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Quantum simulator for the Schwinger effect with atoms in bichromatic optical lattices
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Ultracold atoms in specifically designed optical lattices can be used to mimic the many-particle Hamiltonian
(whose effective parameters can be tuned in a wide range) describing electrons and positrons in an external
electric field. This analogy facilitates the experimental simulation of (so far unobserved) fundamental quantum
phenomena such as the Schwinger effect, i.e., spontaneous electron-positron pair creation out of the vacuum by
a strong electric field. Such an experiment would also test nonperturbative aspects of these lattice systems.
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Introduction. There are several fundamental predictions of
relativistic quantum field theory which have so far eluded a
direct experimental verification. One prominent example is
the Schwinger [1] effect (historically more accurate would
be the name Sauter-Schwinger effect—see Refs. [2] and [3]),
i.e., the spontaneous creation of electron-positron pairs out of
the vacuum by a strong electric field. For a constant electric
field E, the leading-order e+e− pair creation probability scales
as [1–3]

Pe+e− ∼ exp

{
−π

c3

h̄

M2

qE

}
= exp

{
−π

ES

E

}
, (1)

where ES = M2c3/(h̄q) is the critical field strength deter-
mined by the elementary charge q and the mass M of an
electron (or positron). The above expression (1) for Pe+e−

does not permit a Taylor expansion in q, i.e., it is inherently
nonperturbative and thus cannot be represented by any finite
set of Feynman diagrams.

Unfortunately, our theoretical understanding of this non-
perturbative quantum electrodynamics (QED) effect is still
very incomplete. Apart from the constant field case, only
very simple field configurations where the electric field either
depends on time E(t) or on one spatial coordinate such as
E(x) are fully solved [4]. For example, recently it has been
found that the occurrence of two different frequency scales
in a time-dependent field E(t) can induce drastic changes
in the (momentum-dependent) pair creation probability [5,6].
Moreover, the impact of interactions between the electron and
the positron of the created pair, as well as between them and
other electrons and positrons or photons, is not understood.
This ignorance is unsatisfactory not only from a theoretical
point of view but also in view of planned experiments which
envisage field strengths not too far below the critical field
strength ES and thus could be able to probe this effect
experimentally [7].

These considerations motivate the investigation of the
Schwinger effect via a different line of approach. By suitably
designing a laboratory system, we could reproduce the
quantum many-particle Hamiltonian describing electrons and
positrons in an electric field and thereby obtain a quantum
simulator for the Schwinger effect. This would facilitate the
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investigation of space-time-dependent electric fields such as
E(t,x) and should also provide some insight into the role of
interactions. It should be stressed here that our proposal goes
beyond the simulation of the (classical or first-quantized) Dirac
equation on the single-particle level—see, e.g., Ref. [8]—but
aims at the full quantum many-particle Hamiltonian. A correct
description of many-body effects such as particle-hole creation
(including the impact of interactions) requires creation and
annihilation operators in second quantization. There are some
proposals for the second-quantized Dirac Hamiltonian [9]
but they consider scenarios which are more involved than
the setup discussed here and aim at different models and
effects. Similarly, the recent observation of Klein tunneling
in graphene [10] deals with massless Dirac particles—but the
mass gap is crucial1 for the nonperturbative Schwinger effect
[cf. Eq. (1)].

The model. We start with the Dirac equation [11] describing
electrons and positrons propagating in an electromagnetic
vector potential Aμ which are described by the spinor wave
function � (h̄ = c = 1)

γ μ(i∂μ − qAμ)� − M� = 0. (2)

For simplicity, we consider 1 + 1 dimensions (μ = 0,1) where
the Dirac matrices γ μ satisfying {γ μ,γ ν} = 2ημν can be
represented by the Pauli matrices γ 0 = σ3 and γ 1 = −iσ1.
Since in one spatial dimension there is no magnetic field we
can choose the gauge qA0 = 	 and A1 = 0. As a result, the
Dirac equation simplifies to i∂t�(t,x) = (−iσ2∂x + Mσ3 +
	)�(t,x). In one spatial dimension, there is also no spin, hence
the wave function has only two components � = (�1,�2).
The Hamiltonian for the classical Dirac field then reads

