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Electromagnetically induced grating with maximal atomic coherence
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We describe theoretically an atomic diffraction grating that combines an electromagnetically induced grating
with a coherence grating in a double-� atomic system. With the atom in a condition of maximal coherence
between its lower levels, the combined gratings simultaneously diffract both the incident probe beam as well as
the signal beam generated through four-wave mixing. A special feature of the atomic grating is that it will diffract
any beam resonantly tuned to any excited state of the atom accessible by a dipole transition from its ground state.
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I. INTRODUCTION

Electromagnetically induced transparency (EIT) [1] allows
a diffraction grating to be induced in an atomic sample. Elec-
tromagnetically induced gratings (EIGs) have been applied
to all-optical switching and routing [2], tunable photonic band
gaps [3], light storage [4,5], and beam splitting and fanning [6],
among other applications. The physical basis of EIT is coherent
population trapping (CPT) [7], which decouples the atom from
the excitation fields by placing it into a nonabsorbing, dark
superposition state of the atom’s lower energy levels. EIT of
a resonant probe beam is achieved in a three-level atom by
means of a coupling field acting on a linked transition. In
an atom under EIT, an EIG can be created by modulating
the atomic absorption or dispersion. An absorption EIG is
implemented by spatially modulating the coupling field (for
example, by superposing two beams at an angle), creating
alternating regions of high and low absorption on which the
resonant probe beam can diffract [8,9]. A phase EIG typically
involves a four-level atom, where a weak coupling to the
fourth level disturbs the EIT condition by mainly altering the
atomic dispersion while maintaining a low probe absorption.
Modulation of the additional coupling channel, via a third
excitation laser [10,11] or a microwave field [12], leads to a
spatially varying index of refraction. A phase grating can also
be induced in a three-level atom in the limit of a very strong
coupling field [6]. Common to all of these EIG schemes is the
fact that they are wavelength specific. They can only diffract
a probe beam tuned to the particular atomic transition linked
to the EIT coupling field.

We here propose an EIG that can diffract a probe wave
resonantly tuned to any excited atomic state accessible by a
dipole transition from the atom’s ground state. This EIG is
implemented in an atomic system in a double-�, nondegener-
ate configuration with one of the upper excited states chosen
freely. Two copropagating driving fields are Raman resonant
and pump the atoms into a maximally coherent dark state,
forming a coherence grating in the ground states of the Raman
transition along the propagation direction. The enhanced
nonlinearity of the EIT medium allows an efficient four-wave
mixing (FWM) that originates from the diffraction of the probe
field off the coherence grating. We show that modulation of
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the driving fields in a direction perpendicular to propagation
generates an EIG that further diffracts simultaneously the
probe and the FWM fields.

FWM processes in the context of EIT or CPT involving
a double-� scheme have been studied previously [13–18].
For completeness, in Sec. II we review the basic features
of FWM under maximal atomic coherence in the double-�
atom. We discuss our proposal for an EIG under maxi-
mal coherence in Sec. III, and we conclude the paper in
Sec. IV.

II. MODEL ATOMIC SYSTEM FOR
MAXIMAL-COHERENCE, FOUR-WAVE MIXING

The atomic model consists of a closed, four-level double-�
system interacting with three cw lasers as shown in Fig. 1(a).
Levels |a〉 and |d〉 are excited states that decay spontaneously at
rate γ to both lower levels. Level |c〉 is the ground state, and |b〉
is a metastable state with negligible decay rate (γ0 � γ ). The
|a〉 → |b〉 and |a〉 → |c〉 transitions are excited by resonant
driving beams B and C, respectively. The probe beam P

couples the ground state |c〉 to the excited state |d〉. The
|d〉 → |b〉 transition is driven by field S, which is generated
through FWM. Fields B and C are strong while P and S

are weak. The driving fields B and C optically pump the
atom into a dark superposition state of the lower levels.
Under CPT, the atom becomes decoupled from the B and
C fields. In an extended atomic sample, those two fields will
propagate as if in free space without losses [1,7] whenever
their linewidth is smaller than the homogeneous linewidth
γ of the atoms. Inside the atomic sample, the four beams
are collinear and propagate along the z direction, as illus-
trated in Fig. 1(b). We assume a homogeneously broadened
medium.

