with 1 being the unit operator), termed
respectively the “theoretical” and “experimental” levels of
description [57]. For the former to have any explanatory value,
it must be dimG < dimF .

The plausibility of the theoretical hypothesis is encoded in
the posterior probability of the level of description G, given the
data D and prior bias σ . By Bayes’ rule [58], this probability
of interest is given by

prob(G|D,{Ni},F ; σ ) ∝ prob(G)prob(D|{Ni},F ; σ,G). (1)

Whenever the prior prob(G) is sufficiently noncommittal, the
right-hand side is dominated by the likelihood function. As the
various runs of the experiment are independent, the latter can
be factorized:

prob(D|{Ni},F ; σ,G) =
R∏

i=1

prob(Di |Ni,F ; σ,G), (2)

with the data Di pertaining to the ith sample. And finally,
according to the theoretical hypothesis, each individual factor
can be marginalized:

prob(Di |Ni,F ; σ,G)

=
∫

πσ
G (S)

dω prob(Di |Ni,ω,F)prob(ω|σ,G), (3)

where the integration ranges not over the complete state space
S but over the Gibbs manifold πσ

G (S) associated with the
theoretical level of description G and reference state σ [57].
This Gibbs manifold is composed of states of the generalized
Gibbs form

ω ∝ exp

[
(ln σ − 〈ln σ 〉σ ) −

∑
a

λa
i Ga

]
, (4)

which minimize the relative entropy with respect to σ under
given constraints for the expectation values of {Ga} [59,60].
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For reasonably large sample sizes and a near-optimal
measurement setup, the first factor (likelihood) in the integrand
of Eq. (3) can be approximated with the help of the quantum
Stein lemma [61–64],

prob(Di |Ni,ω,F) ∝ exp[−NiS(μi‖ω)] (5)

(else the quantum Stein lemma provides only a lower bound).
Here μi ∈ πω

F (S) has the generalized Gibbs form (4) with
{Ga} replaced by {Fb} and reference state ω rather than σ ,
and with the Lagrange parameters {λb

i } adjusted such that
〈Fb〉μi

= f i
b for all b. For both conceptual and practical reasons

I model the second factor (prior) in the integrand as an entropic
distribution, too,

prob(ω|σ,G) ∝ exp[−αS(ω‖σ )], (6)

with a factor of proportionality that does not depend on ω

[57]. This ansatz contains an unknown hyperparameter α > 0,
whose most likely value is estimated later via the evidence
procedure.

I assume that the theoretical level of description is a
proper subspace of the experimental level, G ⊂ F , so that
πω
F (S) = πσ

F (S). The Gibbs manifold πσ
G (S), which contains

the theoretical models ω and the reference state σ , is then a
proper submanifold of πσ

F (S) which contains the tomographic
images {μi}. Each tomographic image μi has a unique projec-
tion πi := πσ

G (μi) on the submanifold πσ
G (S), where πσ

G is the
coarse graining operation that maps arbitrary states to Gibbs
states on πσ

G (S), thereby preserving the expectation values of
the relevant observables {Ga}. Also on the submanifold πσ

G (S),
between the projection πi and the reference state σ , lies the
interpolated state [57,65]

ρi :∝ exp [(1 − xi) ln πi + xi ln σ ] (7)

with xi := α/(α + Ni); its Lagrange parameters are the
weighted average of those of πi and σ , with respective weights
Ni and α. Finally, for both the tomographic images {μi} and
their projections {πi}, one defines respective center-of-mass
states

μ̃ :∝ exp

[
R∑

i=1

wi ln μi

]
, π̃ :∝ exp

[
R∑

i=1

wi ln πi

]
, (8)

with wi := Ni/
∑

j Nj , which lie on πσ
F (S) and πσ

G (S), respec-
tively, and which are obtained by taking the weighted average
over all samples of the respective Lagrange parameters.

