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1 D states of the beryllium atom: Quantum mechanical nonrelativistic calculations employing
explicitly correlated Gaussian functions
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Very accurate finite-nuclear-mass variational nonrelativistic calculations are performed for the lowest five
1D states (1s2 2p2, 1s2 2s1 3d1, 1s2 2s1 4d1, 1s2 2s1 5d1, and 1s2 2s1 6d1) of the beryllium atom (9Be). The
wave functions of the states are expanded in terms of all-electron explicitly correlated Gaussian functions. The
exponential parameters of the Gaussians are optimized using the variational method with the aid of the analytical
energy gradient determined with respect to those parameters. The calculations exemplify the level of accuracy
that is now possible with Gaussians in describing bound states of a four-electron system where some of the
electrons are excited into higher angular states.
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I. INTRODUCTION

We recently investigated the Rydberg series of 2D states of
the lithium atom in very accurate quantum-mechanical calcula-
tions carried out with explicitly correlated Gaussian functions
[1,2]. A total of nine states were computed. For the upper states
the results obtained in the calculation enabled refinement of the
experimentally determined energies of those states. Rydberg
D states have also been measured with high accuracy for the
beryllium atom, and the corresponding data are gathered in the
NIST atomic spectra database [3]. The database lists eleven 1D

and ten 3D states of this system. In the lithium calculations we
noticed that the difference between the energies of the 2D states
calculated at the nonrelativistic level of theory with the finite-
nuclear-mass approach and the experimental energies become
almost constant at higher quantum numbers, indicating that the
relativistic and quantum electrodynamic (QED) corrections for
the states corresponding to those numbers are virtually identi-
cal. The calculations also showed that the difference converges
to the energy difference between the ground-state energies
of Li and Li+ as it should. This is because by exciting the
valence electron to increasingly higher 2D states we essentially
remove it from the atom and form the Li++e− system. One aim
of the present calculations is to test if a similar convergence
occurs for a four-electron atom where the relativistic and QED
corrections are considerably larger in magnitude.

The variational approach we developed that employs the
explicitly correlated Gaussians for describing excited higher
angular momentum states of small atoms is currently the only
method capable of delivering energies of these types of states
for atomic systems with more than three electrons with an
absolute accuracy of 10−7–10−8 hartree. An important feature
of the method that enables achieving the high accuracy is the
use of the analytic gradient of the energy in the variational
optimizations of the exponential parameters of the Gaussians.
In this work we test what level of energy convergence can
be achieved with the method for the five lowest 1D Rydberg
states of the beryllium atom. Can the sub-0.01-cm−1 accuracy
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achieved for the D states of the 7Li atom [1] be also achieved
for 9Be? The states considered in this work correspond to
the following electronic configurations: 1s2 2p2, 1s2 2s1 3d1,
1s2 2s1 4d1, 1s2 2s1 5d1, and 1s2 2s1 6d1. These states are
calculated with high accuracy.

The gradient-aided optimization and related algorithms
were described in our previous works [2,4,5]. These algorithms
were derived using a nonrelativistic Hamiltonian that explicitly
depends on the mass of the nucleus. This Hamiltonian,
called the internal Hamiltonian Ĥint is obtained by rigorously
separating the kinetic energy of the center-of-mass motion
from the laboratory-frame Hamiltonian. It has the following
form in atomic units:
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where n is the number of electrons, ri is the distance
between the ith electron and the nucleus, m0 is the nucleus
mass (16424.2037me for 9Be, where me = 1 is the electron
mass), q0 is its charge, qi are electron charges, and μi =
m0mi/ (m0 + mi) are electron reduced masses (mi = me,
i = 1, . . . ,n). Prime indicates the matrix or vector transpose.

Because Ĥint is explicitly dependent on the mass of the
nucleus, it allows the direct calculation of energy levels of a
particular isotope without resorting to accounting for the finite
mass of the nucleus using the perturbation approach. It also
allows infinite-nuclear-mass (INM) calculations by setting the
mass of the nucleus in Eq. (1) to infinity. Since the results of
such calculations can be directly compared with conventional
calculations performed with an infinite nuclear mass, we have
included the INM results in this work.

