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Correction method for obtaining the variationally best ground-state pair density
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We present a correction method for the pair density (PD) to get close to the ground-state one. The PD is corrected
to be a variationally best PD within the search region that is extended by adding the uniformly scaled PDs to its
elements. The corrected PD is kept N -representable and satisfies the virial relation rigorously. The validity of the
present method is confirmed by numerical calculations of neon atom. It is shown that the root-mean-square error
of the electron-electron interaction and external potential energies, which is a good benchmark for the error of
the PD, is reduced by 69.7% without additional heavy calculations.
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Electron correlation is one of the main topics in the fields of
atomic, molecular, and condensed matter physics. The physical
quantity that directly expresses the electron correlation is the
diagonal element of the second-order reduced density matrix,
which is called the pair density (PD). The PD gives not only the
electron density but also expectation values of arbitrary two-
particle operators [1–3]. Therefore, the PD functional theory
(PDFT) [4–33] is one of the promising first-principle methods
for describing the electron correlation beyond the conventional
density functional theory [34,35].

There exist two kinds of well-known problems in devel-
oping the PDFT. One is to have to develop the approximate
form of the kinetic energy functional since the kinetic energy
cannot be expressed by the PD alone [1–3,30–33]. Some
approximation is needed for the kinetic energy functional
of the PDFT [19,30–33]. We have developed approximate
functionals by imposing sum rules for the kinetic energy
functional as the restrictive conditions, although they have
some room for improvement [19]. The other problem is related
to the N -representability problem of the PD [1–3,20–29].
Although we have to search the ground-state PD within the set
of the N -representable PDs [second Hohenberg-Kohn (HK)
theorem of the PDFT], the necessary and sufficient conditions
for the N -representability of the PD have not yet been known
in a practical form [1–3,20–29]. We have recently proposed the
effective initial theory [16,18] where the search region of PDs
is guaranteed to be within a set of N -representable PDs but
is restricted to the set of PDs that are constructed from single
Slater determinants (SDs). Furthermore, we have attempted to
extend the variational search region of PDs [17,19] beyond
that of the effective initial theory [16,18]. However, it has
been eagerly anticipated that such a search region is further
extended with keeping the N -representability of the PD.

The work described here is motivated by a desire to
overcome the above-mentioned well-known problems. In this
Brief Report we present a correction method for the PD to
get close to the ground-state one, and we show via numerical
calculations that this method successfully reduces errors of the
PD drastically. The present method is conceptually different
from the conventional one [19], and would also have extensive
application in the fields such as wave function theory, other
types of the density functional schemes, etc.

Let us explain the present correction method in the
following three steps (i)–(iii).

(i) As the first step, we shall show that the kinetic energy
functional which is consistent with the scaling property
satisfies the virial relation exactly. Here suppose that the search
region of PDs fully covers a set of the N -representable PDs.
Applying the scalings of the electron coordinates, the PD
γ (2)(rr′; rr′) is transformed into

γ
(2)
λ (rr′; rr′) = λ6γ (2)(λrλr′; λrλr′), (1)

where λ is the scaling parameter. γ (2)
λ (rr′; rr′) is the PD scaled

from γ (2)(rr′; rr′), which is called the scaled PD. The kinetic
energy functional that is consistent with the scaling property
satisfies the following relation [8,16,19]:

T
[
γ

(2)
λ

] = λ2T [γ (2)]. (2)

Similarly to Eq. (2), the electron-electron interaction and
external potential energies to the scaled PD are, respectively,
given by

W
[
γ

(2)
λ

] = λW [γ (2)] (3)

and

V
[
γ

(2)
λ

] = 2

N − 1

∫∫
vext

( r
λ

)
γ (2)(rr′; rr′)drdr′, (4)

where vext(r) denotes the external potential and where
N is the number of electrons. Due to the second
HK theorem of the PDFT, the total energy functional
E[γ (2)](= T [γ (2)] + W [γ (2)] + V [γ (2)]) is minimum at γ

(2)
0

that corresponds to the variationally best PD among all of the
N -representable PDs. Using the scaled PD, the theorem can
be written as dE[γ (2)

0, λ]/dλ|λ=1 = 0. Here γ
(2)
0, λ is the PD scaled

from γ
(2)
0 , and is defined similarly to Eq. (1). Substituting

Eqs. (2), (3), and (4) into this theorem, we have

2T
[
γ

(2)
0

] + W
[
γ

(2)
0

] =
∫∫

[r · ∇vext(r)]

N − 1
γ

(2)
0 (rr′;rr′)drdr′.

