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Stability and time-domain analysis of the dispersive tristability in microresonators
under modal coupling
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Coupled nonlinear resonators have potential applications for the integration of multistable photonic devices.
The dynamic properties of two coupled-mode nonlinear microcavities made of Kerr material are studied by
linear stability analysis. Using a suitable combination of the modal coupling rate and the frequency detuning,
it is possible to obtain configurations where a hysteresis loop is included inside other bistable cycles. We show
that a single resonator with two modes both linearly and nonlinearly coupled via the cross-Kerr effect can
have a multistable behavior. This could be implemented in semiconductor nonlinear whispering-gallery-mode
microresonators under modal coupling for all optical signal processing or ternary optical logic applications.
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I. INTRODUCTION

Nonlinear mirocavities are of great interest for applications
in nonlinear photonics. In particular, multistable integrated
optoelectronic systems could have applications in all-optical
logic or memories [1,2]. Due to recent technological progress
made in the fabrication of high-Q microresonators, it is now
possible to consider photonic devices or functions involving
several coupled microcavities with low losses and fast optical
nonlinearities. In the linear regime, the coupling of resonators
is used to improve and tailor the filtering properties com-
pared with single-microresonator approaches. For example,
high-order band-pass filters with flat transmission and group
delay dispersion have been proposed [3,4]. The coupling of
resonators also increases the possibility offered by nonlinear
microcavities. In second-order nonlinear processes, it allows
the quasi-phase-matching condition to be reached [5–7].
Third-order nonlinear frequency conversion can be enhanced
in a coupled-resonator optical waveguide [8]. The coupling
between resonators can be chosen in order to optimize
the nonlinear or dynamic properties of all-optical signal
processing functions [9,10]. For example, cascaded sets of
nonlinear microresonators can control the pulse distortion
in miniaturized optical gates for pulse reshaping [11]. The
stationary response of coupled nonlinear resonators shows
potential multistable behavior [12], but the linear stability
analysis of such configurations has not been achieved yet. It has
also been theoretically demonstrated that coupled third-order
nonlinear microcavities have self-pulsing or chaotic behavior
[13,14]. Recently, an interpretation of this phenomenon has
been proposed: the self-pulsing originates from the counterac-
tion of mode beating and bistable switching [15]. From another
point of view, interesting switching processes have been
proposed using nonreciprocal effects in arrays of nonlinear
microresonators [16]. Symmetry breaking can occur in two
coupled microresonators made of Kerr material pumped by
two degenerate beams. This effect can be exploited for all-
positive pulse switching [17]. In some particular configurations
a single microresonator under modal coupling can behave
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as a coupled-cavity system. This has been demonstrated
in a semiconductor laser microdisk where the interplay
between the two counterpropagating modes leads to very
interesting switching schemes [1]. Modal coupling can also
be observed in passive microresonators: enhanced Rayleigh
backscattering can couple the two counterpropagating modes
of a whispering-gallery-mode (WGM) resonator [18–23]. The
nonlinear properties of such a two-mode system have already
been studied in the framework of nonlinear effects based on
two-photon absorption and plasma carrier dispersion [24]. In
this last study, the self-pulsation regime has been observed and
well understood using the coupled-mode theory (CMT) [25].
In this paper we report on the study of the instantaneous
third-order optical nonlinear properties (Kerr effect) of WGM
microcavities under modal coupling. We have deduced from
linear stability analysis and time-domain calculations that
these systems can have a true multistable response.

This paper is organized as it follows. In Sec. II, we first give
the formulation of the CMT applied to a coupled nonlinear two-
cavity system modeling the two nonlinear WGMs (clockwise
and counterclockwise) of the microresonator. Section III
focuses on the stationary response of the studied system.
We recall the basic linear properties of a two-mode cavity.
The CMT is applied to calculate the nonlinear stationary
response of the coupled-mode cavity. From the stationary
response expression, we carry out the linear stability analysis
of the system. In Sec. IV, using the linear stability analysis and
time-domain calculations, we show that a device comprising
two nonlinear modes both linearly and nonlinearly coupled
can have a true multistable behavior.