The electric field of the excitation beams is defined as

E(ωj ,t) = Ej exp (iωj t − ikj z), (1)

where j = b,c,p,s; ωj is the optical frequency of field j ; and
kj is its wave number. The coupling between the atom and the
electric fields is defined by the Rabi frequency �j exp(−ikj z),
where �j = 2μnmEj/h̄, and μnm is the electric dipole moment
of the respective transition.
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In the rotating-wave approximation, the equations of
motion for the density matrix elements of levels |a〉, |b〉, |c〉,
and |d〉 are

σ̇aa = −γ σaa + i

2
(�∗

bσab − �bσba) + i

2
(�∗

cσac − �cσca),

σ̇ab = −γ

2
σab + i

2
�b(σaa − σbb) − i

2
�cσcb + i

2
�sσad,

σ̇ac = −γ

2
σac − i

2
�bσbc + i

2
�c(σaa − σcc) + i

2
�pσad,

σ̇ad = −γ σad − i

2
�bσbd − i

2
�cσcd + i

2
�∗

pσac + i

2
�∗

s σab,

σ̇bb = γ

2
σaa − γ0σbb + γ0σcc + γ

2
σdd − i

2
(�∗

bσab − �bσba)

+ i

2
(�sσbd − �∗

s σdb),

σ̇bc = −γ0σbc − i

2
�∗

bσac + i

2
�cσba + i

2
�pσbd − i

2
�∗

s σdc,

σ̇cc = γ

2
σaa + γ0σbb − γ0σcc + γ

2
σdd + i

2
(�cσca − �∗

cσac)

+ i

2
(�pσcd − �∗

pσdc),

σ̇db = −γ

2
σdb + i

2
�bσda − i

2
�pσcb + i

2
�s(σdd − σbb),

σ̇dc = −γ

2
σdc + i

2
�cσda − i

2
�sσbc + i

2
�p(σdd − σcc),

σ̇dd = −γ σdd + i

2
(�∗

pσdc − �pσcd ) + i

2
(�∗

s σdb − �sσbd ).

(2)

Equations (2) are solved in the steady-state regime. To zero
order in the probe and signal fields, the Raman coherence
between the lower levels is

σ
(0)
bc = − �∗

b�c

|�b|2 + |�c|2 + 2γ γ0
exp [i(kb − kc)z]. (3)
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FIG. 1. (Color online) (a) Energy-level diagram of the four-level,
double-� system driven by three optical fields: driving (B and C)
and probe (P ) beams in a four-wave mixing configuration giving rise
to the signal beam (S). (b) Illustration of the proposed setup for an
EIG with maximal coherence. Multiple slits are added to the B and
C fields which are combined in a beam splitter with the probe field
in a collinear configuration. The z axis is parallel to the propagation
direction. The probe and signal fields diffract along the transverse
x direction. (c) Intensity mask to be added to the driving fields
consisting of multiple slits of width w separated by D.

No approximations were made with respect to the Rabi
frequencies �b and �c in deriving Eq. (3). In the limit
|�b|2 + |�c|2 � 2γ γ0, the Raman coherence is |σ (0)

bc | = 1/2.
And for equal Rabi frequencies �b = �c = �, the populations
in the lower states are equal (σ (0)

bb = σ (0)
cc = 1/2), placing the

atom in a condition of maximal coherence of the Raman
transition |b〉 → |c〉. CPT writes a sinusoidal grating in the
phase of the ground-state coherence σ

(0)
bc along the z direction.

Diffraction of the probe beam P on this grating generates the
signal beam S [13].

To first order in the probe and signal fields, we find the
atomic coherences of the |d〉 → |b〉 and |d〉 → |c〉 transitions
to be given by

σ
(1)
bd = i[−r �∗

p ei(kp+kb−kc)z + s �∗
s eiksz],

(4)
σ

(1)
cd = i[s �∗

p eikpz − r �∗
s ei(ks−kb+kc)z],

where the coefficients r and s are

r = �2

2γ (�2 + γ0γ )
,

(5)

s = �4 + γ 2(�2 + γ γ0)

2γ (�2 + γ0γ )(�2 + γ 2)
.

We are interested in two limits of excitation: � = 0 (driving
fields off) and �2 � γ γ0 (driving fields on). In the former
limit, r = 0, and s = 1/2γ . And in the latter, r = s = 1/2γ .