(5)

Equation (5) is the virial relation of the PDFT. It should
be noted that even though the kinetic energy functional that
satisfies Eq. (2) is not an exact but an approximate form, Eq. (5)
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FIG. 1. The relations between various sets of PDs. The set C1

covers a set of the N -representable PDs not fully but partially. The
set C2 consists of the uniformly scaled PDs. The variationally best
PD within C1, and that within C1 ∪ C2, are denoted by γ̃

(2)
0 and γ̃

(2)
0,�,

respectively.

exactly holds if the search region fully covers the set of the
N -representable PDs.

(ii) Next, we shall consider the case where the search region
not fully but partially covers a set of the N -representable PDs.
Suppose that such a partial search region is denoted as C1 (see
Fig. 1), and that the total energy functional is minimum at γ̃

(2)
0

that corresponds to the variationally best PD within the set C1.
Due to the incomplete cover of N -representable PDs by the set
C1, it could be that not all of the scaled PDs γ̃

(2)
0, λ are included in

the set C1. We denote the set of γ̃
(2)
0, λ as C2 (Fig. 1). In this case,

the total energy functional E[γ̃ (2)
0, λ] does not always take the

minimum at λ = 1. Namely, we have dE[γ̃ (2)
0, λ]/dλ|λ=1 �= 0.

Like the derivation of Eq. (5), this inequality leads to the
relation such that the left-hand side of Eq. (5) is not equal to the
right-hand side. Thus, if the search region does not fully cover
the set of the N -representable PDs, the virial relation does
not hold even though the kinetic energy functional satisfies
Eq. (2). This fact can be used as a criterion of whether the
search region fully covers the set of the N -representable PDs
or not. Here let us define the virial ratio which indicates to
what extent the virial relation holds:

Rv = W
[
γ̃

(2)
0

] − ∫∫ [r·∇vext(r)]
N−1 γ̃

(2)
0 (rr′; rr′)drdr′

T
[
γ̃

(2)
0

] . (6)

Using this ratio, the above-mentioned criterion can be restated
as follows: the deviation of Rv from the value −2.0 means the
insufficiency of the search region of PDs if the kinetic energy
functional satisfies Eq. (2) [36].

(iii) When Rv deviates from −2.0, a correction method that
is related to the extension of the search region is desired. The
key point of the present correction method is the extension
of the search region by adding the scaled PDs to the search
region. Figure 1 truly shows the relation between the original
search region C1 and newly added search region C2. Both
sets C1 and C2 are subsets of the set of the N -representable
PDs. The above-mentioned inequality dE[γ̃ (2)

0, λ]/dλ|λ=1 �= 0
means that the set C2 could possibly include the PD that
takes a total energy lower than what the best PD within the
set C1 (i.e., γ̃

(2)
0 ) takes. Such a PD exists in C2 ∩ C̄1 and

is denoted as γ̃
(2)
0,�, where C̄1 is the complementary set of C1

(Fig. 1). Then the inequality dE[γ̃ (2)
0, λ]/dλ|λ=1 �= 0 is rewritten

as dE[γ̃ (2)
0, λ]/dλ|λ=� = 0. Substituting Eqs. (2), (3), and (4)

into this equation, we obtain

2�T
[
γ̃

(2)
0

] + W
[
γ̃

(2)
0

]

=
∫∫ [

r · ∇ r
�
vext

( r
�

)]
�2(N − 1)