For nearby states on the manifold πσ
F (S) the relative entropy

is approximately quadratic in their coordinate differentials,

S(μ‖μ′) ≈ (1/2)
∑
ab

(C−1)abδfaδfb. (9)

Here C denotes the correlation matrix

Cab(ρ) := 〈δFa; δFb〉ρ (10)

with δFb := Fb − 〈Fb〉ρ and canonical correlation function

〈X; Y 〉ρ :=
∫ 1

0
dν tr(ρνXρ1−νY ). (11)

μi

μπi

πμ(μi)

π

ρi

~

~

~

σ

FIG. 1. States on the manifold πσ
F (S). Black dots indicate the

tomographic images {μi} associated with data garnered from different
samples, and the small black circle their center of mass μ̃. The straight
lines are the reduced Gibbs manifolds πσ

G (S) (solid line) and π
μ̃

G (S)
(dashed line), respectively. Gray dots or circles denote states on either
of these reduced Gibbs manifolds. In particular, the gray dots are
obtained by applying the coarse graining πσ

G or π
μ̄

G , respectively,
to the tomographic images. (For simplicity, not all coarse grainings
are shown.) The state ρi is the interpolation (7) between the coarse
grained image πi and the reference state σ . All states inside the big
circle are assumed to be sufficiently close to each other to warrant
the Gaussian approximation for their relative entropies; the only state
that might lie outside this Gaussian region is the reference state σ .
The gray concentric circles around one of the tomographic images
indicate an exemplary likelihood function (5). It has a width of order
1/

√
Ni , which is assumed to lie inside the Gaussian region.

The correlation matrix varies little between μ and μ′, and so, to
lowest order, it can be evaluated in either of the two states or in
any other state ρ in their vicinity. In the following I assume that
the tomographic images {μi}, their projections {πi}, as well as
their respective centers of mass μ̃ and π̃ all lie inside a region
in which the above quadratic (“Gaussian”) approximation is
warranted, with the correlation matrix evaluated in the center
of mass μ̃, C = C(μ̃). This presupposes that for all samples
the presumed constants of the motion take values within a
sufficiently narrow range. Moreover, I assume that the sample
sizes {Ni} are sufficiently large compared to α so that the
interpolated states {ρi}, too, lie inside this region. And finally,
I assume that the sample sizes are also large enough in absolute
terms to render the likelihood function (5) largely concentrated
inside the Gaussian region. The reference state σ , on the
other hand, need not necessarily be inside the Gaussian region
(Fig. 1).

The confinement of all pertinent states (with the exception
of the reference state) to a Gaussian region entails a number
of simplifications: Relative entropies become approximately
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symmetric, S(μ‖μ′) ≈ S(μ′‖μ); for the interpolated states
{ρi}, it is

(1 − xi)S(ρi‖πi) + xiS(ρi‖σ ) ≈ xi(1 − xi)S(πi‖σ ) (12)

up to corrections of order O((α/Ni)2) that account for the
possible non-Gaussianity of S(πi‖σ ); the centers of mass μ̃

and π̃ coincide approximately with the ordinary mixtures

μ̄ :=
R∑

i=1

wiμi , π̄ :=
R∑

i=1

wiπi, (13)

respectively; and the coarse graining map is approximately
linear, so π̄ ≈ πσ

G (μ̄).
Using these approximations, as well as the (exact) law of

Pythagoras [66]

S(μi‖ω) = S(μi‖πi) + S(πi‖ω) (14)

for all ω ∈ πσ
G (S) and the (exact) mixing rules

(1 − xi)S(ω‖πi) + xiS(ω‖σ )

= (1 − xi)S(ρi‖πi) + xiS(ρi‖σ ) + S(ω‖ρi) (15)

and

R∑
i=1

wiS(πi‖σ ) =
R∑

i=1

wiS(πi‖π̄ ) + S(π̄‖σ ), (16)

one obtains the log-likelihood

ln prob(D|{Ni},F ; σ,G)

≈
R∑

i=1

Ni[S(πi‖π̄ ) − S(μ̄‖π̄ )] − p


2

−
R∑

i=1

xiNi[S(πi‖π̄ ) + S(π̄‖σ )] + p

2

R∑
i=1

ln(xiNi)

