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Convergence of repeated quantum nondemolition measurements and wave-function collapse
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Motivated by recent experiments on quantum trapped fields, we give a rigorous proof that repeated indirect
quantum nondemolition (QND) measurements converge to the collapse of the wave function as predicted by the
postulates of quantum mechanics for direct measurements. We also relate the rate of convergence toward the
collapsed wave function to the relative entropy of each indirect measurement, a result which makes contact with
information theory.
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Wave function collapse is a basic axiom of quantum
direct measurement à la Von Neumann [1]. A quantum
nondemolition (QND) measurement [2] is one for which
the collapsed state is an eigenstate of the free evolution.
Repeating the measurement on the collapsed state yields
identical results since this state is preserved by the evolution.
Indirect measurements [3] consists in letting the quantum
system under study be entangled with another quantum system,
called the probe, and in implementing a direct measurement
on the probe. Since the system and the probe are entangled,
one gains information. Repeating the process of entanglement
and measurement increases statistically the information one
gets on the system.

Developing experimental and theoretical expertise on quan-
tum measurement processes is mandatory for developing quan-
tum state manipulation. It was early realized [4,5] that mod-
eling quantum measurements require systems with infinitely
many degrees of freedom, e.g., as in the phenomenological
stochastic models of Ref. [6]. The need to describe quantum
jumps and randomness inherent to repeated measurements
lead to the concept of quantum trajectories [7,8]. In parallel,
tools of open quantum systems, specifically those of quantum
stochastic calculus [9], have been adapted to the description of
quantum continual measurements [10] and quantum feedback
[11]. In most of these stochastic models, the driving noises,
often classical or quantum Brownian motions, are linked to the
degrees of freedom of the measurement apparatus. Although
bearing similarities with these frameworks, our proof of the
wave collapse in series of quantum nondemolition (QND)
measurements is based on a purely quantum description of
the repeated probe-system interactions.

Experiments on repeated indirect quantum nondemolition
measurements have recently been performed, in particular in
quantum optics. As an example, let us look at Ref. [12] whose
setup is the following. The tested quantum system is a resonant
electromagnetic cavity selecting photons of given frequency.
It is probed by sending Rydberg atoms through it, one after the
other. During the atom-photon interaction, each atom behaves
as a two-state system modeled by a spin one-half [13]. The
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atoms are prepared with their effective spins pointing in the
0x direction [14]. The experimental protocol ensures that the
atom effective spin rotates around the 0z axis by an angle
proportional to the number of photons n̂ph in the cavity, say
n̂phθ with θ a fixed angle. After interaction, the atom-photon
system is entangled, but the cavity state gets unchanged if
it is initially an eigenstate of the free photon Hamiltonian.
The effective atom spin is then measured along a direction
perpendicular to 0z but at angle φ with respect to 0x. The
output of the spin measure is ± with probabilities p+(φ|n̂ph) =
cos2[(n̂phθ − φ)/2] and p−(φ|n̂ph) = sin2[(n̂phθ − φ)/2], if
there are n̂ph photons in the cavity. If the initial photon
distribution is q0(n̂ph), the probability to measure an effective
spin ± is

∑
n̂ph

q0(n̂ph)p±(φ|n̂ph). No direct measurement on
the cavity is done. The experimental aim is to reconstruct the
initial photon distribution by accumulating informations from
the repeated atom effective spin measurements. The photon
distribution is recalculated after each atom measurement using
Bayes law [15]. Figure 1 shows experimental data for the
evolution of reconstructed photon distributions. For each
realization, they converge, experimentally and numerically
[12], to peaked distributions whose centers depend on the
realization. This is the collapse.

Let us abstract and generalize the previous situation. At
initial time, the system is in state |ϕ0〉 ≡ |ϕ〉. It interacts during
time �t with a probe initially in state |ψ〉, so that the pair
(probe + system) evolves into U (|ψ〉 ⊗ |ϕ〉), where U is some
unitary operator acting on the Hilbert space Hprobe ⊗ Hsyst.
After �t , the system-probe interaction can be neglected. A
perfect measurement à la Von Neumann is then performed on
the probe. This means that there is an orthonormal basis |i〉,
i ∈ I , of Hprobe such that, after the measurement, the (probe
+ system)-state is proportional to (|i〉〈i| ⊗ Id)U (|ψ〉 ⊗ |ϕ〉)
with probability ||(|i〉〈i| ⊗ Id)U (|ψ〉 ⊗ |ϕ〉)||2. The vanishing
of this probability for a certain state |i〉 means that the probe
cannot be found in state |i〉, so we can (and shall) simply forget
about that possibility.