γ̃
(2)
0 (rr′; rr′)drdr′. (7)

If we consider the isolated atomic system, Eq. (7) is easily
rewritten as

2�T
[
γ̃

(2)
0

] + W
[
γ̃

(2)
0

] = −V
[
γ̃

(2)
0

]
. (8)

From Eq. (7) or (8) we can determine the value of �. The
scaled PD γ̃

(2)
0, � with � thus determined is the variationally

best one within the union of two sets, that is, C1 ∪ C2. That
is to say, a correction of the ground-state PD from γ̃

(2)
0 to

γ̃
(2)
0, � is accomplished by extending the search region from C1

to C1 ∪ C2. It is obvious that the corrected PD γ̃
(2)
0,� remains

N -representable. Furthermore, it is easily confirmed that the
virial relation exactly holds for the corrected PD γ̃

(2)
0,�. Namely,

the correction method can supplement the search region of
PDs with C2 to make the resultant PD γ̃

(2)
0, � satisfy the virial

theorem [37].
The procedure of this correction method is as follows. First

we prepare the approximate form of the kinetic energy func-
tional that satisfies Eq. (2), and determine the search region of
PDs. Using this kinetic energy functional, we calculate γ̃

(2)
0 .

Substituting γ̃
(2)
0 into Eq. (7) or (8), the scaling parameter

� is obtained. This � immediately leads to the corrected
PD γ̃

(2)
0,� by using Eq. (1). Of course, the kinetic energy,

electron-electron interaction energy and external potential
energy for γ̃

(2)
0,� can be easily calculated from Eqs. (2), (3),

and (4), respectively. One of striking points of this correction
method is that the heavy calculation task is not needed for the
corrections of the PD and related quantities.

In order to check the validity of the present method, we
perform numerical calculations for a neutral neon atom. As
the approximate form of the kinetic energy functional that
satisfies Eq. (2), we adopt the following functional [38]:

T [γ (2)] =
∫∫ {

K

(
1

r2
+ 1

r ′2

)
+ K ′

[
cos θ

2r2
ln

( r

r ′
)

+ cos θ ′

2r ′2 ln

(
r ′

r

)]}
γ (2)(rr′; rr′)drdr′, (9)

where K and K ′ are arbitrary constants that are determined
later. The computational PD functional scheme [19] is utilized
so as to obtain γ̃

(2)
0 . According to this scheme, we adopt

as the search region the set of PDs that are calculated
from the correlated wave functions. As the correlated wave
functions, we take the linear combination of the ground-state
and doubly excited SDs that consist of eigenfunctions of the
effective initial scheme [16,18]. Among all doubly excited
SDs, we choose the SDs that have nonnegligible contributions
to the resultant PD. A total of 2861 SDs and 12 275 SDs,
the constituent eigenfunctions of which have the principal
quantum number up to 6 and 11, respectively, are chosen as
basis functions in constructing PDs. The details of preparing
the set of eigenfunctions are given in previous papers [16,19].
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As the set C1, we take the set of PDs that are constructed by
2861 SDs. First, by means of the computational PD functional
scheme [19], we calculate γ̃

(2)
0 that is the variationally best PD

within the set C1. Then the corrected PD γ̃
(2)
0, � is calculated by

using Eqs. (1) and (8). We also prepare the search region that is
extended with increasing the number of basis SDs (NSD) from
2861 to 12 275. Hereafter, we denote this search region of PDs
as C ′

1. In order to show that the present extension method of the
search region of PDs is more efficient than the conventional
extension method, the variationally best PD within the set C ′

1
is also calculated by means of the computational PD functional
scheme [19].

Using γ̃
(2)
0 and γ̃

(2)
0,�, we calculate errors of the electron-

electron interaction energy, external potential energy, kinetic
energy, and virial ratio that are denoted by �W , �V ,
�T , and �Rv , respectively. As the reference data of these
energies, we adopt the results of the configuration interaction
method [39,40]. The root-mean-square error (RMSE) of the
electron-electron interaction and external potential energies
is also calculated by

√
[(�W )2 + (�V )2]/2. The RMSE is

considered as a good benchmark for to what extent the
resultant PD is close to the correct ground-state PD. This is
because accuracies of both the electron-electron interaction
and external potential energies are dependent only on that of
the PD.