(17)

with p := dim πσ
G (S) and 
 := ∑

i ln Ni , modulo a small
correction term that accounts for the possible non-Gaussianity
of S(π̄‖σ ) and varies only weakly with α, and modulo
additive constants that do not depend on α, σ , or G. Since
xiNi = (1 − xi)α � α, the terms in the last row of Eq. (17) do
not scale with sample size (at fixed α) and so become negligible
in the regime Ni � α. The log-likelihood then approaches
(again modulo additive constants that do not depend on σ or
G) the asymptotic result

L(G) :=
R∑

i=1

Ni[S(πi‖π̄ ) − S(μ̄‖π̄ )] − p


2
. (18)

This asymptotic log-likelihood is the central quantity which I
use for my subsequent analysis.

Strictly speaking, one has yet to check that it is consistent
to assume that α stays constant when taking the limit Ni →
∞, i.e., that the most likely value of α does not itself scale
with sample size. In order to determine this most likely value,
I follow the prescription of the evidence procedure [56]. I
consider the log-likelihood (17) and seek its maximum as a

function of α. Setting its derivative with respect to α equal to
zero yields the extremum condition

R∑
i=1

(1 − xi)Ni

{
xi [S(πi‖π̄ ) + S(π̄‖σ )] − p

2Ni

}
= 0. (19)

(This maximum-likelihood condition generalizes an earlier
result for experiments on a single sample [56,57].) In
the asymptotic limit Ni → ∞ (at fixed relative entropies),
the maximum-likelihood estimates for the {xi} must scale
as the inverse sample size; and so indeed, α = xiNi/(1 − xi)
must not scale with sample size. This conclusion about α is
robust as long as

−α2 ∂2

∂α2
ln prob(D|{Ni},F ; σ,G) � 1. (20)

In the relevant regime, Ni � α, the left-hand side of this
condition is approximately pR/2, so one has good accuracy
whenever the number of samples is sufficiently large, R � 1.

The asymptotic log-likelihood (18) is the difference of two
terms, reflecting a trade-off that is typical for model selection
[67]. The first (sum) term gets bigger as the theoretical
level of description becomes more detailed and yields a
better fit with the data; in fact, it is maximal for the largest
possible level of description, G = F . The term which is
subtracted from this, on the other hand, being proportional to
the Gibbs manifold dimension p, penalizes excessive detail;
it embodies “Occam’s razor.” Therefore, finding the most
plausible level of description and hence the constants of the
motion always involves a trade-off between goodness of fit and
simplicity.

In case the reference state σ is not given a priori but is itself
a variable to be inferred, one must consider the asymptotic
log-likelihood (18) also as a function of σ . The log-likelihood
attains its maximum for any σ ∈ π

μ̄

G (S); then the relative
entropy S(μ̄‖π̄ ) vanishes. Using such a maximum-likelihood
estimate for σ , and assuming further that the dimension p of
the Gibbs manifold is fixed from the outset, the remaining
optimization of (the orientation of) G reduces to maximizing
the weighted average of the relative entropies {S(πμ̄

G (μi)‖μ̄)}.
In the Gaussian regime, this amounts to an optimization task
known in statistics as “principal component analysis” [33–40].

Now I turn to the general case in which there is an arbitrary
given reference state and where both the dimension and the
orientation of the explanatory level of description are to be
inferred. Suppose there are two rival proposals for the level of
description, G and H, where the latter is more detailed than
the former (and both are contained in the experimental level
of description), G ⊂ H ⊂ F . The associated Gibbs manifolds
πσ
G (S) and πσ

H(S) have respective manifold dimensions p

and p + s. As discussed earlier, the choice between the
two proposals involves a trade-off between goodness of fit
(favoring H) and simplicity (favoring G). Using the fact that
within the Gaussian region the relative entropy of two coarse-
grained states is approximately invariant under a change of
reference state σ → μ̄,

S(πi‖π̄ ) ≈ S
(
π

μ̄

G (μi)‖μ̄
)

(21)
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(and likewise for H), the difference of the asymptotic log-
likelihoods can be written as

L(H) − L(G)

≈
R∑

i=1

Ni

[
S
(
π

μ̄

H(μi)‖πμ̄

G (μi)
)+ S

(
πσ
H(μ̄)‖πσ

G (μ̄)
)] − s


2
.