We make the following assumption, related to nondemoli-
tion, on the evolution operator U : there is an orthonormal basis
|α〉, α ∈ A, of Hsyst and a collection of operators Uα acting on
Hprobe such that, for each α,

U (|ψ〉 ⊗ |α〉) = (Uα|ψ〉) ⊗ |α〉. (1)
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FIG. 1. (Color online) Two experimental samples [16] of recon-
structed photon distributions as functions of the number of indirected
measurements (i.e., the number of atoms traversing the cavity)
according to Ref. [12]. The collapse of the photon distribution to
a realization-dependent sharply defined number is clearly visible.

The operators Uα are automatically unitary. If the probe
is found in state |i〉 after the measurement (probability∑

α∈A |〈i|Uα|ψ〉|2|〈α|ϕ〉|2), the pair (probe + system)
is again in a tensor product state |i〉 ⊗ |ϕ1〉,
where

|ϕ1〉 =
∑

α∈A〈i|Uα|ψ〉〈α|ϕ〉 |α〉
(∑

α∈A |〈i|Uα|ψ〉|2|〈α|ϕ〉|2)1/2 . (2)

It is clear that the motivating experiment fulfills this property
if |α〉 is the occupation number basis [17].

The physics of this hypothesis is that the final aim is to
measure an observable on the system for whom the states |α〉
are eigenstates. As we shall see, this (direct) measurement
can be (indirectly) achieved by repeated measurements on
successive probes. So, one presents another probe to the system
in state |ϕ1〉, let them interact, and, after interaction, measures
the probe to get |ϕ2〉 and so on. Notice that, in general, at each
step one could change the probe initial state, the observable
measured on the probe (this is indeed what happens in the
motivating example), and even the type of probes: the only
thing one has to keep fixed is the basis |α〉 for which property
of Eq. (1) holds. Most of the following discussion can be
extended to the general setting [18] but to keep notation simple,
we concentrate on the case when |ψ〉 and the basis |i〉 are the
same for all probes.

We start with a summary of our results:
(i) If a series of repeated indirect measurements is con-

ducted, the state of the system will stabilize over time and go
to a limit. Carrying identical independent experiments again,
the system state will stabilize over time again but possibly with
different limits.

(ii) Under a physically meaningful nondegeneracy condi-
tion, the only possible limits for the state of the system are the
pointer states |α〉, and the probability to end in state |α〉 starting
from state |ϕ〉 is |〈α|ϕ〉|2. Hence, the outcome of a large number
of repeated indirect measurements satisfying the condition of
Eq. (1) obeys the standard rules of quantum mechanics direct
measurements.

(iii) Under the same nondegeneracy condition, the mea-
surements on the probes allow to infer the limit pointer state
for each independent experiment.

(iv) The rate of convergence to one of the pointer states
is governed by the relative entropy of certain probability
measures in classical probe space. The order of magnitude
of the probability that, while the repeated measurements are
conducted, the state of the system comes close to a pointer state
but ends up finally in another one can be computed explicitly.

The tools to prove these statements come from the classical
theory of random processes: strong law of large numbers,
martingale convergence theorem, large deviations. A proof of
the wave function collapse using the martingale convergence
theorem appeared in Ref. [19]. These works are based on
nonlinear stochastic extensions of the Schrödinger equation
[20], whereas our results are pure consequences of quantum
mechanics (with measurements on probes) [21] and are
closer in spirit to quantum trajectory approaches [7,8] and
to experiments.

We now turn to the proofs. One can rephrase Eq. (2) by
saying that, for each α ∈ A,

〈α|ϕ1〉 = 〈i|Uα|ψ〉〈α|ϕ0〉(∑
α∈A |〈i|Uα|ψ〉|2|〈α|ϕ0〉|2

)1/2 ,

if the probe is found in state |i〉. Thus, a crucial consequence
of Eq. (1) is that there are no interference terms for different
α, so that taking the modulus squared does not lead to
(much) loss of information. We set p(i|α) ≡ |〈i|Uα|ψ〉|2, and
q0(α) ≡ |〈α|ϕ0〉|2, q1(α) ≡ |〈α|ϕ1〉|2, q2(α) ≡ |〈α|ϕ2〉|2 and so
on. Observe that after measuring the nth probe, one has, for
each α ∈ A,

qn+1(α) = qn(α)
p(i|α)∑

β∈A qn(β)p(i|β)
, (3)

with probability πn(i) ≡ ∑
β∈A qn(β)p(i|β).