II. MODAL-COUPLING MODEL

As represented in Fig. 1, we consider a single WGM
cavity with two degenerated counterpropagating modes. The
distributed linear coupling between the two modes comes from
the enhanced Rayleigh backscattering, as already observed in
several WGM resonator configurations [18–23]. It could also
come from an artificial intracavity diffractive process, such as
distributed Bragg reflection. In this configuration, since the
two modes share the same cavity, they are also coupled via
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FIG. 1. (Color online) WGM nonlinear resonator with nonlinear
index n2 and coupling rate. The two counterpropagating modes a1

and a2 have the same resonant angular frequency ω0; 1/(2γ ) is their
mutual coupling rate. They are also coupled with a characteristic time
τe to a single access lines. Pin and Pout are, respectively, the input and
output powers. The two modes share the same cavity authorizing
nonlinear coupling via the cross-Kerr effect.

the cross-Kerr effect. The linear and nonlinear properties of
the cavity are characterized by its resonant angular frequency
ω0 and its intrinsic amplitude lifetime τ0. The coupling rate
between the two modes of amplitude a1 and a2 is 1/(2γ );
the coupling lifetime between the cavity mode and the bus
waveguide fields is τe. Note that |a1|2 and |a2|2 correspond to
the mode energies. The output field power Pout is related to the
intracavity mode energy by

Pout = 2

τe

|a2|2 . (1)

The equations of motion of the mode amplitudes read
[19,23,25]

da1

dt
=

[
j (ω0 + �ω1) − 1

τ

]
a1 + j

2γ
a2 +

√
2

τe

sin,

(2)
da2

dt
=

[
j (ω0 + �ω2) − 1

τ

]
a2 + j

2γ
a1,

where �ωi with i ∈ {1,2} are the nonlinear frequency shifts
due to the Kerr effect. Equations (2) would also be used to
model a two-coupled-cavity system. The difference between
the two cases would come from the expressions of the
nonlinear frequency shift. For a two-cavity system would
write �ωi = q|ai |2, whereas the nonlinear shifts of the cavity
resonance are given by �ω1 = q|a1|2 + 2q|a2|2 and �ω2 =
2q|a1|2 + q|a2|2 for the distributed coupling configuration
analyzed in this paper, taking into account the cross-Kerr
effect [12,26]. The parameter q depends on neff , the effective
refractive index of the mode, and n2, the nonlinear refraction
index of the material, constituting the cavity and its mode
volume V by [27]

q = n2ω0c

n2
effV

. (3)

Note that in this work, we limit our theoretical analysis to
instantaneous third-order nonlinear effects. In Eqs. (2), τ is
the overall lifetime of the field inside the cavity, and it can be
written

1

τ
= 1

τ0
+ 1

τe

. (4)

Finally, sin is the input field related to the input power Pin by
Pin = |sin|2.

In the aim of a thorough device design, the CMT must
be combined with full numerical calculations, such as the
finite-difference time-domain method (FDTD). The FDTD can
be used to determine all the effective parameters, for example,
τ , γ , andV . The FDTD method including third-order nonlinear
susceptibility is also useful for the verification of the CMT
nonlinear calculations. In most cases a good agreement can
be found between the results of the CMT and the FDTD
results [28–30], even in the case of coupled cavities [13].
This validates the use of the CMT to get the physical insight
into complex coupled-resonator photonic devices without
long time consumption. The coupling coefficients may also
be derived from full Maxwell equations by perturbative
calculations [31,32]. In this paper we do not carry out
numerical calculations and limit our calculations to stationary
and time-domain CMT approaches.

III. STATIONARY RESULTS

A. Linear properties

We first focus on the linear stationary regime (q = 0).
In this case, the excitation of the system can be chosen
as sin(t) = Sin exp (jωt), where ω is the excitation angular
frequency related to the cavity resonance by � = ω − ω0,
where � is defined as the angular frequency detuning. The
properties of the structure are given by the power transfer
function T = Pout/Pin of the device, which reads [23]

T (�) = 1/
(
γ 2τ 2

e

)
[(

� + 1
2γ

)2 + 1
τ 2

][(
� − 1

2γ

)2 + 1
τ 2

] . (5)

For sufficiently large coupling rates, 1
γ

> 2
τ

, this linear trans-
mission spectrum displays two split resonance frequencies
obtained for

� = ± 1

2γ

√
1 −

(
2γ

τ

)2

. (6)

This is illustrated in Fig. 2, where we give the linear transfer
function of the system for a lossless material (τ0 → +∞).
Figure 2(a) is obtained for τ = 2γ (critical coupling [19]),
and the transmission spectrum shows a flat profile at resonance,
whereas Fig. 2(b) illustrates the case τ > 2γ , where two well-
separated resonance frequencies appear. It has already been
proposed to use this interesting feature to reduce the required
power to observe optical multistability [33] in passive systems
[12].

