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Efficient thermodynamic description of multicomponent one-dimensional Bose gases
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We present a method of obtaining nonlinear integral equations characterizing the thermodynamics of one-
dimensional multicomponent gases interacting via a δ-function potential. In the case of the repulsive two-
component Bose gas we obtain a simple system of two nonlinear integral equations, allowing for an efficient
numerical implementation, in contrast with the infinite number of coupled equations obtained by employing the
thermodynamic Bethe ansatz. Our technique makes use of the quantum transfer matrix and the fact that, in a
certain continuum limit, multicomponent gases can be obtained from appropriate anisotropic spin chains.
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Introduction. Recent advances in magnetic and optical trap-
ping of ultracold quantum gases have opened new possibilities
in investigating the physics of strongly interacting particles in
one dimension [1]. Coupled with the fact that the strength of the
atomic interaction can be controlled using magnetic Feshbach
resonances or state-dependent dressed potentials [2], these new
experiments provide a fertile ground for testing the theoretical
predictions obtained from the study of various integrable mod-
els solvable by Bethe ansatz. As a result, we have witnessed
the experimental realization of the Lieb-Liniger model [3]
using bosonic 87Rb atoms [4–8] and, moreover, the measured
thermodynamics [9] is described very well by the Yang-Yang
thermodynamics, which was developed in [10], using what we
call nowadays the thermodynamic Bethe ansatz (TBA) [11]. In
the case of integrable multicomponent one-dimensional (1D)
gases, TBA produces an infinite number of integral equations
[11,12], which makes the extraction of physical information
and comparison with prospective experimental data difficult.
In this Rapid Communication, we propose a solution to this
problem using the quantum transfer matrix [13,14] and the
connection between multicomponent gases and anisotropic
spin-chains. Our method has the advantage of providing a finite
number of nonlinear integral equations (NLIEs), which are
extremely suited for numerical computations, in stark contrast
with the TBA result.

Model. We consider a 1D system of M bosons, of equal
mass m = 1/2, with n internal degrees of freedom, interacting
via a δ-function potential. The many-body Hamiltonian is

H = −
M∑
i=1

∂2

∂x2
i

+ 2c
∑
i<j

δ(xi − xj ) −
n∑

i=1

μiMi, (1)

where c is the coupling constant and we consider h̄ = kB =
1. The first and the second term in the Hamiltonian (1),
represent the kinetic and and the interaction energy, while the
third is the Zeeman term, where Mi is the number of particles in
the hyperfine state |i〉 and μi the respective chemical potential.
The interaction is attractive for c < 0 and repulsive for c > 0.

The model is integrable and was solved in [3,15–17].
Despite the fact that the model is integrable, computing

the thermodynamics is still an incredibly difficult task. The
first attempt was done by Yang and Yang [10] for the spinless
bosons using the TBA. TBA has proved to be an extremely
useful technique and was used to obtain information about

the thermodynamics of various exactly solvable models [11];
however, it has one big shortcoming: For a large class of models
it produces an infinite number of coupled NLIE. This is also
the case for our model, with the exception of the spinless
case (n = 1). From a very simplified point of view this is due
to the fact that the spectrum of the theory contains infinitely
many branches. The numerical implementation of this system
of equations requires various truncations, which introduce
an uncontrollable source of numerical errors and makes the
extraction of relevant physical information extremely difficult.
Therefore, it is highly desirable to devise a numerically
efficient method, which provides a finite number of NLIE.

Fortunately, in the case of lattice models such a method
exists. Developed in [13,14], the quantum transfer matrix
(QTM) approach was successfully applied to a large class of
integrable spin chains and even models of strongly correlated
electrons. Within this approach, the thermodynamic properties
of the model are obtained from the largest eigenvalue of
the QTM, which in the thermodynamic limit gives the free
energy. Even though there is no equivalent of the QTM for
continuum models, it is well known [18,19] that a large class
of integrable models can be obtained from lattice models in
suitable continuum limits. We say that an integrable model
is the continuum limit of a lattice integrable model if, by
performing this limit in the Bethe equations and energy
spectrum of the lattice model one obtains the Bethe equations
and energy spectrum of the continuum model. The natural
consequence is that the thermodynamics of the continuum
model can be obtained from the thermodynamics of the lattice
model if we take the same limit. This method is used in
this Rapid Communication, allowing us to obtain an efficient
thermodynamic description of the two-component Bose gas
(for the single-component case, see [20]).