This is a random recursion relation that is of Markovian
type: to compute the possible values of qn+1(α) and their
respective probabilities, all one needs to know are the qn(β).
Each probe measurement leads to a choice among the probe
states |i〉 such that πn(i) �= 0. The question to be settled is the
long time behavior of the resulting random sequences qn(α).

Observe that the qn(α) and the p(i|α) are �0. Moreover,∑
α∈A qn(α) = 1 and

∑
i∈I p(i|α) = 1 for each α ∈ A. It

follows that
∑

i∈I πn(i) = 1 as it should be. A crucial question
is the following: having observed the random sequences qm(β)
for m = 0, . . . ,n and all β in A, what is the average value of
qn+1(α)? From Eq. (3), it is immediate that this (conditional)
average, which we denote by E[qn+1(α)|q0, . . . ,qn], is

E[qn+1(α)|q0, . . . ,qn] =
∑

i,πn(i)�=0

qn(α)
p(i|α)

πn(i)
πn(i)

=
∑

i,πn(i)�=0

qn(α)p(i|α).

Now, πn(i) = ∑
β∈A qn(β)p(i|β), and for this to vanish,

the product qn(β)p(i|β) has to vanish for all β ∈ A, and
in particular for β = α, so that

∑
i,πn(i)�=0 qn(α)p(i|α) =∑

i∈I qn(α)p(i|α) = qn(α). Hence, we find that

E(qn+1(α)|q0, . . . ,qn) = qn(α). (4)

In the theory of random processes, such a property defines
the concept of martingale: the sequence q0,q1, . . . is a
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martingale, because if one knows it up to time n (i.e., if
one knows q0, . . . ,qn), its expectation at time n + 1 is its
value at time n (i.e., qn). To connect quantum measures to
conditional expectations is not so surprising because both rely
on orthogonal projections in Hilbert spaces.

The martingale at hand has a peculiar property: it is bounded
[every qn(α) is �0 and

∑
α∈A qn(α) = 1]. We can then quote

a special case of the martingale convergence theorem (see
any modern textbook on probability theory, e.g., Ref. [24],
for a precise statement): A random sequence q0,q1, . . . which
is a bounded martingale converges almost surely and in L1.
The limit, a random variable q∞, is such that its expectation
satisfies E(q∞) = q0.

This is a deep theorem and there is no intuitive argument
that we know to explain it [22]. But in our case its meaning
is simple. The statement of almost sure convergence is
precisely the mathematical formulation of (i). The statement
of L1 convergence is a simple consequence of the Lebesgue
dominated convergence theorem, because our martingale is
bounded. The statement on the expectation of the limit random
variable yields the second part of (ii) once we have given an
independent argument to show that the possible limits are the
pointer states.

To get this, we observe that the convergence of qn(α) leads
to the convergence of πn(i) = ∑

β∈A qn(β)p(i|β). If i is such
that π∞(i) �= 0 then, for n large enough, πn(i) > π∞(i)/2 > 0
which implies that, with probability 1, the nth probe will
be found in state i for arbitrarily large values of n. This
allows to take the large n limit in Eq. (3) for this value of i.
Hence,

q∞(α) = q∞(α)
p(i|α)∑

β∈A q∞(β)p(i|β)
,

for any i ∈ I such that π∞(i) �= 0. Only the α for which
q∞(α) �= 0 yield a nontrivial equation, so we can restrict to
these α. Then, we can simplify to get p(i|α) = π∞(i) for
any i such that π∞(i) �= 0. If q∞(α) �= 0, π∞(i) = 0 implies
p(i|α) = 0, so that p(i|α) = π∞(i) is actually valid for any i.
The right-hand side may depend on i but it does not depend
on α. So, the same holds for the left-hand side: this means
that the evolution operator U and the probe measurement
act in a degenerate way on the corresponding kets |α〉. In
such a degenerate situation, we cannot expect to measure
them individually, just as in a standard quantum measure of
a system observable we cannot separate the |α〉 having the
same eigenvalue [23]. So, we assume that for any α,β ∈ A

there is some i ∈ I such that p(i|α) �= p(i|β), and we get that
q∞(α) = δα,γ for some γ , i.e., the only possible values for
q∞(α) are 0 or 1. The equality E(q∞(α)) = q0(α) then implies
that q∞(α) takes value 1 with probability q0(α) = |〈α|ϕ〉|2
and 0 with probability 1 − q0(α) as expected in a perfect
measurement of a nondegenerate system observable with the
|α〉 as eigenstates.