(22)

If this difference is positive, the more detailed level of
description H is called for; if it is negative, one had better
stick to the simpler model G. This criterion extends an earlier
result obtained in Ref. [57] for experiments on a single sample.

Finding the optimal level of description, and hence the most
plausible set of constants of the motion, can now proceed
in two ways: either directly, by maximizing the asymptotic
log-likelihood (18) as a function ofG, or indirectly (and usually
more feasible in practice), by formulating various hypotheses
about the level of description and then comparing them by
means of the difference criterion (22). If the optimal G is
spanned by only one or very few observables (aside from the
unit operator), this indicates that thermalization has indeed
occurred.

The reconstruction of the appropriate level of description
precedes the reconstruction of the quantum state of any
individual system. The former requires data from the totality of
all samples. Once the reconstruction of the level of description
has succeeded, one may take this level as a given and turn
to reconstructing the Gibbs state of an individual system,
based on data from the pertinent sample only, by means of
well-known state-estimation techniques [57].

III. HAMILTONIAN ESTIMATION

Whenever the above statistical analysis reveals or it is
posited from the outset that there is only one constant of the
motion, this is by default the Hamiltonian. The Gibbs manifold
is then made up of canonical states ρ ∝ exp(−βH ), with
Hamiltonian H and inverse temperature β. [For a nonuniform
reference state there is an additional term (ln σ − 〈ln σ 〉σ )
in the exponent.] Strictly speaking, in case the {Fb} are
not informationally complete, H is not the full Hamiltonian
but the effective Hamiltonian pertaining to the measured
degrees of freedom. Since the latter usually coincide with the
slow degrees of freedom, H is then an effective low-energy
Hamiltonian. If the Hamiltonian is not known in advance, it
must be estimated from the data. In this section, I lay out the
appropriate estimation procedure.

Let the Hamiltonian be parametrized by some set of
parameters ξ ≡ {ξb}. Then so are the coarse-grained states

πi(ξ ) = Z(βi,ξ )−1 exp[(ln σ − 〈ln σ 〉σ ) − βiH (ξ )], (23)

with arbitrary reference state σ , where the partition function

Z(βi,ξ ) := tr{exp[(ln σ − 〈ln σ 〉σ ) − βiH (ξ )]} (24)

ensures state normalization, and the inverse temperature βi

is adjusted such that 〈H (ξ )〉πi (ξ ) = 〈H (ξ )〉μi
=: Ui . Their

weighted average π̄ (ξ ), equally parametrized by ξ , has
(in the Gaussian approximation) the same canonical form,
with inverse temperature β̄ ≈ ∑

i wiβi and internal energy

Ū = ∑
i wiUi . The asymptotic log-likelihood (18) thus be-

comes a function of ξ . It attains its maximum when

∂ξ

R∑
i=1

wiS(πi(ξ )‖π̄(ξ )) = ∂ξS(μ̄‖π̄ (ξ )). (25)

To evaluate the left-hand side of this extremization condi-
tion, I use Eq. (21) and the Gaussian approximation to write

R∑
i=1

wiS(πi(ξ )‖π̄(ξ )) ≈ 1

2C(μ̄)
var(U ), (26)

where

C(μ̄) := 〈δH (ξ ); δH (ξ )〉μ̄ (27)

with δH (ξ ) := H (ξ ) − Ū (ξ ), and

var(U ) :=
R∑

i=1

wi(Ui − Ū )2. (28)

The latter two functions have the respective derivatives

∂ξC(μ̄) = 2〈δH (ξ ); δ(∂ξH )〉μ̄ (29)

with δ(∂ξH ) := ∂ξH − ∂ξ Ū and

∂ξ var(U ) = 2 cov(U,∂ξU ) (30)

with covariance

cov(U,∂ξU ) :=
R∑

i=1

wi(Ui − Ū )(∂ξUi − ∂ξ Ū ). (31)