II. BASIS SET AND ITS OPTIMIZATION

While the wave functions of higher 1D states of Be are
described as corresponding to the 1s2 2s1 nd1 configurations,
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the lowest state corresponds to the 1s2 2p2 configurations. This
indicates that in all 1D states the two types of configurations
mix to some extent. This mixing reflecting the different ways
the angular momenta of single electrons are added to form a 1D

state has to be properly represented by the basis set used in the
calculations. Because there are five degenerate states for each
1D energy level (the states correspond to five different values
of the ML quantum number), one needs to perform calculations
for only one of them. In this work we have calculated the
ML = 0 states. An appropriate explicitly correlated Gaussian
basis set for such states consists of the following functions [2]:

φk = (
xik xjk

+ yjk
yik − 2zik zjk

)
exp[−r′ (Ak ⊗ I3) r], (2)

where electron labels ik and jk are either equal or not equal
to each other and can range from 1 to n. Ak in Eq. (2) is an
n × n symmetric matrix, ⊗ is the Kronecker product, I3 is
a 3 × 3 identity matrix, and r is a 3n vector of the electron
coordinates. Gaussians (2) have to be square integrable which
implies that the Ak matrix has to be positive definite. To
make it happen we use the following Cholesky factored
form of Ak: Ak = LkL

′
k , where Lk is a lower triangular

matrix with matrix elements ranging from ∞ to −∞. Ak

in such a form is automatically positive definite and the
Gaussian is square integrable. The advantage of using Ak as
LkL

′
k in the variational minimization of the energy is that

this minimization can be carried out with respect to the Lk

parameters without any constraints regarding their values.
In the approach employed in the present calculations we

use the spin-free formalism to implement the correct permu-
tational symmetry of the wave function. In this formalism, an
appropriate symmetry projector is applied to the spatial parts of
the wave function to impose the desired symmetry properties.
The symmetry projector can be constructed using the standard
procedure involving Young operators as described, for exam-
ple, in Ref. [6]. For 1D states of beryllium, the Young operator
can be chosen as Ŷ = (1 − P̂13)(1 − P̂24)(1 + P̂12)(1 + P̂34),
where P̂ij denotes the permutation of the spatial coordinates
of the ith and j th electrons. Since the internal Hamiltonian (1)
commutes with all electron permutations, in the calculation
of the overlap and Hamiltonian matrix elements, Ŷ may be
applied to the ket basis functions only (as Ŷ †Ŷ ).

The variational optimization of the basis set for each of
the five states considered in this work has been performed
separately. For each set of basis functions, the Lk parameters

and the ik and jk indices were optimized. As mentioned, the
analytical gradient was employed in the minimization of the
energy with respect to the Lk parameters. A more detailed
description of the procedure can be found in our previous
works [1,2,5]. The basis sets for the considered states were
only optimized for 9Be. In the case of the infinite nuclear mass
(∞Be), we only reoptimized the linear expansion coefficients
in the basis functions, because the change in the wave function
due to setting m0 to infinity is relatively small.

III. RESULTS

The most time-consuming step of the calculations was the
generation of the Gaussian basis sets for the considered states.
The basis set for each state was grown from a small number
of randomly chosen number of functions to the size of 4200
functions. The growing process involved adding subsets of
100 functions to the basis and optimizing them one by one
with the gradient-aided optimization procedure. At this stage,
the ik and jk indices involved in the preexponential factor of
each Gaussian were also optimized. After the addition of each
subset was completed, the whole basis set was optimized by
cycling over all functions and optimizing them again one by
one. The optimization of basis functions may yield linearly
dependencies between basis functions in the basis set. Linear
dependencies between basis functions are undesirable because
they may cause inaccuracies in the computed energies or even a
complete failure of the optimization procedure. In the approach
we use, the linear dependencies are eliminated by checking
whether each function after its parameters are reoptimized
overlaps too much with any other function in the basis set.
If this happens the parameters of the function are reset to
their values before the reoptimization. We noticed that linear
dependencies appear more often for smaller basis sets, but tend
to become less frequent as the size of the basis set increases.

In Table I we show the convergence of the energies of
the five considered states with the number of functions in
the basis set. With the results obtained with 4200 Gaussians
we also show estimates by how much the particular energy
differs from the estimated exact value. As one notices,
the convergence is not quite uniform. It indicates that it is
somewhat more difficult to converge the lowest 1s22p2 state
than the next 1s2 2s1 3d1 state. For higher states, as expected,
the convergence becomes slower as the level of excitation

TABLE I. Convergence of the total variational nonrelativistic finite-nuclear-mass energies (in hartrees) of the 1s2 2p2, 1s2 2s1 3d1,
1s2 2s1 4d1, 1s2 2s1 5d1, and 1s2 2s1 6d1 1D states of 9Be with the number of basis functions. For the largest basis set of 4200 functions, we also
show ∞Be energies. The values in parentheses indicate the estimated difference between our variational upper bounds and the exact energies.