The proofs of statements (iii) and (iv) use the same tools.
We start by determining the rate of convergence to the limiting
system state. This turns out to depend on this limiting state and
this is also the clue to statement (iii). What we have proved so
far implies that at some time, say n0, one of the components,
say qn0 (γ ), will be large, i.e., close to 1, so that all other

components will be small. We can then replace Eq. (3) by an
approximate linear recursion relation, namely, for α �= γ ,

qn+1(α) = qn(α)
p(i|α)

p(i|γ )
, (5)

with probability p(i|γ ) (if nonzero). The proof given
above shows again that this random recursion relation de-
fines a martingale. There is a subtle point, however: this
martingale is not bounded anymore and the martingale
convergence theorem does not apply. However, we can
rely on a simpler tool. Defining ln ≡ ln qn, we get, for
α �= γ ,

ln+1(α) = ln(α) + ln
p(i|α)

p(i|γ )
. (6)

with probability p(i|γ ) (if nonzero). So, ln(α) − l0(α) is
the sum of n independent identically distributed random
variables with mean −S(γ |α) ≡ ∑

i p(i|γ ) ln p(i|α)/p(i|γ ).
Remember that for each β, the collection p(i|β), i ∈ I , defines
a probability on I , and S(γ |α) is nothing but the relative
entropy of p(i|γ ) with respect to p(i|α), a quantity that
is always nonnegative and, in fact, strictly positive under
the nondegeneracy assumption. The law of large numbers
yields ln(α) ∼ −nS(γ |α) → −∞, so that qn(α) converges
exponentially to 0 with rate S(γ |α). Hence, as soon as one
of the components, say q(γ ), has become reasonably close to
one, with high probability the state of the system will converge
to |γ 〉. In this situation, each measurement on the probe leads
to a gain of information on the system state, which in average
is given for each component α �= γ by the relative entropy
S(γ |α).

By the strong law of large numbers, the previous discussion
also implies that if the limit state is |γ 〉, the frequency of
measurements leading to probe state |i〉 will converge to
p(i|γ ). By the nondegeneracy hypothesis, this fixes the limit
pointer state unambiguously. This proves statement (iii). In
practice, an histogram of all ni/n, the fraction of probes
measured in state |i〉 in a single series of a large number n of
repeated measurements, for i ∈ I , will be close to p(i|γ ) for a
single |γ 〉, allowing to identify |γ 〉. Then, conducting many in-
dependent homogeneous series (starting each experiment with
the same system state) allows to reconstruct the probabilities
q0. Hence, the homogeneous repeated measurement scheme is
fully equivalent to an ideal Von Neumann measurement.

To finish the discussion, note that by the martingale
property, knowing the results of probe measurements up to
time n0, the probability to end in pointer state |γ 〉 is exactly
qn0 (γ ), which is close to 1. The quantity 1 − qn0 (γ ) is the
probability to end in another pointer state. It is also the order
of magnitude of the probability that the above discussion
breaks down. This occurs precisely when the random evolution
invalidates the linear approximation. If this happens, it will be
likely to happen quickly after n0 because, if for a long time after
n0 the qn(α) remain small, the law of large numbers implies
that they are very likely to decrease exponentially so that
escaping away from the pointer state |γ 〉 will get harder and
harder. Take some ε > 0 such that if 1 − ε < qn(γ ) the linear
approximation is good to describe the transition from time
n to time n + 1. Suppose that during a random evolution this
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condition on qn(γ ) remains valid for n0 � n � n1. By standard
large deviation theory (Cramer’s theorem) if n1 − n0 is large,
the probability that, for a given α, qn1 (α) is of order ε (instead of
being of order ε exp [−(n1 − n0)S(γ |α)]) is estimated crudely
as ∼ λn1−n0∗ for a certain λ∗ < 1 which is the minimum over
s > 0 of the function λ(s) = ∑

i p(i|γ )( p(i|α)
p(i|γ ) )

s .
Finally, we emphasize that the (infinite) series of indirect

experiments may be viewed as building a measurement

apparatus [18]. Indeed, the reading of the asymptotic behavior
of the frequencies of the probe measurement outcomes allows
us to register the limit pointer state.
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