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Time evolution of entangled biatomic states in a cavity
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We study the time evolution of entangled states of a pair of identical atoms, considered in the harmonic
approximation, coupled to an environment represented by an infinite set of free oscillators, with the whole system
confined within a spherical cavity of radius R. Taking the center-of-mass and the relative-position coordinates, and
using the dressed-state approach, we present the time evolution of some quantities measuring the entanglement
for both limits of a very large and a small cavity; the chosen examples are simple and illustrate these very distinct
behaviors.
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Introduction. Interacting or noninteracting parts of a quan-
tum system can share entangled states that hold quantum
correlations [1,2]. A recent review covering all relevant aspects
of the subject is in Ref. [3]. Entanglement is a purely quantum
phenomenon due to the attribution of physical meaning
to superposed states, a concept with no correspondence in
classical physics. Entanglement means that individual parts of
a quantum system are not independent of each other, even if
they do not interact, and their quantum properties are described
by their common wave function. In particular, entanglement
properties of bipartite systems have been largely investigated
in recent years. Within this context we consider here a simple
biatomic system in which each atom is modeled by a harmonic
oscillator. In this case, studies have been performed for a
noninteracting bipartite system, with different approaches, for
instance in Refs. [4,5] and when an interaction between the
oscillators is taken into account [6–14].

In this Brief Report we study the time evolution of a
superposition of two biatomic states of identical atoms which
interact indirectly via the coupling with the harmonic modes
of a field force representing the environment. We consider the
two atoms in the harmonic approximation and assume that the
whole system resides inside a spherical cavity of radius R. Our
basic objects will be dressed states, corresponding to the atoms
dressed by the field. The biatomic system will be consistently
described by the pair consisting of the “center-of-mass” and the
“relative-position” oscillators, a procedure already employed
in the literature, for instance in Refs. [6,7]. In our case, these
oscillators will be appropriately dressed by the field. We will
consider the entangled state formed by the superposition of
two kinds of states: one state in which the center-of-mass
oscillator is in its first excited level and the relative-position
oscillator is in the ground state; this state is superposed with
another state in which the oscillators have their roles reversed.
We will be concerned by the system at zero temperature, that
is, all the field modes are in their ground states. Actually, it
has been shown in [15,16] that thermal effects on dressed
oscillators are important only for high temperatures, they
are negligible for room temperatures. This means that we
can make the approximation of taking the time evolution of
dressed states as established for zero temperature [4]. Thus, our

results apply in fact for temperatures up to the order of room
temperatures.

The model. We start from a slightly modified version of the
Hamiltonian used in Refs. [6,7], describing two atoms A and B

in the harmonic approximation, coupled to an environment, the
whole system being contained in a perfectly reflecting cavity
of radius R [17],

H = 1

2

[
p2

A + ω2
Aq2

A + p2
B + ω2

Bq2
B +

N∑
k=1

(
p2

k + ω2
kq

2
k

)]

−
N∑

k=1

√
2(ηAqA + ηBqB)ωkqk, (1)

where the limit N → ∞ will be understood. Since the atoms
are identical, we write ωA = ωB ≡ ω0 and ηA = ηB ≡ η =
2
√

g�ω/π , where g is a constant with dimension of frequency
measuring the strength of the coupling and �ω = πc/R is the
interval between two neighboring frequencies of the field [18].

For identical atoms we define new coordinates q+ (center
of mass) and q− (relative position), such that

q+ = 1√
2

(qA + qB), q− = 1√
2

(qA − qB), (2)

and corresponding formulas for momenta. Then in terms of
p±, q±, the Hamiltonian is written as H = H− + H+, where
H− = 1

2 [p2
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2
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+ +
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2
k − ηq+ωkqk

)]
. (3)

We see that the center-of-mass oscillator q+ couples to the
field while the relative-position one q− oscillates freely. The
Hamiltonian H+ describes a single oscillator linearly coupled
to the field. Therefore, for the system (q+ ⊕ field), composed
by the center-of-mass oscillator coupled to the field, we can
define the renormalized frequency ω̄ dressed coordinates and
dressed states. Dressed coordinates and states are defined by
transformations of the normal-mode coordinates and of the
eigenstates of the diagonalized Hamiltonian, which depend
on the normal-mode frequencies and on the renormalized
oscillator frequency. An important aspect is that excited
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dressed states decay with time while normal modes are
stationary. Details of this formalism are presented in Refs.
[4,16,18,19] and references therein.