The above-mentioned calculations are performed with
changing the values of K and K ′ that appear in Eq. (9). These
values are determined by requiring the approximate functional
to have two desirable features. One is that the approximate
functional reproduces the Hartree-Fock kinetic energy if the
PD coincides with the Hartree-Fock PD. The other is that
the RMSE of the electron-electron interaction and external
potential energies is minimized with respect to parameters.
This determination process is implemented in individual cases
before and after the correction.

Calculation results are shown in Fig. 2. From this figure we
find the following points.

(1) It is found in Fig. 2 that the present method reduces
�W and �V by 89.7% and 66.3%, respectively (reductions
from case a to c for “�W” and “�V ,” respectively, in
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FIG. 2. The calculation results of the �W , �V , RMSE, �T , and
�Rv . The search region C1, C ′

1, and C1 ∪ C2 are simply denoted by
the symbols a, b, and c, respectively.

Fig. 2). On the other hand, only 1.3% and 1.1% reductions
are made via increasing the NSD from 2861 to 12 275 in
�W and �V , respectively (reduction from case a to b for
“�W” and “�V ”, respectively). Also, as shown in Fig. 2,
the RMSE is remarkably reduced by 69.7% (reduction from
case a to c), while it is improved only 1.2% by increasing
the NSD (reduction from case a to b). Thus the reduction
rate of the present method is much larger than that of the
extension method with increasing the NSD. This leads to
that the search region of PDs is more effectively extended by
adding the uniformly scaled PDs than by increasing the NSD.
Furthermore, it should be noticed that the present method is
feasible without additional heavy calculations.

(2) It is found in Fig. 2 that �T is also reduced much
more effectively by the present method than by increasing the
NSD (80.9% and 1.2% reductions for the former and latter,
respectively). In general, the accuracy of the kinetic energy
is dependent on both the appropriateness of the approximate
form of the functional and that of the resultant PD. Judging
from the results of the RMSE, �W , and �V (Fig. 2), the
resultant PD seems to be improved to be close to the ground
state one. Therefore we can deduce that the approximate form
itself, which is given by Eq. (9), would also be sound, though
we need to apply Eq. (9) to the other systems in order to further
ensure its soundness [38].

(3) It is found in Fig. 2 that the virial ratios Rv before
the correction deviate from the correct value −2.0. Using
the criterion on the search region, these deviations mean that
not only the search region C1 but also the search region C ′

1
are insufficient since the approximate functional Eq. (9) is
consistent with Eq. (2). That is to say, even though more than
12 000 SDs are used in constructing PDs, the search region
is not extended effectively. On the other hand, Rv after the
correction is rigorously equal to −2.0, as it should be. These
tendencies seem to be consistent with those mentioned in (1)
and (2).

Thus, the present method improves not only �W , �V ,
and RMSE but also �T and �Rv quite substantially and
effectively. We can therefore say that the PD is corrected to
be close to the ground-state one appropriately via the present
method.

In conclusion, we summarize the features of the correction
method proposed here. The most distinctive feature is that

(1) the search region is extended by adding a set of the
scaled PDs to elements of the search region.
The resultant PD that is corrected by this method possesses
the following features:

(2) the corrected PD is N -representable,
(3) the corrected PD satisfies the virial relation exactly.

The validity of the present method is successfully confirmed
by numerical calculations of neon atomic system. It is shown
that

(4) not only the RMSE but also errors of the kinetic energy,
electron-electron interaction energy, and external potential
energy are individually all reduced definitely,

(5) the correction is effective enough even in the small size
calculations.

Due to the computational easiness of the correction, this
method will be applicable to larger systems such as molecules,
clusters, and solids.
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