B. Nonlinear response

Denoting a1(t) = A1(t)ejωt and a2(t) = A2(t)ejωt , the non-
linear stationary transfer function of the structure is calculated
from the static solutions A1 = x1 + jy1 and A2 = x2 + jy2
using A2 as a parameter. For convenience and without loss of
generality we chose A2 real and positive and then y2 = 0. The
imaginary part of A1 is then given by

y1 = −2γ

τ
x2, (7)
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FIG. 2. (Color online) Linear power transfer function T =
Pout/Pin in the case of lossless cavities (τ0 → +∞) for two different
coupling rates: (a) γ = τ/2 and (b) γ = τ/9.

and the real part x1 is obtained by solving

x2
1 + 1

4qγ x2
x1 + x2

2

[(
2γ

τ

)2

+ 1

2

]
− �

2q
= 0. (8)

In the general case, this equation has two solutions, which
give two branches to the nonlinear stationary response of the
single-cavity system. The input and output powers are thus
given by

Pin = τe

2

∣∣∣∣∣A2

2γ
+ A1

(
q|A1|2 + 2q|A2|2 − � + j

τ

)∣∣∣∣∣
2

,

(9)

Pout = 2

τe

|A2|2.

To analyze the stability of the static solutions obtained from
Eq. (9) we study the evolution of first-order perturbations
X = (δx1,δy1,δx2,δy2)T of the static solution (A1,A2). The
analysis of the eigenvalues of the Jacobian J, defined by

dX

dt
= J · X, (10)

gives the stability of the static solutions. If all the eigenvalues
have a negative real part, the static solution is stable. If one
of the eigenvalues has a positive real part, one has to examine
two cases: (i) the eigenvalue is real and (ii) the eigenvalue is
complex. In case (i) the solution is unstable, and the system
can evolve toward another state. Case (ii) is more complicated;
the solution presents some oscillations and can exhibit self-
pulsing, quasiperiodic, or chaotic behavior [13,34].

IV. MULTISTABLE TWO-MODE MICRORESONATORS

When the two coupled modes share the same cavity, one
has to take into account both linear and nonlinear coupling
via the Rayleigh backscattering and the cross-Kerr effect.
This strongly affects the nonlinear shifts. Consequently, the
nonlinear characteristics are strongly modified in comparison
with bistable single nonlinear cavities. Figure 3 shows non-
linear characteristics (for several detunings �) of a two-mode
cavity described in Fig. 1 in the case of the critical coupling
(γ = τ/2). For a moderate detuning (� = 3/τ ), the cavity
has mainly a bistable behavior, whereas for a large detuning

FIG. 3. (Color online) Normalized output power as a function of
the normalized input power in the case of critical coupling (γ = τ/2)
for three different detuning: (a) � = 1/τ , (b) � = 3/τ , and (c) � =
6/τ . The potentially multistable area is hatched.

(� = 6/τ ) a multistable regime [hatched area in Fig. 3(c)]
is potentially observable. Inspection of Fig. 3(c) reveals that
all the stable states of the multistable area are not easily
reachable using realistic input signals starting from zero.
Increasing the modal coupling allows the multistable regime to
be obtained. Figure 4 represents some nonlinear characteristics
of a two-mode nonlinear cavity with a stronger modal coupling
(γ = τ/9) for three different detuning values. For weak
detuning (� = 3/τ ) the system is only bistable. Increasing
the detuning, as in Fig. 4(b), a second hysteresis loop appears
for low input powers. Finally, for a sufficiently large detuning
(larger than 8/τ ) the two hysteresis loops overlap, and the
system becomes multistable, as shown by the hatched area in
Fig. 4(c).