Time evolution of entangled biatomic states. We shall de-
scribe the pair of atoms by the pair center-of-mass and relative-
position oscillators. Consider the product states |�(+−)

10 〉 ≡
|�(+)

1 〉 ⊗ |�(−)
0 〉 and |�(+−)

01 〉 ≡ |�(+)
0 〉 ⊗ |�(−)

1 〉 in which the
dressed center-of-mass oscillator is in the first excited level,
while the relative-position oscillator is in its ground state, and
vice versa, respectively. The dressed first-excited state of the
center-of-mass oscillator evolves in time according to [4,18]

|�(+)
1 (t)〉 =

∑
ν

f+ν(t)
∣∣�ν

1 (0)
〉
, (4)

with
∑

ν |f+ν(t)|2 = 1, where the label ν runs over the
center-of-mass oscillator (+) and the field modes ({k}). The
quantity f+ν(t) thus represents the probability amplitude that
the excitation is at the νth dressed oscillator at time t . On
the other hand, the first excited state of the relative-position
oscillator is stationary. This implies that the time evolution of
the state |�(+−)

10 〉 is governed by Eq. (4), while the state |�(+−)
01 〉

remains stationary.
We now consider at t = 0 the family of states

|�AB(0)〉 =
√

ξ |�(+−)
10 (0)〉 +

√
1 − ξ eiφ|�(+−)

01 (0)〉 (5)

which belongs to the Hilbert space H+,{k} ⊗ H−, representing
states of the system of the two atoms coupled to the environ-
mental field. At the instant t , the density matrix corresponding
to Eq. (5) is written as

�(t) = |�AB(t)〉〈�AB(t)| = ξ |�(+−)
10 (t)〉〈�(+−)

10 (t)|
+ (1 − ξ )|�(+−)

01 〉〈�(+−)
01 |

+
√

ξ (1 − ξ ) eiφ|�(+−)
01 〉〈�(+−)

10 (t)|
+

√
ξ (1 − ξ ) e−iφ|�(+−)

10 (t)〉〈�(+−)
01 |. (6)

We adopt a more explicit notation and write |�(+−)
10 (t)〉 ≡

|1+(t),0−; 0,0, . . .〉 and |�(+−)
01 〉 ≡ |0+,1−; 0,0, . . .〉. To ana-

lyze how the two-atom state evolves in time, we consider
the reduced density matrix obtained by taking the trace over
the field modes ρ(t) = ∑

ki
〈k1,k2, . . . |�(t)|k1,k2, . . .〉. Using

Eq. (4),

|1+(t),0−; 0,0, . . .〉 = f++(t)|1+(0),0−; 0,0, . . .〉
+

∑
i

f+i(t)|0+,0−; 0, . . . ,0,1i ,0, . . .〉,

and we obtain

ρ(t) =

⎛
⎜⎜⎜⎝

a(t) 0 0 0

0 b(t) d(t) 0

0 d∗(t) c(t) 0

0 0 0 0

⎞
⎟⎟⎟⎠ , (7)

where

a(t) ≡ (ρ)0+0−
0+0− = ξ [1 − |f++(t)|2], (8)

b(t) ≡ (ρ)0+1−
0+1− = 1 − ξ, (9)

c(t) ≡ (ρ)1+0−
1+0− = ξ |f++(t)|2, (10)

d(t) ≡ (ρ)1+0−
0+1− =

√
ξ (1 − ξ )eiφf ∗

++(t), (11)

d∗(t) ≡ (ρ)0+1−
1+0− =

√
ξ (1 − ξ )e−iφf++(t). (12)