H =
∫

dx �†(−iσ2∂x + Mσ3 + 	)�. (3)

As the next step, we discretize the space dimension and
introduce a regular grid (lattice) xn = na with a positive grid
(lattice) constant a and integers n ∈ Z. The discretization
of the wave function �n(t) := √

a�(t,xn), defined now at

1Even though one can create a mass gap in graphene via suitable
interactions breaking the effective time-reversal symmetry, most of
the other advantages of optical lattices (such as the ability to address
and measure single sites, to control the parameters, and to switch the
coupling on and off) do not apply to graphene in this way.
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the grid points xn, gives rise to a discretized derivative√
a ∂x�(t,xn) → [�n+1(t) − �n−1(t)]/(2a). Finally, replac-

ing the x integral by a sum, we obtain

H →
∑

n

�†
n

[
− iσ2

2a
(�n+1 − �n−1) + Mσ3�n + 	n�n

]
.

(4)

In order to obtain the quantum many-body Hamiltonian, we
quantize the discretized Dirac field operators via the fermionic
anticommutation relations {�̂α

n ,�̂
β
m} = 0 and {�̂α

n ,[�̂β
m]†} =

δnmδαβ . Using �̂n = (ân,b̂n), i.e., �̂α=1
n = ân and �̂α=2

n = b̂n,
the discretized many-particle Hamiltonian reads

Ĥ = 1

2a

∑
n

[b̂†n+1ân − b̂†nân+1 + H.c.]

+
∑

n

[(	n + M)â†
nân + (	n − M)b̂†nb̂n]. (5)

The first term describes jumping between the neighboring
grid points while the remaining two terms can be treated
as a combination of external potentials. Due to the specific
form of the jumping, the lattice splits into two disconnected
sublattices: (A) containing â2n and b̂2n+1 and (B) containing
â2n+1 and b̂2n with integers n. Since the two sublattices
behave basically in the same way, it is sufficient to consider
only one of them, say, A. Identifying ĉ2n = (−1)nâ2n and
ĉ2n+1 = (−1)n+1b̂2n+1, we obtain the form of the well-known
Fermi-Hubbard Hamiltonian for a one-dimensional lattice

Ĥ = −J
∑

n

[ĉ†n+1ĉn + ĉ†nĉn+1] +
∑

n

Vnĉ
†
nĉn, (6)

with hopping rate J = 1/(2a) and on-site potentials V2n =
	2n + M and V2n+1 = 	2n+1 − M . This Hamiltonian will
be the starting point for the design of the optical lattice
analogy. But before we proceed, we note that the free part
Ĥ0 of this Hamiltonian, i.e., with 	n = 0, can be explicitly
diagonalized. Performing a discrete Fourier transform on the
lattice âp := ∑

n e−2inapâ2n and b̂p := ∑
n e−i(2n+1)apb̂2n+1,

for p ∈ (−π/2a,π/2a) and introducing operators Âp and B̂p,
which diagonalize Ĥ0, we obtain

Ĥ0 =
∫

dp Ep[Â†
pÂp − B̂†

pB̂p] (7)

with the energy spectrum [where J = 1/(2a)]

Ep =
√

M2 + J 2 cos2(ap). (8)

It approximates the relativistic energy-momentum relation at
the edge of the Brillouin zone, for p ≈ ±π/(2a). The spectrum
of Ĥ0 consists thus of two symmetric intervals separated by
a gap of 2M . In order to obtain a positive Hamiltonian, we
perform the usual redefinition B̂

†
p ↔ B̂p which corresponds

to changing the vacuum state by filling all B̂p states by a
fermion. This is completely analogous to the Dirac sea picture
in quantum electrodynamics. In terms of this analogy, Â

†
p

or Âp create or annihilate an electron, whereas B̂p or B̂
†
p

create or annihilate a hole in the Dirac sea—which is then a
positron. An additional potential 	n, if sufficiently localized
in space, will not modify this spectrum but may introduce

FIG. 1. (Color online) Sketch of the dispersion relation (in units
of J and 1/a) for W = 0 (dashed blue curve) and small W > 0
(solid and dotted red curves).

isolated eigenvalues with eigenstates corresponding to bound
states localized in space.

