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Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency
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We investigate a hybrid optomechanical system composed of a micromechanical oscillator as a movable
membrane and an atomic three-level ensemble within an optical cavity. We show that a suitably tailored cavity
field response via electromagnetically induced transparency (EIT) in the atomic medium allows for strong
coupling of the membrane’s mechanical oscillations to the collective atomic ground-state spin. This facilitates
ground-state cooling of the membrane motion, quantum state mapping, and robust atom-membrane entanglement
even for cavity widths larger than the mechanical resonance frequency.
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Recent years have witnessed tremendous progress toward
the control of mechanical motion at the quantum limit in
micro- and nano-optomechanical systems [1]. While cavity
optomechanical phenomena are traditionally investigated with
solid-state optomechanical systems—micromirrors, cantilever
tips, toroidal resonators, movable membranes, etc.—cold
atomic gasses placed in high-finesse optical cavities [2]
have also been successfully used to implement equivalent
Hamiltonians at ultralow temperatures. Consequently, several
proposals have suggested a combination of both approaches
to realize hybrid optomechanical systems [3–5], in which
well-controlled atomic systems can be interfaced with solid-
state mechanical resonators. These can benefit from the well-
established atomic physics methods for cooling, trapping, state
preparation, control, and readout and can properly tailor the
atom-cavity response function.

We propose here a hybrid system composed of a mechanical
oscillator, in the form of a movable membrane, and a
three-level atomic medium operated in an electromagnetically
induced transparency (EIT) configuration within the optical
cavity [6,7]. We show how the cavity field response can be
tailored [4,8] by the EIT interaction in order to strongly couple
the membrane motion to the collective atomic ground-state
spin. The sharp and tunable nature of the cavity field EIT
resonance efficiently addresses either the Stokes or anti-Stokes
motional sidebands of the membrane (which is reminiscent
of EIT cooling of ions [9]), even in the bad-cavity limit,
that is, when its mechanical resonance frequency is much
smaller than the cavity linewidth. We show in particular how to
engineer beamsplitter- or down-conversion-type Hamiltonians
[10] between the membrane motion and the collective atomic
spin, which can be exploited for efficient optomechanical
cooling, quantum state mapping, or robust atom-membrane
entanglement generation. Such interactions would be espe-
cially appealing for low mechanical resonance frequency
(sub-megahertz) mechanical oscillators [11], coupled to cold
atoms or Bose-Einstein condensates [2,5,12] or ion crystals
[13] in low-finesse optical cavities.

Model. Let us consider an ensemble of N three-level atoms
or ions in a � configuration coupled to a control laser and
a cavity field mode on the two upward transitions. The level
frequency separations are ω13, ω23 as optical transitions and

FIG. 1. (Color online) (a) Hybrid optomechanical system com-
posed of an atomic ensemble and a mechanical oscillator enclosed
in an optical cavity. (c) Cavity field transmission frequency profile
for (un)resolved sideband cooling of the membrane motion in the
bad cavity limit (upper) and cavity EIT-resolved sideband cooling
(lower).

ω12 in the microwave domain. The cavity field a is driven at
ωp, close to a cavity resonance ωcav. A single membrane vibra-
tional mode at frequency ωm is considered with corresponding
ladder operators b,b†. In terms of the atomic operators σ

(j )
αβ

(j = 1 − N ), the free Hamiltonian is (with h̄ = 1) H0 =
ω21

∑
j σ

(j )
22 + ω31

∑
j σ

(j )
33 + ωcava

†a + ωmb†b. With an extra
control laser driving on the 2–3 transition at frequency ωc,
the atom-field interaction isHat−f = −g(

∑
j σ

(j )
31 a + H.c.) −

�(
∑

j σ
(j )
32 e−iωct + H.c.), where g is the single atom-cavity

field coupling strength and � is the control field Rabi fre-
quency. In the case of an inhomogeneous coupling distribution,
N represents the effective number of atoms interacting with the
cavity field [13]. The optomechanical interaction, proportional
to the cavity resonance shift due to the displacement of the
membrane, is Hf −m = −G0a

†a(b† + b), where G0 is the bare
optomechanical coupling [11,15].