Under the slowly varying envelope approximation, propa-
gation of the probe and signal fields is described by the reduced
wave equation, expressed as

∂Ep,s(z)

∂z
= i

k

2ε0
Pp,se

−ikp,s z, (6)

with the macroscopic atomic polarization Pp,s serving as the
driving source for the fields. The atomic polarization can be
obtained by taking the ensemble average of the dipole moment:
Pp = Nμdcσdc and Ps = Nμdbσbd , where N is the atomic
density. The field amplitudes obey the resulting set of coupled
equations

E′
p = −(α/2)Ep + κEse

i�kz,
(7)

E′
s = −(α/2)�Es + κ�Epe−i�kz,

where the primes indicate differentiation with respect to z;
α = 2γ s/z0 is the absorption coefficient; κ = γ r/z0 is the
coupling constant; � = λp/λs is the ratio of probe and signal
wavelengths; z0 = h̄ε0λpγ /2πNμ2

dc, the probe absorption
length in the absence of the driving fields (� = 0); and
�k = ks − kp + kc − kb. Since inside the atomic sample all
four beams are copropagating and resonant to their respective
transitions, the required phase-matching condition �k = 0 is
satisfied. In Eqs. (7), κ couples the probe and signal fields. In
the absence of the B and C driving fields (� = 0), κ = 0 and
α = 1/z0. For �2 � γ γ0, κ = 1/2z0 and α = 1/z0. In our
analysis, we assume that the intensities of the weak probe and
signal waves are low enough that changes in the strong driving
fields B and C due to FWM conversion can be neglected. In
this excitation limit, coherent anti-Stokes scattering, which
would affect the ground-state coherence [19], can also be
ignored. Although analytic solutions to Eqs. (7) are possible
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for arbitrary � [17], we restrict our analysis to atomic systems
for which � ≈ 1, such as the D1 line of an alkaline atom.

General solutions to Eqs. (7) are of the form

Ep(z) = A0 exp(ξ0z) + B0 exp(ξ1z), (8)

Es(z) = A1 exp(ξ0z) + B1 exp(ξ1z), (9)

where A0,1 and B0,1 are constants. Substituting Eqs. (8) and
(9) into the coupled wave equations (7), we obtain the wave
numbers

ξ0,1 = −α

2
± κ = γ

z0
(−s ± r) (10)

with the plus sign corresponding to ξ0 and the minus sign to ξ1.
To determine the constants A0,1 and B0,1, we need to specify
the boundary conditions. We take the amplitude of the probe
wave to be unity [Ep(0) = 1] and that of the signal wave to
be zero [Es(0) = 0] at z = 0. From these conditions, we find
A0 = B0 = 1

2 and A1 = −B1 = 1
2 , yielding

Ep(z) = exp(−αz/2) cosh(κz), (11)

Es(z) = exp(−αz/2) sinh(κz). (12)

Figure 2 shows the amplitude of probe and signal waves as
a function of propagation distance calculated from Eqs. (11)
and (12). In the absence of the driving fields, we have κ = 0,
and the probe amplitude Ep simply decays exponentially with
distance z; the signal field is null. With the strong driving
fields on, κ 	= 0, the probe and signal fields exchange energy
during propagation. The signal field grows in amplitude until
it is large enough that the two terms in the right-hand sides
of Eqs. (7) cancel each other, and the probe and signal fields
propagate without attenuation or amplification thereafter. Once
EIT for both probe and signal fields is established, no further
production of the signal field occurs in the rest of the medium.
A maximum of 25% of the incident probe energy is converted
into the signal light, which agrees with Ref. [18].

III. EIG WITH MAXIMAL COHERENCE

We propose that, in addition to the coherence grating, an
EIG can be further induced in the atomic sample by adding an
intensity mask (multiple slits, for example) to the driving B and
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FIG. 2. (Color online) Probe and signal wave amplitudes as a
function of propagation distance (in units of the probe absorption
length z0) with driving fields on (� = 0.5γ ) and off (� = 0). Field
amplitudes are normalized such that, at the input, the probe amplitude
is Ep(0) = 1. We used γ0 = 0.001γ .

C fields, as illustrated in Fig. 1(b). The slits create alternating
regions of high and low absorption of the probe beam along the
transverse x direction, mimicking an absorption grating. But
they also modulate along x the FWM process that generates
the signal field. Therefore, both probe and signal fields will
diffract as a result of the transverse modulation.

The mask consists of a regular series of slits that simply
block or let through the driving fields:

�(x) = �

M/2∑
m=−M/2

rect

(
x − m D

w

)
, (13)

where rect(x) is the rectangle function, and M is the number
of slits. Each slit has width w, with centers separated by D.
This mask is illustrated in Fig. 1(c).