In Fig. 5 we detailed the output-power characteristic already
represented in Fig. 4(c). In particular, we also give the stability
analysis results. Note that the modal coupling used in this
theoretical study is equivalent to that observed in AlGaAs
microdisks by Michael et al. [22]. The two branches of the
characteristic coming from Pin → 0 and Pin → +∞ given

FIG. 4. (Color online) Normalized output power as a function of
the normalized input power in the case of a strong modal coupling and
frequency splitting (γ = τ/9) for three different detunings: (a) � =
3/τ , (b) � = 7/τ , and (c) � = 10/τ . The potentially multistable area
is hatched.
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FIG. 5. (Color online) Normalized output power as a function of
the normalized input power in the case of a single cavity supporting
two coupled modes with γ = τ/9 and � = 10/τ . For each solution
we also give the linear stability analysis result.

by the two solutions of Eq. (8) join together at the point
highlighted by the arrows and the asterisk. In the multistable
area, tristability (i.e., three potentially stable states for the
same input intensity) can be reached, as illustrated by the
three characteristic points A, B, and C. We check it by direct
integration of Eqs. (2) using the three input signals given in
Fig. 6(a). Point A is reached by continuously increasing the
input power from 0 to 1.7, as represented by time series (i) in
Fig. 6(a). It is possible to reach point B by increasing the input
power to enter the self-pulsing area (point E). At this point the
system spontaneously jumps to the lowest branch (point F),
and point B is then reached by decreasing the input power to
1.7 [time series (iii)]. Finally, still increasing the input power
from A, the system jumps to D; then decreasing the input
power, the system goes to state C [time series (ii)]. The final
normalized input power of the three series is 1.7, whereas the
output power reached in the three cases is different. The system
acts as a true tristable system and could have applications in
ternary optical logic, for instance [35,36].

Finally, in Fig. 7, we give the input and output time series
for the same structure and input powers as those used in
the previous tristable configuration. The only change is the
input sequence: in this example we first reach point D before

FIG. 6. (Color online) (a) Normalized input signal time series
allowed to reach the three points A [series (i)], B [series (ii)], and C
[series (iii)]. (b) Corresponding output signals.

FIG. 7. (Color online) (a) Normalized input signal time series
allowed to reach a quasiperiodic regime. (b) Corresponding output
signals. In the inset we have plotted the phase portrait y1 = f (x1).

point E. The inset shows the phase portrait y1 = f (x1) of
the associated output signal. This simulation shows that a
quasiperiodic behavior [13] can be observed by reaching point
E from point D. We thus emphasize that the system is sensitive
to the time profile of the input signal. In the aim of practical
applications, the input excitation profile must be thoroughly
designed in order to avoid undesirable responses.

All the calculations have been made assuming a quality
factor Q = ω0τ/2 = 3000 (τ ≈ 4.9 ps at λ0 = 1.55 μm) com-
patible with fast optical signal processing applications. Assum-
ing, for example, AlGaAs microdisks (the Al composition of
the alloy must be chosen to avoid the two-photon absorption
to favor the Kerr effect) with n2 = 2 × 10−13 cm2/W [37],
neff = 2, V = 6( λ0

n0
)3, where n0 = 3 [38], we obtain a bias

power (normalized input power around Pin = 1.7 for A, B, and
C) around 280 mW. This input power would be considerably
reduced using fast resonant nonlinearities, such as those based
on the two-photon absorption and the free carrier dispersion in
III-V semiconductors [39]. In this case the overall dynamic
of the system would be strongly modified by the carrier
dynamic [34]. Another way to reduce the input power consists
in using hybrid systems [40] involving semiconductors and
high intrinsic nonlinear susceptibility and low two-photon
absorption polymer materials, such as p-toluene sulphonate
(PTS) with n2 = 2.2 × 10−12 cm2/W at λ0 = 1.6 μm [41].
By choosing higher Q factors (around 105, as reported in
Ref. [22]) the required input power would be strongly reduced
at the expense of the pulse duration.

V. CONCLUSION

The coupled-mode theory is a simple tool allowing the dy-
namical response of coupled nonlinear cavities to be simulated.
The model requires only effective parameters that could be
inferred using full numerical linear methods. We have applied
this model to study the nonlinear response of a single Kerr
microcavity with modal coupling. Stability analysis and direct
time-domain integration show that such a microresonator can
operate as a true tristable nonlinear photonic device. The study
must be extended to fast, but finite, response time nonlinear
processes to propose coupled-resonator architectures requiring
weaker optical input powers [34].
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