In this publication we study and give results for the
Hamiltonian (1) in dimensionless units; however, physical
units can be restored easily. For particles with mass m

and contact interaction strength g (see, for example, (1) in
[21]), the units of temperature, chemical potential, magnetic
field, particle density and susceptibility, compressibility, heat
capacity, and entropy per length are T0 = h̄2/(2ma2kB), μ0 =
h0 = h̄2/(2ma2), d0 = 1/a, χ0 = κ0 = 2ma/h̄2, c0 = S0 =
kB/a, respectively. The quantity a is a length scale that
can be chosen freely, yielding the dimensionless coupling
constant c = mga/h̄2 appearing in (1). In all figures presented
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in this paper, physical data are shown in the given units
and for dimensionless coupling c = 1, which is realized for
any parameter values of m and g with a suitably chosen
a = h̄2/(mg).

Method. The general strategy is as follows. First, we
identify the spin-chain from which we will obtain in the
appropriate continuum limit our model of interest. The next
step is the investigation of the thermodynamics of the lattice

model using the QTM technique, which will provide a finite
number of NLIE. Finally, the desired result is obtained by
taking the continuum limit in the equations for the lattice
model. Let us make these general considerations more precise.
In the case of the repulsive two-component Bose gas, the
relevant lattice model is the Uq(ŝl(3)) Perk-Schultz spin chain
[22–26], with periodic boundary conditions characterized by
the Hamiltonian

H = J

L∑
j=1

⎛
⎜⎜⎜⎝cos γ

3∑
a=1

e(j )
aa e(j+1)

aa +
3∑

a,b = 1
a �= b

e
(j )
ab e

(j+1)
ba − i sin γ

3∑
a,b = 1
a �= b

sgn(a − b)e(j )
aa e

(j+1)
bb

⎞
⎟⎟⎟⎠ −

L∑
j=1

3∑
a=1

hae
(j )
aa , (2)

where γ ∈ (0,π ) determines the anisotropy, (q = eiγ ), L is
the number of lattice sites, J > 0 fixes the energy scale,
ha are chemical potentials, and e

(j )
ab = I⊗j−1 ⊗ eab ⊗ I⊗L−j ,

with eab the 3-by-3 matrix with elements (eab)ij = δaiδbj .
This Hamiltonian is the sum of two terms, Hb (in the
brackets), and the chemical potential term Hc, which does
not break the integrability of the model [24]. The Uq(ŝl(3))
Perk-Schultz spin chain can be obtained as the fundamental
spin model (see [27]) associated with the trigonometric
Perk-Schultz R matrix [24], R(v) = ∑3

a,b,c,d=1 Rac
bd (v)eab ⊗

ecd, with Raa
aa(v) = sin(γ+v)

sin γ
,Rab

ab(v) = sin v
sin γ

, (a �= b),Rba
ab(v) =

ei sgn(a−b)v, (a �= b), and all the other elements zero. The
transfer matrix T(v) is the 3L-by-3L matrix with elements
Ta

b(v) = ∑
{c}

∏L
j=1 Rcj+1aj

cj bj
(v), where a, b, and c are multiple

indices; that is, a = (a1, . . . ,aL) and the sum is over all
c with c1 = cL+1. The Hb part of the Hamiltonian can be
obtained as the logarithmic derivative of the transfer matrix
Hb = J sin γ ∂ ln T(v)

∂v
|v=0. In order to treat the model at finite

temperature we introduce the 3N -by-3N QTM with elements

(TQTM)a
b(v)

=
∑
{c}

eβhc1

N/2∏
j=1

Rc2j+1a2j

c2j b2j
(v + iu)R̃

c2j a2j−1

c2j−1b2j−1
(iu − v),

where c1 = cN+1, R̃
ac

bd (v) = Rcb
da(v), u = −Jβ sin γ /N, with

N the Trotter number and β = 1/T . The largest eigenvalue
of the QTM, from which the free energy of the model can be
obtained, has the form 	QTM(v) = ∑3

j=1 λj (v) [28], with

λj (v) = φ−(v)φ+(v)
qj−1(v − iγ )

qj−1(v)

qj (v + iγ )

qj (v)
eβhj ,

where φ±(v) = ( sinh(v±iu)
sin γ

)N/2 and

qj (v) =

⎧⎪⎨
⎪⎩

φ−(v) j = 0,∏N/2
r=1 sinh

(
v − v

(j )
r

)
j = 1,2,

φ+(v) j = 3.