We consider a typical EIT regime for which the cavity
field is much weaker than the control field (g |〈a〉| � �), and
most of the atoms are in level 1. This allows us to make
the standard bosonization approximation and map the spin
algebra to a harmonic oscillator algebra via the transformation
1/

√
N

∑
j σ

(j )
12,13 → c2,3 with [c2,3,c

†
2,3] = 1. In a rotating

frame that redefines dynamics in terms of detunings, �cav =
ωcav − ωp, � = ω31 − ωp, �′ = ω32 − ωc, and δ = � − �′,
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one can derive the following set of coupled equations of motion
that will be the starting point of our calculations:

ċ3 = −(γ + i�)c3 + igNa + i�c2 + cin
3 , (1a)

ċ2 = −(γc + iδ)c2 + i�c3 + cin
2 , (1b)

ȧ = −(κ + i�cav)a + igNc3 + iG0a(b† + b) + ain, (1c)

ḃ = −(γm/2 + iωm)b + γm/2b† + iG0a
†a + bin, (1d)

where κ , γm, γ , and γc are the decay rates of the cavity
field, the membrane, and the dipoles on the 3–1 and 2–
1 transitions, respectively, and gN = g

√
N is the atomic

collective coupling strength. The cavity driving is given
by the nonzero 〈ain〉; the other Langevin noise terms have
the following relevant correlations: 〈cin

3 (t)cin,†
3 (t ′)〉 = γ δ(t −

t ′), 〈cin
2 (t)cin,†

2 (t ′)〉 = γcδ(t − t ′), 〈ain(t)a†
in(t ′)〉 = κδ(t − t ′),

〈bin(t)bin,†(t ′)〉 = γm(ni + 1)δ(t − t ′), and 〈bin,†(t)bin(t ′)〉 =
γmniδ(t − t ′). The initial occupancy of the mechanical res-
onator imposed by the external thermal reservoir T is denoted
here by ni .

Dressed cavity field response. In the steady state, we have
〈a〉 = 〈ain〉/(κ + i�c − iχEIT) where �c = �cav − 2G2/ωm,
with G = G0α (α = |〈a〉|). The EIT medium susceptibility is
χEIT = ig2

N/[γ + i� + �2/(γc + iδ)]. For a strongly absorb-
ing medium (gN > κ,γ ), the cavity will be transparent only
in a narrow frequency range around the two-photon (EIT)
resonance. This emulates a cavity substantially narrower than
its natural linewidth 2κ . Under the assumptions �2 � γcγ

and � � γc the cavity transmission spectrum becomes a
Lorentzian peak centered around δ = 0 with a modified
half-width

κEIT 	 γc + κ
�2

g2
N

. (2)

An effective sharpening of the cavity response around the
two-photon atomic resonance can thus be obtained if narrow
atomic resonances (γc � κ) and strong atom-cavity coupling
strengths (gN � �) are used [6,7]. This tailoring effect
can be used to engineer the coupling between the atoms
and the membrane motion. For a simple physical understand-
ing, one can Fourier analyze Eq. (1c) to derive the cavity
response in the frequency domain in the presence of atoms.
One sees in Fig. 1(c) the EIT sharpening of the cavity profile
around the blue sideband, leading to the inhibition of the red
sideband, which in turn improves cooling as compared to the
situation where no atoms are present. Equations (1a)–(1d)
can be linearized around their steady-state mean values, and
the covariance matrix (CM) of the quantum fluctuations of
all observables can be calculated numerically [14]. The most
interesting physical situations correspond to tuning the dressed
cavity field resonances to either the anti-Stokes or the Stokes
motional sidebands. Here, the analysis is most conveniently
performed by moving to the corresponding rotating frames.

Anti-Stokes sideband resonance: Cooling and state map-
ping. We first assume that the cavity and the atomic two-photon
detunings are matched to the anti-Stokes motional frequency,
δ = �c = ωm. In the frame rotating at ωm and neglecting
off-resonant interactions, the equations for the fluctuations
read

˙̃c3 = −γ c̃3 + igN ã + i�c̃2 + c̃in
3 , (3a)

˙̃c2 = −γcc̃2 + i�c̃3 + c̃in
2 , (3b)

˙̃a = −κã + igN c̃3 + iGb̃ + ãin, (3c)
˙̃b = −(γm/2)b̃ + iGã + b̃in. (3d)

where õ = oe−iωmt . We look at the effective interaction
between c̃2 and b̃ in the regime when γ,κ � γc,γm,ωm, that is,
such that c̃3 and ã are the fast variables that can be adiabatically
eliminated. We first identify the optical cooling rate 
O =
G2/κ , and the excited ground state decay rate 
E = �2/γ ,
with corresponding normalized rates γO = 
O/(1 + C) and
γE = 
E/(1 + C), where C = g2

N/κγ is the cooperativity
parameter. We can now write for the reduced bipartite system

˙̃c2 = −(γc + γE)c̃2 − i
√

CγEγOb̃ + c̄in
2 , (4a)