Experimental setup. The Fermi-Hubbard Hamiltonian (6)
can be realized with ultracold fermionic atoms in a one-
dimensional optical lattice with the potential

W (x) = W0 sin2(2kx) + W sin2(kx), (9)

where k = π/(2a), by taking W0 � W and adding a suitable
deformation 	(x)—see Fig. 2 below. Similar settings have
already been obtained experimentally [12].

Although discretization of W (x) at xn = na gives directly
Vn of (6), the small perturbation W doubles the original
periodicity of the potential W (x) and thus some mathemat-
ical caution in treating W perturbatively is required. By
a version of WKB approximation for periodic potentials
[13], we rederive the Hubbard model and the energy band
structure from first principles, using two sets of Wannier
functions localized in the “upper” and the “lower” minima
of the potential W (x), respectively. An interesting universal
phenomenon occurs—see Fig. 1. For W = 0, the lowest
band is described, in the nearest-neighbor approximation used
here, by Ep = −J cos(ap) (the dashed blue curve in Fig. 1).
Switching on a small W > 0, which immediately doubles the
period of the potential, forces the energy dispersion relation
to halve its period (the Brillouin zone shrinks by a factor of
2) while keeping a similar functional dependence on p when
W 	 W0. It leads to splitting of this band into two subbands
(red solid and dotted curves in Fig. 1) which are approximately
described by (8). Thus the nearest-neighbor approximation
reproduces relation (8) for J = 1/(2a) and holds uniformly
for all values of the quasimomentum p as long as W and
J are small [14]. In the vicinity of the minimum of the upper
band and the maximum of the lower band, separated by a gap
2M ≈ W , it reproduces the relativistic energy-momentum
relation. The corresponding Hamiltonian has the same form as
the one for the discretized Dirac equation (7), thus completing
the analogy.

Using again the WKB approximation, we find that the
hopping rate J ≈ 4

√
W0ER exp{−π

√
W0/ER/4}/π is mainly

determined by the potential strength W0, the laser wave number
k, and the mass matom of the atoms (not to be confused with
the effective mass M of the Dirac particles to be simulated),
where ER = k2/(2matom) = π2/(8matoma2) is the recoil en-
ergy. The correction W generates the mass gap M ≈ W/2.
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The analog of the e+e− pair creation can be simulated if the
involved scales obey the hierarchy

ωosc � J � M � T . (10)

First, the local oscillator frequency ωosc in the potential minima
must be larger than J to ensure the applicability of the
single-band Fermi-Hubbard Hamiltonian (6). Second, J � M

is required for the continuum limit, i.e., that the discretized
expression (4) provides a good approximation. Similarly, the
change 	n = 	n+1 − 	n of the analog of the electrostatic
potential 	n from one site to the next should be much smaller
than M . Over many sites, however, this change can well exceed
the mass gap 2M , which is basically one of the conditions for
the Schwinger effect to occur. Finally, the effective temperature
T should be well below the mass gap 2M in order to avoid
thermal excitations. For example, 6Li atoms in an optical
lattice made of light with a wavelength of 500 nm would
have a recoil energy ER of ∼7 μK. If we choose the potential
strength as W0 = 10 μK, the hopping rate J would be ∼5 μK,
which is still sufficiently below the local oscillator frequency
ωosc of ∼34 μK. With W = 1 μK we would get a mass
M of 500 nK and the effective temperature should be below
that value. While the generation of such optical lattices with
these parameters is experimentally state of the art (see, e.g.,
Ref. [12]), achieving the required low temperatures is probably
the major experimental challenge.

Bose-Fermi mapping. Since it is typically easier to cool
down bosonic than fermionic atoms, let us discuss an alterna-
tive realization based on bosons in an optical lattice. They are
described by the Bose-Hubbard Hamiltonian which has the
same form as (6) after replacing the fermionic ĉn by bosonic
d̂n operators, but with an additional on-site repulsion term
U (d̂†

nd̂n − 1)d̂†
nd̂n. For large U � J , we obtain the bosonic

analog of “Pauli blocking,” i.e., at most one particle can
occupy each site. Neglecting all states with double or higher
occupancy, we can map these bosons exactly onto fermions in
one spatial dimension via

ĉn = d̂n

∏
m<n

exp(−iπd̂†
md̂m). (11)

As a result, we obtain the same physics as described by the
Fermi-Hubbard Hamiltonian (6).