The right-hand side of the extremization condition is given by

∂ξS(μ̄‖π̄ (ξ )) = β̄(〈∂ξH 〉μ̄ − 〈∂ξH 〉π̄(ξ )). (32)

Altogether, this yields the condition

cov(U,∂ξU ) − C(μ̄)−1var(U )〈δH (ξ ); δ(∂ξH )〉μ̄
= β̄C(μ̄)(〈∂ξH 〉μ̄ − 〈∂ξH 〉π̄(ξ )). (33)

One particularly simple ansatz for the Hamiltonian is the
linear form

H (ξ ) = −
∑

b

ξbFb, (34)

modulo some additive constant. For the implementation of
this ansatz it is convenient to adopt a number of index
conventions in the style of general relativity: Identical upper
and lower indices are to be summed over; the correlation
matrix C [Eq. (10)] and its inverse C−1 lower or raise indices,
respectively, akin to a metric tensor [68]; and the scalar product
is defined as x · y := xaya = Cabx

ayb = (C−1)abxayb. Fur-
thermore, I define the covariance matrix

�ab :=
R∑

i=1

wi

(
f i

a − f̄a

)(
f i

b − f̄b

)
(35)

with f̄b := ∑
i wif

i
b , its “expectation value”

〈�〉ξ := ξ · �ξ

ξ · ξ
, (36)

052101-5



JOCHEN RAU PHYSICAL REVIEW A 84, 052101 (2011)

as well as

δfb(ξ ) := 〈Fb〉π̄ (ξ ) − f̄b (37)

and N := ∑
i Ni . With these conventions and definitions the

asymptotic log-likelihood (18) for the level of description
H(ξ ) := span{1,H (ξ )} reads

L(H(ξ )) ≈ (N/2)[〈�〉ξ − δf (ξ ) · δf (ξ )] − (
/2). (38)

If one is still uncertain as to whether the process in question
has actually led to thermalization, yet can already exclude
the existence of other constants of the motion besides the
Hamiltonian, one must compare the log-likelihood of H(ξ ) for
all values of ξ with the log-likelihood of F , i.e., the hypothesis
that the data do not warrant any dimensional reduction at all.
The latter log-likelihood is given by

L(F) ≈ (N/2)tr(�) − (
/2)dim πσ
F (S), (39)

where tr(�) := �a
a . The process may be considered “thermal-

izing” with Hamiltonian H (ξ ) if and only if L(F) � L(H(ξ )),
and hence

[tr(�) − 〈�〉ξ ] + δf (ξ ) · δf (ξ ) � (
/N )
[

dim πσ
F (S) − 1

]
.

(40)

The most likely value of ξ is determined by the maximum-
likelihood condition (33), which for the linear ansatz (34)
simplifies to

(δξ�)ξ = β̄(ξ · ξ )δf (ξ ) (41)

with matrix δξ� := � − 〈�〉ξ . In order to estimate β̄, I consider

δ(ln π̄ (ξ )) = β̄ξ · δF + ln σ − 〈ln σ 〉μ̄, (42)

where as before δX := X − 〈X〉μ̄. In the typical case of a
uniform reference state σ the latter two terms cancel so that

β̄2ξ · ξ = 〈δ(ln π̄ (ξ )); δ(ln π̄ (ξ ))〉μ̄. (43)

The right-hand side in turn may be approximated to lowest
order by

〈δ(ln π̄ (ξ )); δ(ln π̄(ξ ))〉μ̄ ≈ 〈δ(ln μ̄); δ(ln μ̄)〉μ̄. (44)

IV. EXAMPLE: QUBITS

In the following, I illustrate the general framework in the
simple example of qubits, which is tractable analytically. In
this example the {Fb} are the Pauli operators, and the parameter
vector ξ may be viewed as (parallel to) an effective magnetic
field. In the typical case of a uniform reference state σ the
expectation values of F in the states μ̄ and π̄ (ξ ) are related
linearly:

〈F 〉π̄(ξ ) = ξ · f̄

ξ · ξ
ξ. (45)

As a result, the maximum likelihood condition (41) becomes

(δξ�)ξ = (ξ · f̄ )2

ξ · ξ
ξ − (ξ · f̄ )f̄ . (46)

This condition no longer depends on β̄ and, moreover, is
invariant under rescaling of ξ . Without loss of generality,
therefore, ξ may be taken to be normalized, ξ · ξ = 1.