If we consider typical excitation parameters for the
D1 line of a 87Rb atom, γ = 2π × 6 MHz, μdc = 2.54 ×
10−29 Cm, N = 1011 cm−3, and λp = 795 nm, then z0 =
68 μm. An atomic sample of length L = 10z0 will correspond
to L = 0.7 mm. Taking λc ≈ λb ≈ 795 nm, then for a slit width
of w = 200λb ≈ 160 μm, the Fresnel number associated with
the B and C driving fields is F = w2/Lλb,c ≈ 46. Therefore,
propagation of the driving fields within the atomic sample
is described by geometrical optics, and the boundary of the
light transmitted by the slits is sharp and resembles the slits in
shape. We can neglect diffraction of these beams while inside
the atomic sample and write the Rabi frequency, throughout
the atomic sample, as in Eq. (13) to a good approximation.
For atomic samples shorter than L = 10z0, the beam Fresnel
number will be even higher and the approximation will still be
valid, but it may not hold for much longer samples.

With the choice of transverse modulation expressed in
Eq. (13) and from Eqs. (11) and (12), we find the transmission
functions of the atomic sample for the probe [Tp(x)] and signal
[Ts(x)] fields, for one slit period (|x| � D/2),

Tp(x) =
{

(1 + exp[−L/z0])/2, if |x| < w/2,
exp[−L/2z0], otherwise, (14)

and

Ts(x) =
{

(1 − exp[−L/z0])/2, if |x| < w/2,
0, otherwise. (15)

Both transmission functions are real, indicating the EIG is a
pure absorption grating, with no phase modulation of the probe
and signal electric-field amplitudes.

Figure 3 shows the probe and signal transmission functions
for two different medium lengths: L = 2z0 and L = 10z0. In
those regions where the driving fields are on, Tp = Tp,on ≡
(1 + exp[−L/z0])/2 and Ts = Ts,on ≡ (1 − exp[−L/z0])/2.
For a long enough sample, such as L = 10z0, Tp,on ≈ Ts,on ≈
0.5. Wherever the driving fields are off, Ts = Ts,off ≡ 0 since
there is no FWM generation, and Tp = Tp,off ≡ exp[−L/2z0]
because the probe field is simply absorbed as it propagates
along the atomic sample. The depth of probe modulation
depends on the medium thickness. For an optically thin sample,
less of the probe light is absorbed in the absence of the driving
fields, and the dark regions of the EIG are not opaque enough
for it to efficiently diffract the probe light. In the example
of Fig. 3(a), for L = 2z0, the atomic medium transmits close
to 38% of the probe amplitude with the driving fields off.
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FIG. 3. (Color online) (a) Probe and (b) signal transmission
functions plotted vs the transverse distance x (in units of the grating
period D) for L = 2z0 [dashed (red) line] and L = 10z0 [(solid (blue)
line]. In regions of high transmission, the driving fields are on, and
in regions of low transmission, the fields are off. The slit width was
chosen to be w = D/2.

For full modulation of the probe wave, a thickness L such that
Tp,off � 1 is required. For L = 10z0, less than 1% of the probe
amplitude is transmitted. A much thicker sample maybe not be
of interest since it may lead to diffraction of the driving fields
inside the sample, as discussed in the paragraph following
Eq. (13). In contrast, the signal field always experiences full
modulation of its amplitude, although for too thin a medium,
its peak amplitude may be too small. A small decrease in
transmission amplitude between the L = 2z0 and L = 10z0

cases is seen in Fig. 3(b).
If the atomic sample is normally illuminated by the probe

wave, the probe and signal amplitude distribution in the far
field is

Up,s(θ ) = C
∫ ∞

−∞
Tp,s(x) exp(−2πiDx sin θ/λ) dx, (16)

where θ is the diffraction angle, C is a proportionality constant,
and λ = λp ≈ λs . Substituting Eqs. (14) and (15) into Eq. (16),
we find the diffracted probe amplitude

Up(θ ) = (CMD){(w/D)Tp,onsinc[(πw/λ) sin θ ]+(a/D)Tp,off

× exp[−i(πD/λ) sin θ ] sinc[(πa/λ) sin θ ]}
× sin[M(πD/λ) sin θ ]

M sin[(πD/λ) sin θ ]
(17)

and the diffracted signal amplitude

Us(θ ) = (CMD)(w/D)Ts,on sinc[(πw/λ) sin θ ]

× sin[M(πD/λ) sin θ ]

M sin[(πD/λ) sin θ ]
, (18)

0.00

0.02

0.04

0.06

0.08

0.00

0.06

0.12

0.18

0.24

F
ar

-f
ie

ld
di

ffr
ac

tio
n

in
te

ns
ity

0.00

0.02

0.04

0.06

0.08

0 2 4 6-2-4-6

Diffraction angle θ (mrad)

(a)

(b)