As it should, Trρ(t) = a(t) + b(t) + c(t) = 1. The degree of
impurity of the state (7) is given by D = 1 − Trρ2(t); then it
follows that

D(ξ ; t) = 2ξ (1 − |f++(t)|2)(1 − ξ + ξ |f++(t)|2). (13)

To find the time dependence of the above quantities,
we need to evaluate the function f++(t) which governs the
behavior of the system. There are two significantly different
situations, depending on the size of the cavity. We shall analyze
the limit of a very large cavity (R → ∞) and the case of a small
cavity. In any case, independently of emission frequency, we
must have 0 < |f++(t)|2 � 1.

Large cavity: for a very large cavity, we have [20]

f++(t) = e−gt

[
cos κt − g

κ
sin κt

]
+ iG(t ; ω̄,g), (14)

where κ2 = ω̄2 − g2 and the function G is given by

G(t ; ω̄,g) = −4g

π

∫ ∞

0
dy

y2 sin yt

(y2 − ω̄2)2 + 4g2y2
. (15)

We will consider κ2 > 0, which includes the weak coupling
regime g2 � ω̄2.

Small cavity: for a finite cavity, the spectrum of eigenfre-
quencies is discrete, and the continuum language used in the
case of large cavity is not valid. However, for a very small
cavity, with a radius R much smaller than the coherence
length πc/g (R � πc/g), we can obtain f++(t) to a good
approximation as [20]

f++(t) ≈
(

1 + 2

3
πδ

)−1 {
exp

[
−iω̄

(
1 − πδ

2

)
t

]

+
∞∑

k=1

4δ

πk2
exp

[
−i

g

δ

(
k + 2δ

πk

)
t

]}
, (16)

where δ = gR/πc � 1 is a dimensionless parameter, charac-
terizing the smallness of the cavity. These two extreme cases
are illustrated in Fig. 1, where we plot the degree of impurity
as a function of the time.

Entanglement. Let us now examine the degree of entangle-
ment of the states described by the density matrix (7) and how it
evolves in time. Let us initially calculate the concurrence [21]
associated with the density matrix ρ. The “spin-flipped” state

is ρ̃ = (σ2 ⊗ σ2)ρ∗(σ2 ⊗ σ2), where σ2 =( 0 −i

i 0
) is the Pauli

matrix. Taking the basis {|0+,0−〉,|0+,1−〉,|1+,0−〉,|1+,1−〉}
we find

ρρ̃ =

⎛
⎜⎜⎜⎝

0 0 0 0

0 2b(t)c(t) 2b(t)d(t) 0

0 2c(t)d∗(t) 2b(t)c(t) 0

0 0 0 0

⎞
⎟⎟⎟⎠ , (17)

where we have used that b(t)c(t) = |d(t)|2. The concurrence
of a mixed bipartite state ρ is given by [21]

Cρ = max{0,λ1 − λ2 − λ3 − λ4}, (18)
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FIG. 1. Degree of impurity as function of time [Eq. (13)] taking
ω̄ = 1.5 and g = 1.0 (in arbitrary units) for states with ξ = 0.5: for
a very large cavity (dashed line) and for a small cavity with δ = 0.1
(full line).

where the λi are the square roots of the eigenvalues of the
non-Hermitian matrix ρρ̃, written in decreasing order. In our
case, there is only one nonvanishing eigenvalue of ρρ̃, given
by λ(t) = 4b(t)c(t). We then find the concurrence as

Cρ(t) = 2
√

b(t)c(t) = 2
√

ξ (1 − ξ ) |f++(t)|. (19)

Another measure of entanglement is the negativity [22,23],
which can be defined by

Nρ = ‖ρT−‖1 − 1, (20)

where ρT− is the partial transpose of the bipartite mixed state
ρ and ‖ · ‖1 denotes the trace norm. The trace norm of an
operator O is defined by ‖O‖1 = Tr

√
OO† which reduces,

for Hermitian operators, to the sum of the absolute values
of its eigenvalues. It can be easily shown that, for Hermitian
operators,