For qubits the covariance matrix � is a 3 × 3 matrix. To
simplify matters, I assume that it singles out one dominant
direction γ and is isotropic in the remaining two directions:

�ξ = �+(γ · ξ )γ + �−Pξ, (47)

where the projector P projects orthogonally (with respect to
the scalar product used here) onto the subspace complementary
to γ , and �+,�− with �+ > �− are the respective eigenvalues.
The unit vectors γ and f̂ (the unit vector pointing in the
direction of f̄ ) then constitute the two preferred directions
in the problem. Symmetry dictates that the solution of the
maximum-likelihood condition (46) must lie in the subspace
spanned by these two preferred directions, ξ ∈ span{γ,f̂ }. In
fact, if γ is aligned with f̂ , the solution is ξ = γ = f̂ . In
case γ and f̂ are not aligned, the solution will generally not
coincide with either of the two.

In order to quantify how ξ interpolates between γ and
f̂ in case the two are not aligned, I define a further unit
vector η :∝ P f̂ , the normalized projection of f̂ onto the
subspace complementary to γ . To lowest-order (first-order)
perturbation theory in (η · f̂ ), i.e., for small misalignments,
the maximum-likelihood condition (46) has the solution

η · ξ ≈
[

1 + �+ − �−
f̄ · f̄

]−1

η · f̂ , γ · ξ ≈ 1 − O((η · f̂ )2).

(48)

This result illustrates nicely how the maximum-likelihood
algorithm interpolates between alignment with the center
of mass (η · ξ = η · f̂ ) and alignment with the covariance
pattern (η · ξ = 0). For a perfectly isotropic covariance
pattern (�+ = �−) the parameter vector is aligned with f̂ .
The more pronounced the anisotropy of the covariance pattern
(�+ � �−) and the smaller the lever of the center of mass
(f̄ · f̄ small), the more ξ tends to be aligned with γ .

Inserting the maximum-likelihood solution into the
formula (38) for the log-likelihood yields, to lowest order in
perturbation theory,

max
ξ

L(H(ξ ))

≈ N

2

{
�+ −

[
1

f̄ · f̄
+ 1

�+ − �−

]−1

(η · f̂ )2

}
− 


2
.

(49)

The maximum-likelihood solution satisfies the thermalization
condition (40) if and only if both vertical noise and
misalignment are small,

�− � 


N
,

θ2

2
� 


N

[
1

f̄ · f̄
+ 1

�+ − �−

]
, (50)

where θ is the tilting angle between γ and f̂ , sin θ := η · f̂ .
As a simple numerical example, I consider data gleaned

from multiple qubit samples of identical size Ni = 20 000, and
hence ln Ni ≈ 10. I assume that the distribution of tomographic
images has a width which in the dominant direction is of
comparable magnitude to the distance of the center of mass
from the origin; more specifically, that both are about 1/10 of
the radius of the Bloch sphere, �+ ≈ f̄ · f̄ ≈ 1/100. In the
other directions, the standard deviation of the tomographic
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images is assumed to be smaller by a factor of 10,
�− ≈ �+/100. The dominant direction γ and the orientation
f̂ of the center of mass are not aligned; rather, they are tilted
against each other by an angle θ = π/16. This raises doubts
about thermalization, as the canonical curves of a qubit are
straight lines through the origin of the Bloch sphere. May
the qubits nevertheless be considered thermalized? In fact
they may, as the standard deviation and the tilting angle
still satisfy both thermalization conditions in Eq. (50). Their
most plausible Hamiltonian, parametrized as in the ansatz
(34), contains an effective magnetic field ξ which (modulo
rescaling) is given by Eq. (48) and which in this example
approximately bisects the angle between γ and f̂ .