Simulation procedure. The above established analogy be-
tween the (discretized) quantum many-particle Hamiltonian
of electrons and positrons in an electric field and the (Bose
or Fermi) Hubbard model describing ultracold atoms in
optical lattices facilitates laboratory simulations of relativistic
phenomena of strong-field QED. Probably the most prominent
of them is the spontaneous pair creation in strong electric
fields known also as the Schwinger effect [1–3] which has
to date not been confirmed experimentally, to the best of our
knowledge. The original Schwinger effect [1] deals with a
constant electric field E and would correspond to a static
tilted optical lattice with 	(x) = Ex. However, in view of the
planned experiments [7], an electric field which is localized in
space and time is more realistic. In order to clearly distinguish
nonperturbative spontaneous pair creation (via tunneling) from
other perturbative effects such as dynamical pair creation, the
electric field should be slowly varying [4,15].

x [units of a]

FIG. 2. (Color online) Sketch (not to scale) of the temporal stages
of the simulation (from top to bottom). Plotted are the optical lattice
potential W (x) (solid red curves) and the effective electric potential
	(x) (dashed blue curves). The blue solid (empty) dots represent
particles (holes).

As a result, we envisage an experimental realization
sketched in Fig. 2. In order to prepare the initial state, we
start with W � W0, where the two bands are separated by a
large gap. The Dirac sea then corresponds to the state where
all lower minima are filled with atoms while all upper minima
are empty (half filling of the lattice—see the first picture in
Fig. 2). If we then decrease W adiabatically until W 	 W0

and thus J � M , the atoms become delocalized—but still
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the lower band is filled while the upper band remains empty
(the second picture in Fig. 2). As the next stage, we slowly
switch on an additional potential 	 to facilitate tunneling
from the lower band to the upper band—the analog of the
Schwinger effect (the third picture in Fig. 2). Finally, after
slowly switching off the potential 	 again (the fourth picture
in Fig. 2), we increase W adiabatically until W � W0.
By this energetic separation, a particle-hole pair created via
tunneling is transformed to an atom in one of the upper
minima and, consequently, a missing atom (i.e., hole) in one
of the lower minima (the fifth picture in Fig. 2). This could be
detected by site-resolved imaging [16], for example.

Note that the creation of a particle-hole pair separated by 2n

lattice sites requires the simultaneous tunneling of n particles
(at half filling) since two particles cannot occupy the same
site. Describing this process via simple perturbation theory in
terms of the hopping Hamiltonian J ĉ

†
m+1ĉm (i.e., in powers of

J ), the probability Pn for n-particle tunneling scales with the
nth power of the single-particle tunneling probability. In order
to overcome the band gap W , the minimum number 2n of
lattice sites is inversely proportional to the lattice tilt 	 =
	n+1 − 	n, i.e., the analog of the electric field E. Thus we
observe the same exponential scaling ln(Pn) ∼ −W/	 as

in Eq. (1) showing that this process is nonperturbative in 	.
Turning this argument around, the analogy to QED can help
us to understand the nonperturbative properties of Hubbard
lattice Hamiltonians. This again emphasizes the many-particle
character of our proposal which goes beyond the simulation of
the classical Dirac equation. Apart from investigating the pair
creation probability for space-time-dependent electric fields
E(t,x), this quantum simulator for the Schwinger effect could
provide some insight into the impact of interactions. In the case
of dipolar interactions between the atoms, we would get the
coupling Hamiltonian Dnmĉ

†
nĉ

†
mĉnĉm with Dnm ∝ |n − m|−3.

For example, the interaction energy Dnm due to the large
magnetic moments of 52Cr atoms would be below one nK.
Larger interaction energies up to a few μK can be obtained for
6Li atoms by external electric fields of order 108 V/m which
induce electric dipole moments [17]. By aligning the atomic
dipole moments parallel or perpendicular to the lattice, we
may even switch between attractive Dnm < 0 and repulsive
Dnm > 0 interactions.
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