‖O‖1 =
∑

j

|λj | =
∑
λj >0

λj −
∑
λj <0

λj = 1 + 2
∑
λj <0

|λj |,

so that the negativity is given by the absolute value of the sum
of the negative eigenvalues of ρT− , that is,

Nρ = 2

∣∣∣∣∣
∑
λj <0

λj

∣∣∣∣∣. (21)

The partial transpose of ρ, ρT− is given by

ρT− (t) =

⎛
⎜⎜⎜⎝

a(t) 0 0 d(t)

0 b(t) 0 0

0 0 c(t) 0

d∗(t) 0 0 0

⎞
⎟⎟⎟⎠ , (22)

whose eigenvalues are λ1(t) = b(t), λ2(t) = c(t), λ3(t) =
[a(t) +

√
a2(t) + 4|d(t)|2]/2 and λ4(t) = [a(t) −√

a2(t) + 4|d(t)|2]/2. We thus obtain the negativity as

Nρ(t) = 2|λ4(t)| =
√

a2(t) + 4|d(t)|2 − a(t)

=
√

ξ 2 + (4ξ − 6ξ 2)|f++(t)|2 + ξ 2|f++(t)|4
− ξ + ξ |f++(t)|2. (23)

FIG. 2. Concurrence (full line) and negativity (dashed line) as
functions of time for states with ξ = 0.5, ω̄ = 1.5, and g = 1.0 (in
arbitrary units) in a very large cavity.

Notice that, for pure bipartite states, the concurrence and
the negativity, as defined above, are equal to each other [23].
However, for mixed bipartite states one has Nρ � Cρ [24].
These features are illustrated in Fig. 2 for a very large cavity
and in Fig. 3 for a small one, where we plot the concurrence
and the negativity for some of the states (7), as a function of
time.

Conclusions. Our study of how an entangled non-Gaussian
biatomic state contained in a cavity evolves in time leads to,
as an overall conclusion, that the behavior of the system is
very contrasting in the cases of a very large cavity (free space)
or of a small cavity. This is essentially due to the behavior
of the quantity |f++(t)|2, which governs the time evolution
of the system in each case. This quantity (the probability that
the center-of-mass oscillator remain excited at the first level at
time t), goes monotonically to zero as t → ∞ for a very large
cavity, while it oscillates indefinitely with a strictly positive
minimum for a small cavity. These rather distinct behaviors
are exhibited by the degree of impurity as illustrated in Fig. 1.

With regard to entanglement, we have examined the
concurrence and the negativity as measures of entanglement;
these are plotted in Figs. 2 and 3 for a very large and a small
cavity, respectively. In a very large cavity, these quantities
decrease monotonically to zero for large times and do not

FIG. 3. Same as in Fig. 2, but for a small cavity with δ = 0.1.
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show any sudden death. In contrast, for a small cavity both
present an oscillatory behavior as time evolves and never
vanish, having finite values for any arbitrarily long elapsed
time. This can be related to former results in another context,
obtained using dressed states, for decay and stability of excited
atoms in very large or small cavities, for both zero or finite
temperature [16,19,25,26].

Nevertheless, it is worthy mentioning that, in some cases,
a finite asymptotic entanglement persists for long times in
free space, that is in very large cavities, as pointed out in
Refs. [8,10,12–14]. However, in most cases, this phenomenon
exists when the environment is a thermal bath and for initial
states that are two-mode squeezed (Gaussian) states, with a
high degree of squeezing. These situations are different from
the case of the zero-temperature bath and non-Gaussian initial

states we have considered in this note, for which no asymptotic
entanglement for large cavities exists.

In our case, for large cavities the entanglement vanishes
asymptotically. On the other hand, we have a permanent,
oscillating entanglement for small cavities at all times. In the
case of a bath as we have adopted here, the existence of the
entanglement for all times in a sufficiently small cavity, in
contrast to the fast decay for long times in the very large cavity
(free space), favors small cavities as candidates to engender
phenomena that require entanglement as a resource. The
discussion presented here may be extended to other systems
relevant to quantum computation.
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