In the above example the preferred axis ξ of the Hamiltonian
is inferred from the data, rather than given or conjectured from
the outset. This distinguishes this example from other inference
tasks where one weighs the hypothesis of some a priori fixed
axis against the hypothesis that no such preferred axis exists,
for instance when comparing Ising and Heisenberg models for
an anisotropic ferromagnet on the basis of a single sample [57].

V. CONCLUSIONS

In this paper I focused not on the theoretical question
whether some system with a given Hamiltonian ought to
thermalize, but on the practical question whether experimental
data indicate that a system with hitherto unknown dynamics
has actually thermalized. This issue never really arises for
systems that are macroscopic. Outside the macroscopic realm,
however, and with data pertaining to just a few samples,
each composed of, say, a few hundred system copies only,
it becomes a nontrivial statistical inference task. I have
laid out the appropriate statistical framework for assessing
thermalization under such adverse conditions.

In case the data do support the hypothesis of thermalization,
and provided there is no evidence for additional constants
of the motion, I have shown how the data can be used to
estimate the system’s unknown Hamiltonian. Hamiltonian
estimation is increasingly important in quantum technology,
as it is needed to assess and certify the proper functioning
of quantum devices. Since my estimation scheme is based on
studying thermal properties rather than time evolution and thus
requires output data only, it may constitute a viable alternative
to conventional time-based approaches, especially in situations
where initial states or time are difficult to control.

Aside from its practical relevance, the framework presented
here is also of interest conceptually. One example is a better
understanding of the iterative dynamics of thermalization.
Whenever a physical system exhibits a hierarchy of time scales,
thermalization typically occurs in stages, on successively
longer time scales. For instance, a dense plasma, initially in the
kinetic regime far from equilibrium, might quickly equilibrate
locally and thus enter the hydrodynamic regime but only much
later reach global equilibrium [21,69]. Associated with these
various stages are successively smaller levels of description: in

this particular example, first the Boltzmann level of description
(all single-particle observables), then the hydrodynamic level
of description (local particle, energy, and momentum density),
and finally the equilibrium level of description (total energy
and particle number). Thermalization is thus accompanied by
a sequence of level contractions. The framework developed
here provides the quantitative criterion as to when exactly
these level contractions are warranted.

I see four routes for further research. First, it will be
important to test the mathematical framework developed here
on real or simulated experimental data. In principle, any
experiment that probes only tiny samples of matter such as an
array of atoms or the debris from a single high-energy collision
[70] lends itself to such an analysis. Processing the data will
likely require the use of suitable numerical techniques.

Second, in the present paper I made a number of idealizing
assumptions. For instance, I assumed that the only source of
experimental error is projection noise due to the finiteness
of the samples, whereas there is no error stemming from
inaccuracies of the measurement devices. Moreover, I took
the tomographic measurement setup to be near-optimal in the
sense of the quantum Stein lemma. In case the observables
{Fb} do not commute, this may involve global measurements
which are difficult to implement in practice. In future work I
plan to investigate how the mathematical framework must be
adapted when these assumptions are relaxed.

Third, on a more conceptual level, I consider it worthwhile
to generalize the mathematical framework in the following
way. While the approach laid out in the present paper aims
to infer the most plausible level of description in a single
step, a different approach might split this into two distinct
inference tasks: first estimating the optimal dimension of the
level of description, and then, given the dimension, its optimal
orientation. In this alternative approach the first step involves
an additional Occam factor, and so, in principle, it might
lead to other conclusions than the present approach. It will
be interesting to understand under which circumstances such
divergent conclusions may arise, and why.

Finally, also on the conceptual level, the pivotal log-
likelihood function L(G) which features in the statistical
analysis depends on a number of scaling parameters: the
total number R of samples, their sizes {Ni}, the Gibbs
manifold dimension p, and—when calibrating against L(F)—
the number of measured degrees of freedom. I propose to
investigate in more detail how the log-likelihood scales with
each of these parameters, and whether any general conclusions
can be drawn from this about the typicality of thermalization
in different scaling regimes.
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