.

The two sets of parameters, {v(j )
r }, are the Bethe roots of the

QTM and satisfy the Bethe equations λj(v(j)
r )/λj+1(v(j)

r ) =−1,

r = 1, . . . ,N/2 . The Bethe roots are distributed in certain
strips of the complex plane which are independent of tem-
perature and Trotter number. This type of specific distribution
allows for the definition of auxiliary functions and the use of
Cauchy’s theorem in deriving NLIE for the largest eigenvalue
[14,29–32]. Our results, which in the continuum limit produce
Eqs. (3) and (4), can be understood as the multicomponent
generalization of the equations presented in [32].

Main result. In order to obtain the thermodynamics of the
two-component Bose gas we have to perform a particular
continuum limit in the NLIE obtained for the Uq(ŝl(3))
spin chain. The spin chain is characterized by the following
parameters: lattice constant δ, number of lattice sites L,
anisotropy γ , strength of the interaction J , and chemical
potentials h1,h2,h3. The two-component Bose gas is ob-
tained by performing the limit γ = π − ε, δ → O(ε2), L →
O(1/ε2), J → O(1/ε4), h1 → O(1/ε2), with ε → 0. Per-
forming this limit in the Bethe equations and energy spectrum
of the Uq(ŝl(3)) spin chain, we obtain the Bethe equations and
energy spectrum of a two-component Bose gas characterized
by the parameters: length l = Lδ, coupling constant c = ε2/δ,
mass of the particles m = Jδ2, and chemical potentials μ1 =
Jε2 + h2 − h1 ,μ2 = h3 − h2. In order to simplify the formu-
las, we are going to consider Jδ2 = 1 (mass of the particles
equal to 1/2) and introduce μ = (μ1 + μ2)/2 and an effective
magnetic field h = (μ1 − μ2)/2, where μ1,2 are the chemical
potentials of the spin-up and -down particles. We are now
ready to state the main result of this Rapid Communication.
The thermodynamics of the two-component repulsive Bose
gas is completely characterized by the following system of
NLIEs:

ln a1(k) = −β(k2 − μ − h)

+ [K0 ∗ ln A1](k) + [K1 ∗ ln A2](k + iε), (3a)
ln a2(k) = −β(k2 − μ + h)

+ [K2 ∗ ln A1](k − iε) + [K0 ∗ ln A2](k), (3b)

where Ai(k) = 1 + ai(k) , K0(k) = 2c/(k2 + c2), K1(k) =
c/[k(k + ic)] ,K2(k) = c/[k(k − ic)], and [f ∗ g](k) = 1

2π∫ +∞
−∞ f (k − k′)g(k′) dk′. The grandcanonical potential per
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length is given by

φ = − T

2π

∫ +∞

−∞
[ln A1(k) + ln A2(k)] dk, (4)

from which all the other thermodynamic quantities can
be obtained. Equations (3) and (4) constitute an efficient
thermodynamic description for a multicomponent continuum
integrable model at all values of the relevant parameters
(temperature, chemical potentials and coupling constant).

Analytic limits. First, we consider the limit c → 0. Then, we
have limc→0 c/(k2 + c2) = πδ(k) and limc→0 c/[k(k ± ic)] =
0 and the integral equations decouple:

ln a1(k) = −β(k2 − μ − h) + ln[1 + a1(k)],

ln a2(k) = −β(k2 − μ + h) + ln[1 + a2(k)].

These equations are easily solvable, and we find

φ = T

2π

∫ +∞

−∞
ln[(1 − e−β(k2−μ−h))(1 − e−β(k2−μ+h))]dk,

which is exactly the grand-canonical potential of two nonin-
teracting bosonic gases at different chemical potentials.