Basis 1s2 2p2 1s2 2s1 3d1 1s2 2s1 4d1 1s2 2s1 5d1 1s2 2s1 6d1

9Be 2100 −14.40734958 −14.37292338 −14.35308024 −14.34295507 −14.33726185
2400 −14.40735018 −14.37292393 −14.35308080 −14.34295582 −14.33726318
2700 −14.40735055 −14.37292425 −14.35308114 −14.34295629 −14.33726404
3000 −14.40735072 −14.37292439 −14.35308137 −14.34295650 −14.33726452
3300 −14.40735086 −14.37292451 −14.35308148 −14.34295670 −14.33726489
3600 −14.40735097 −14.37292461 −14.35308157 −14.34295685 −14.33726516
3900 −14.40735105 −14.37292468 −14.35308165 −14.34295696 −14.33726536
4200 −14.40735112(40) −14.37292473(30) −14.35308171(50) −14.34295705(60) −14.33726551(70)

∞Be 4200 −14.40823703(40) −14.37382438(30) −14.35398265(50) −14.34385775(60) −14.33816595(70)
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TABLE II. Convergence of the energies (in cm−1) of the 1s2 2p2, 1s2 2s1 3d1, 1s2 2s1 4d1, 1s2 2s1 5d1, and 1s2 2s1 6d1 1D states of Be
atom determined with respect to the ground 1 S (1s2 2s2) state.a The calculated energies are compared with the experimental energies. For ∞Be
only the energies obtained with the largest basis set are shown.

Basis 1s2 2p2 1s2 2s1 3d1 1s2 2s1 4d1 1s2 2s1 5d1 1s2 2s1 6d1 1s2 2s1 ∞d1 b

9Be 2100 56862.79 64418.46 68773.53 70995.75 72245.27
2400 56862.66 64418.34 68773.41 70995.58 72244.97
2700 56862.58 64418.27 68773.33 70995.48 72244.79
3000 56862.54 64418.24 68773.28 70995.43 72244.68
3300 56862.51 64418.22 68773.26 70995.39 72244.60
3600 56862.48 64418.20 68773.24 70995.36 72244.54
3900 56862.46 64418.18 68773.22 70995.33 72244.50
4200 56862.45(5) 64418.17(5) 68773.21(5) 70995.31(10) 72244.46(15)

75185.87
∞Be 4200 56668.01(5) 64220.72(5) 68575.47(5) 70797.63(10) 72046.84(15)

75190.54

Experiment [3] 56882.43 64428.31 68780.86 71002.34 72251.27 75192.64
Differencec −19.98 −10.14 −7.65 −7.03 −6.81 −6.77

aThe ground-state energy E(9Be) = −14.666435504 hartree, and E(∞Be) = −14.667356486 hartree were taken from Ref. [7]
bEnergy difference between the ground 1s2 2s2 state of Be and the ground 1s2 2s1 state of Be+. E(9Be+) = −14.3238634944 hartree and
E(∞Be+) = −14.3247631764 hartree [8].
cDifference between the calculated 9Be value and the experimental transition energy.

increase (i.e., as n in 1s2 2s1 nd1 increases). However,
overall, even for the highest considered state (1s2 2s1 6d1),
the estimated error with respect to the exact energy is only
0.000 000 70 hartree. In Table I we also show the INM results
calculated in the basis sets of 4200 Gaussians.

In Table II we show the convergence of the relative
energies of the five states 9Be calculated with respect to the
ground-state (1s2 2s2) energy. The relative energies are also
shown for ∞Be. The calculated values are compared with
the experimental transition energies [3] and the differences
between the experimental and the calculated transition
frequencies are shown. As mentioned, these differences are
due to the relativistic, QED, and other higher-order effects
not accounted for in the calculations.

In Table II we also include the 9Be electron ionization
energy obtained experimentally and in the calculations.
This entry is marked as 1s2 2s1 ∞d1 because removing an
electron from the Be atom is equivalent to exciting it to the
Rydberg ∞d state. As mentioned, one may expect that as
the excitation level increases, the experimental–calculated
difference of the transition energies should show convergence
to the difference between the experimental and calculated
ionization energies, if the calculated energies are obtained
at the nonrelativistic level. Upon examination of the values

shown in the table, it is clear that the expected trend indeed
occurs. The experimental–calculated difference smoothly
converges from below to the value of −6.77 cm−1, which is the
difference between the calculated nonrelativistic ionization
potential of 9Be and the experimental value of this potential.

IV. SUMMARY

In this work we have presented high-accuracy calculations
of the five lowest 1D states of the 9Be atom. Up to 4200 all-
electron explicitly correlated Gaussian functions were used for
each state and their exponential parameters were extensively
optimized using a procedure which utilizes the gradient of
the energy determined with respect to these parameters. It
was shown that, as expected, the difference between the
experimental and relative energies determined with respect
to the ground 1S 1s2 2s2 state and the corresponding energy
calculated at the nonrelativistic level of the theory converges
with the increasing level of the electronic excitation to the
difference between the experimental and calculated ionization
potentials of 9Be. Since the difference can be primarily
attributed to the relativistic and QED effects not yet accounted
for in the calculations, it shows that the contribution of these
effects becomes almost constant for higher Rydberg states.
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