˙̃b = −(γm/2 + γO)b̃ − i
√

CγEγOc̃2 + b̄in, (4b)

which show the renormalized bare effective decay rates
of the system γc + γE and γm/2 + γO together with the
coupling rate

√
CγEγO . The effective Langevin noise

terms are expressed as c̄in
2 = −i

√
γE/(1 + C)cin

3 /
√

γ −√
γEC/(1 + C)ain/

√
κ + cin

2 ,b̄in = i
√

γO/(1 + C)ain/
√

κ

− √
γOC/(1 + C)cin

3 /
√

γ + bin. One can deduce an effective

Hamiltonian, HAS 	 √
CγEγO(b̃†c̃2 + b̃c̃

†
2), that takes

the form of the beam-splitter-like interaction extensively
used in quantum optics and quantum information. We
identify two regimes: (i) a cooling regime for γO � γE

and (ii) a state transfer (strong coupling) regime, for√
CγEγO � γE,γO,γc,γmni , which we analyze analytically

and numerically in the following.
When κEIT � γc,
O one can treat the atom-cavity sub-

system as an effective bath for the mechanical degree of
freedom [15]. The sharpening of the cavity response (EIT
window) can inhibit Stokes scattering, leading to resolved
sideband cooling. Assuming a bad cavity κ � ωm (for which
direct cavity-induced optomechanical cooling cannot reach
the ground state), we first assume that κEIT � ωm to resolve
sidebands. Under these conditions, the effective cooling rate of
the membrane can be shown to be 
 = 
0/[1 + (κEIT/2ωm)2],
and the final mechanical occupancy is equal to

nf 	 γm

γm + 

ni + 


γm + 


[(
κEIT

2ωm

)2

+ γc

2κEIT

]
, (5)

which is reminiscent of the resolved sideband optomechanical
cooling limit [15], with κ being replaced by the sharper κEIT,
but with an additional atomic noise reflected by the small
term γc/2κEIT. Ground-state cooling then becomes possible
for sufficiently strong optomechanical coupling and narrow
cavity EIT resonances [7].

In the regime where
√

CγEγO becomes larger than the
effective decay, rates a coherent state transfer regime emerges.
The conditions can be summarized by the following double
inequality:

κ

gN

� G

�
� gN

γ
. (6)

To illustrate the cooling and state transfer regimes more clearly,
we now focus on a numerical example. We take a membrane
with ωm = (2π )200 kHz, mechanical quality factor Qm ∼
107, and effective mass 1 ng [11]; the thermal environment
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FIG. 2. (Color online) Cavity EIT cooling: (a) Logarithmic plot
(of base 10) of nf as a function of normalized two-photon detuning
δ/ωm. (b) Variation of nf with � for δ = ωm. (c) Variation of nf with
G for standard self-cooling with no atoms (�c = κ/2, dashed line)
and cavity EIT cooling [δ = ωm, � = (2π )300 MHz, solid line]. The
insets show the case of N = 106 atoms (see text). State mapping:
(d) Time evolution of Wigner functions for an initially squeezed
ground-state atomic spin. See text for parameters.

is at 1 K, with initial occupancy ni = 105 at ωm. For a 1-cm-
long cavity with κ = (2π )1 MHz, one gets a single-photon
optomechanical strength of the order G0 	 (2π )200 Hz. To
be in the EIT-resolved sideband regime κEIT � κ , one needs
that gα � � � gN , which implies α2 � N . Since the cooling
rate scales with the number of photons, it is advantageous to
use a large ensemble. For a N = 108 cold Rb cloud, obtained,
for example, using three-dimensional (3D) molasses, with
γ = (2π )3 MHz, g = (2π )100 kHz, and γc ∼ (2π )1 kHz, and
taking α ∼ 103 and � = (2π )300 MHz, one gets κEIT 	 κ/10
and G 	 (2π )200 kHz. For these parameters, we numerically
calculate the CM from Eqs. (1a)–(1d) and show in Fig. 2(a) the
expected optimization of cooling when δ = ωm. The effective
cavity window then completely includes the anti-Stokes
sideband for efficient cooling, κEIT � 
O = (2π )40 kHz.
Fixing δ = ωm, Fig. 2(b) shows the variation of nf with �.
As expected from Eq. (5), the occupancy decreases as κEIT

increases until the EIT window becomes too large to resolve
the sidebands. The insets in Figs. 2(a) and 2(b) show the case
of a smaller N = 106 cloud, for example, BEC, with α = 102,
� = (2π )30 MHz, and G 	 (2π )20 kHz, for which substantial
cooling can still be observed. Similar results could also be
achieved with ensembles with lower N , such as ion crystals
[7,13], but would require higher bare optomechanical coupling
strengths. We show in Fig. 2(c) a comparison between cavity
EIT cooling and standard optimized cavity cooling (when no

atoms are present) with fixed �c 	 κ/2 as a function of G. The
obtainable temperature is about two orders of magnitude lower
in the EIT cooling case while the cooling rate is enhanced by
a factor of ∼κ/ωm.