In the case of an extremely strong magnetic field, h → ∞,
we expect that the system will become fully polarized and
we should obtain the Yang-Yang thermodynamics [10] of the
repulsive one-component Bose gas. In this limit a2(k) ∼ 0 and
we obtain

ln a1(k) = −β(k2 − μ − h) + [K0 ∗ ln(1 + a1)](k),

and φ = − T
2π

∫ +∞
−∞ ln[1 + a1(k)]dk , which is the result ob-

tained in [10]. The same result is obtained in the low-
temperature limit (T � μ,h,c), when the magnetic field
is finite and fixed, which shows the ferromagnetic (fully
polarized) nature of the ground state.

As we have mentioned, the numerical implementation of
the infinite number of coupled NLIE obtained with the help
of TBA [12] is extremely difficult and encounters serious
problems in the regime of low magnetic field (h � T ,μ,c) or
low temperature limit (0 < T � h,μ,c). In contrast, Eqs. (3)

FIG. 1. (Color online) Population densities d1, d2 in the upper,
lower part of the figure, respectively, as functions of temperature T

for μ = 15, c = 1, and various effective magnetic fields h (in units
of d0, T0, μ0, and h0).

FIG. 2. (Color online) Susceptibility χ as a function of temper-
ature T for μ = 15, c = 1, and various effective magnetic fields h

(in units of χ0, T0, μ0, and h0). (Inset) Polarization as a function of
temperature for the same parameters. In the absence of the magnetic
field the polarization is zero.

are easily implementable and provide reliable results in a larger
domain of the parameters space. We have checked our results
with available numerical data obtained by using the much more
involved TBA equations [33] and found perfect agreement. In
our case, the regime in which the accuracy is decreasing, is
given by the low temperature and low magnetic-field limit
(T → 0,h → 0). This is a consequence of a first-order phase
transition and the coexistence of fully polarized phases at T

and h equal to 0, respectively. It can be seen clearly in Figs. 1
and 2 that, in the absence of the magnetic field, the population
levels, di = −( ∂φ

∂μ
+ (−1)i−1 ∂φ

∂h
)/2 , i = 1,2, are equal and,

consequently, the polarization defined as P = (d1 − d2)/d
with d = d1 + d2 is zero. In the presence of the magnetic field
the ground state is ferromagnetic; therefore, the polarization at
T = 0 is +1, for any positive field (−1 for negative field) and it
decreases at higher temperatures. The ferromagnetic nature of

FIG. 3. (Color online) Specific heat C as a function of temper-
ature T for μ = 15, c = 1, and various effective magnetic fields h.
(Inset) Entropy S = − ∂φ

∂T
as a function of temperature for the same

parameters. (All quantities in units of c0, T0, μ0, h0, and S0.)
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ANDREAS KLÜMPER AND OVIDIU I. PÂŢU PHYSICAL REVIEW A 84, 051604(R) (2011)

FIG. 4. (Color online) Compressibility κ as a function of temper-
ature T for μ = 15, c = 1, and various effective magnetic fields h (in
units of κ0, T0, μ0, and h0).

the ground state, which can also be seen in the T 1/2 behavior of
the specific heat C = T ∂S

∂T
at zero magnetic field (see Fig. 3),

is in accordance with a more general theorem of Eisenberg
and Lieb [34] on systems with spin-independent interactions

(see also [21]). Another consequence of the phase transition
is the divergence of the zero-field susceptibility, χ = − ∂2φ

∂h2 ,
a feature which can be seen in Fig. 2. The specific heat,
magnetic susceptibility, and compressibility, κ = − ∂2φ

∂μ2 (see
Fig. 4), present a nonmonotonic behavior with local maxima
shifting to higher temperatures as the magnetic field increases.

In conclusion, we have presented a method of obtaining a
finite number of NLIE characterizing the thermodynamics of
integrable multicomponent 1D Bose gases, which allows for
an efficient numerical treatment and has significant advantages
over the TBA result. Fermionic gases can be treated in a similar
fashion, but in this case the relevant lattice model for the n-
component system is the Uq(ŝl(n|1)) Perk-Schultz spin chain.
The derivation and a detailed analysis of Eqs. (3) and (4) will
be presented in a future publication.
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