L = 10 z0
L = 2 z0

L = 10 z0
L = 2 z0

0.00

0.02

0.04

0.06

0.08

F
ar-field

diffraction
intensity

FIG. 4. (Color online) Fraunhoffer diffraction patterns for the
(a) probe and (b) signal waves. The intensity is normalized such that
if Tp(x) = 1, then Ip(θ = 0) = 1.

where a = D − w is the width of the (partially) opaque region
between slits, and M = 10. The second term inside the curly
braces in the right-hand side of Eq. (17) plays a role only if
the grating slits are partially opaque. For fully opaque slits,
Tp,off ≈ 0. From Eqs. (17) and (18), the diffraction intensity
distribution Ip,s(θ ) = |Up,s(θ )|2/(CMD)2 can be calculated.
The diffraction intensity is normalized such that if Tp(x) = 1,
for example for L � 1, then Ip(0) = 1.

Figure 4 illustrates the far-field diffraction patterns for
probe and signal fields calculated based on the transmission
functions of Fig. 3. The first diffraction orders are located
at θ ≈ ±λ/D = ±5 mrad. In Fig. 4(a), we see that the
better modulation of the probe transmission function for
L = 10z0 compared to L = 2z0 leads to significantly more
light diffracted into the first order in the former case than in
the latter. For L = 2z0, we get less than 0.5% of the probe light
diffracted into the first order, as opposed to 2.5% for L = 10z0.
Since the signal transmission function is not significantly
different between the two sample lengths, diffraction of the
signal field into the first order is similar in the two cases, as
shown in Fig. 4(b).

We can obtain an analytical expression for the probe and
signal efficiencies for diffraction into the first order. Given the
normalization of the diffracted intensity Ip,s(θ ), the diffraction
efficiency of the EIG into the first order for probe and signal
waves is simply Ip,s(θ ) evaluated at sin θ = λ/D. For fully
opaque slits,

ηp = [Tp,on(w/D) sinc(πw/D)]2 (19)

and

ηs = [Ts,on(w/D) sinc(πw/D)]2. (20)

It is straightforward to show that ηp,s reach a maximum for
w/D = 0.5. The condition for fully opaque slits corresponds
to Tp,on ≈ Ts,on ≈ 0.5 as well. Under these conditions, we
calculate from Eqs. (19) and (20) a maximum probe and signal
diffraction efficiency of ηp,s ≈ 2.5%. This value is, however,
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the overall efficiency of the combined coherence grating and
EIG. Because of the coherence grating, only T 2

p,on ≈ 25% of
the incident probe beam is available for diffraction from the
EIG, which diverts [(w/D)sinc(πw/D)]2 ≈ 10% of this light
to the first order. Therefore, the diffraction efficiency of the
EIG alone is higher than that of a pure-absorption sinusoidal
EIG and comparable to that of the same sinusoidal EIG with
phase modulation [8].

IV. CONCLUSIONS

We proposed an atomic grating that combines an absorption
EIG with a coherence grating under maximal ground-state
coherence. While the coherence grating diffracts a resonant
probe beam into a signal beam in a traditional four-wave mix-
ing configuration, the EIG modulates the transmission of both
probe and signal beam. As a result, both beams are diffracted
into ±1 diffraction orders. An analytical expression for the
diffraction efficiency was found that predicted a maximum
first-order efficiency for both beams of approximately 10% for
the EIG alone and 2.5% for the combined EIG and coherence
grating. This analytical solution was obtained in the limit that
diffraction of the driving fields within the atomic sample could
be neglected. This approximation is valid if the mask that
modulates the driving fields and creates the EIG consists of

wide slits (≈160 μm width), and the atomic sample is short
(�1 mm).

To the best of our knowledge, all the EIGs previously
described in the literature so far can diffract only the spe-
cific wavelength associated with the EIT probe transition.
In contrast, our EIG simultaneously diffracts two different
wavelengths (probe and signal). A significant feature of our
maximal-coherence EIG is that it will work with a probe beam
resonantly tuned to any dipole-allowed transition starting from
the ground state. Although we illustrated our analysis for the
particular case of the D1 line of the Rb atom, the excited state
to which the probe laser is connected is not limited to one of
the hyperfine states of the P1/2 atomic level. The CPT-inducing
driving fields could be operating in the D1 line while the probe
field is tuned to an excited state in the D2 line, for example. In
future work, we plan to extend our model to a “multi”-�
system consisting of a multitude of excited states. In this
system, we are going to investigate the possibility of inducing
a grating that will diffract probe fields simultaneously tuned
to several resonant transitions, thus behaving as a wavelength
demultiplexer.
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