We then check the validity of our RWA treatment indication
of a strong coupling regime by taking the example of a
reversible state mapping of a squeezed state. Starting with
the atoms in a squeezed state with squeezing parameter r = 1
(such that the squeezed quadrature variance is reduced from
1/2 to e−2r/2) and the membrane in an initial thermal state
with average phonon number 2, we numerically integrate
Eqs. (1a)–(1d) and calculate the time evolution of the atom
and membrane Wigner functions. To satisfy Eq. (6), we take
� = (2π )100 MHz and G = (2π ) 500 kHz. The ratios of the
coupling strength

√
CγEγO to the various decoherence rates

(γmni,γO,γE) for the chosen illustration are (12.5,6.6104,5),
and the state swapping at time π/

√
CγEγO can be seen

in Fig. 2(d). Notice that with α 	 250 one needs G0 ∼
(2π )2 kHz, a value somewhat higher than that achieved with
state-of-the-art SiN membranes [11].

Stokes sideband resonance: Atom-membrane entangle-
ment. We now turn to the case where the cavity and the EIT
medium are tuned to the Stokes sideband. Assuming δ =
�c = −ωm and neglecting again off-resonant interactions,
one gets a set of equations similar to Eqs. (1), with b̃

being replaced by b̃†. Eliminating the fast variables in the
frame rotating at −ωm, one can again deduce an effective
Hamiltonian for the reduced atom-membrane system, which
now takes the form of a parametric down-conversion pro-
cess HS 	 √

CγEγO(b̃†c̃†2 + b̃c̃2), known to generate bipartite
entanglement from an initial bimodal separable state [10].
To quantify this entanglement, we calculate the logarithmic
negativity EN [16] (a computable measure for any mixed state
of a bipartite system) by numerically integrating Eqs. (1a)–(1d)
and looking at the steady state.

A closer look into the RWA equations of motion shows
that despite the fact that the down-conversion process does
lead to an entangled steady state, the assumption of �c =
−ωm strongly limits the achievable entanglement, owing
to the occurrence of a parametric instability even for very
small values of G. To get around the limitation imposed

FIG. 3. (Color online) Atom-membrane steady-state entangle-
ment: (a) Logarithmic negativity EN as a function of δ for the
parameters given in the text. (b) Variation of EN with G for δ = −ωm.
(c) Variation of EN with ni , showing robustness of entanglement with
respect to temperature.
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by the parametric heating of the membrane, one can use a
far-detuned cavity such that |�c| � κ,ωm. In such a case,
higher values of G are allowed before the onset of parametric
instability and considerable entanglement can in principle
be generated, as illustrated in Fig. 3. As an example, we
consider the parameters used for Fig. 2, except for N = 104

and � = (2π )1.2 MHz, and choose �c = −12κ . The expected
entanglement optimization at δ 	 −ωm and increase with
G are shown in Figs. 3(a) and 3(b. Under the condition
δ 	 −ωm and for G = (2π )1 MHz, Fig. 3(c) shows robustness
with respect to T as EN reaches 0 only at occupancies
corresponding to ∼20 K. Analytically, one can estimate in
this regime that the effective atom-membrane coupling is

�gNG/

√
g4

N + γ 2�2
c and that equaling this to the thermal

decoherence rate implies a vanishing EN for ni 	 6 × 106, in
agreement with Fig. 3(c). Detection of this entanglement could
be performed by using two auxiliary light modes, one onto
which the atomic state can be mapped and a second weakly
probing the optomechanical response of the membrane [17].

Quantum state homodyne tomography of these modes could
then be performed to reproduce the intracavity entanglement
provided that this entanglement is strong enough to survive
the detection back-action.

Conclusion and outlook. We have shown that a hybrid
optomechanical approach in dealing with quantum effects at
the mesoscale range defined by a mechanical resonator can be
employed to enter regimes otherwise inaccessible in the bare
optomechanical system. Strong coupling and entanglement in
the unresolved sideband regime of a cavity-membrane system,
for instance, can be engineered via the controllable atom-field
EIT effect. Such a hybrid interface could provide a route for
efficient readout, for example, and even long-distance quantum
teleportation of a mechanical resonator quantum state.
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