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Mankei Tsang1,2,3,*

1Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583
2Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551

3Center for Quantum Information and Control, University of New Mexico, MSC07–4220, Albuquerque, New Mexico 87131-0001, USA
(Received 11 August 2011; published 27 October 2011)

In a previous paper [Phys. Rev. A 81, 063837 (2010)], I proposed a quantum model of the cavity electro-
optic modulator, which can coherently couple an optical cavity mode to a microwave resonator mode and
enable quantum operations on the two modes, including laser cooling of the microwave resonator, electro-optic
entanglement, and backaction-evading optical measurement of a microwave quadrature. In this sequel, I focus
on the quantum input-output relations between traveling optical and microwave fields coupled to the cavity
electro-optic modulator. With red-sideband optical pumping, the relations are shown to resemble those of a
beam splitter for the traveling fields, so that in the ideal case of zero parasitic loss and critical coupling,
microwave photons can be coherently up converted to “flying” optical photons with unit efficiency, and vice
versa. With blue-sideband pumping, the modulator acts as a nondegenerate parametric amplifier, which can
generate two-mode squeezing and hybrid entangled photon pairs at optical and microwave frequencies. These
fundamental operations provide a potential bridge between circuit quantum electrodynamics and quantum optics.
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I. INTRODUCTION

The rapid recent progress in circuit quantum electrodynam-
ics (QED) [1] has motivated the question of how superconduct-
ing microwave circuits can be interfaced with quantum optics
technology for long-distance quantum information transfer.
This task requires efficient and coherent frequency conversion
between microwave and optical photons. Existing proposals
involve the use of mechanical oscillators as mediators between
electrical and optical systems [2], but a more straightforward
way is to take advantage of the well-known Pockels electro-
optic effect in a noncentrosymmetric material such as lithium
niobate [3,4]. The Pockels effect is the change in the optical
index of refraction of a material under an applied voltage.
A Pockels cell can be satisfactorily modeled as a broadband
second-order nonlinear optical medium and a capacitor on
the electrical side [3,4], so the effect is inherently coherent
and suitable for quantum optics experiments, much like the
use of second-order nonlinear crystals in optical parametric
amplifiers and oscillators. In the classical regime, high-
quality cavity electro-optic modulators that can resonantly
couple microwave and optical fields have been extensively
studied and experimentally demonstrated [5–8], but a quantum
analysis of the photon-frequency-conversion problem is still
lacking.

Most prior work on the electro-optic effect in quantum
optics assumes that the electro-optic modulator imposes a fixed
optical phase shift due to an applied voltage and does not allow
the microwave and optical fields to exchange energy [9]. A
model that treats the microwave field quantum-mechanically
is needed to address the frequency conversion problem and
has been developed in the previous paper [10]. While the
previous paper focuses on the analogy between electro-optics
and optomechanics and the interactions between resonator
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modes, the present paper studies the relations between the
traveling microwave and optical fields coupled to the cavities
and the conversion efficiencies in the presence of parasitic
losses. I consider two modes of operations: red-sideband
optical pumping and blue-sideband optical pumping. Red-
sideband pumping in the classical regime has been considered
previously in Refs. [8] with the assumption that the microwave
field is not resonantly enhanced and is undepleted; here I do a
quantum analysis assuming that the optical pump is undepleted
instead and allow the resonantly enhanced microwave field
and the up-converted optical field to exchange energy. This
process is shown to be a fundamentally noiseless operation
resembling that of a variable beam splitter, so that in the ideal
case of zero parasitic loss and critical coupling, microwave
photons can be coherently converted to optical photons with
unit efficiency, and vice versa. With blue-sideband pumping,
the electro-optic modulator acts as a nondegenerate parametric
amplifier, which can generate two-mode squeezing and hybrid
entangled photon pairs at optical and microwave frequencies.
Given the fundamental importance of beam splitters and
parametric amplifiers in quantum optics [11], such opera-
tions, enabled by the cavity electro-optic modulator, should
be similarly useful for future quantum optical interconnect
technology, if the technical challenges of implementing
a quantum-efficient cavity electro-optic modulator can be
overcome.

II. MODEL

As shown in Fig. 1, the cavity electro-optic modulator
model considered here is a generalization of the one in
Ref. [10] and also includes traveling optical and microwave
fields coupled to the optical and microwave resonators. A

and Aout are the input and output optical field annihilation
operators, B and Bout are the input and output microwave field
annihilation operators, A′ and B ′ are the quantum Langevin
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FIG. 1. (Color online) Schematic of cavity electro-optic modu-
lator coupled to traveling fields. The physics remains essentially the
same regardless of the actual types of the optical and microwave
resonators.

operators coupled through parasitic losses in the optical and
microwave resonators [11], and a and b are the optical
and microwave resonator-mode annihilation operators with
resonance frequencies ωa and ωb. The relevant commutation
relations are

[A(t),A†(t ′)] = δ(t − t ′), (2.1)

[B(t),B†(t ′)] = δ(t − t ′), (2.2)

[A′(t),A′†(t ′)] = δ(t − t ′), (2.3)

[B ′(t),B ′†(t ′)] = δ(t − t ′), (2.4)

[a,a†] = 1, (2.5)

[b,b†] = 1. (2.6)

In the following, I consider optical pumping at frequency
ωa − ωb or ωa + ωb. Following the terminology of optical
parametric oscillators, I shall call the configuration doubly
resonant (referring to the resonances at ωa and ωb) if the
optical cavity is off resonance at the pump frequency and
triply resonant if the cavity is also resonant at the pump
frequency.

III. RED-SIDEBAND OPTICAL PUMPING

A. Laplace analysis

Consider first red-sideband optical pumping at a frequency
ωa − ωb, as depicted in Fig. 2. Assume that the optical cavity
is off-resonant at ωa − 2ωb, so that the interactions between
the pump and the optical field at ωa − 2ωb can be neglected

FIG. 2. (Color online) Red-sideband optical pumping schemes.
(a) A doubly resonant configuration with an off-resonant pump.
(b) A triply resonant configuration with a resonant pump in a different
polarization mode [8]. Both schemes suppress interactions with the
off-resonant field at ωa − 2ωb.

via the rotating-wave approximation. This can be achieved
for a Fabry-Pérot or whispering-gallery-mode cavity if ωb

does not coincide with the free spectral range, so that the
pump is off resonance in a doubly resonant configuration
[10], or if the pump and the optical mode at ωa are modes
with different polarizations in a triply resonant configuration
[8]. Transforming into an appropriate rotating frame that
removes the harmonic time dependencies exp(−iωat) and
exp(−iωbt) from a and b, the resulting equations of motion
become

da

dt
= igαb − �a

2
a + √

γaA + √
γ ′

aA
′, (3.1)

db

dt
= igα∗a − �b

2
b + √

γbB +
√

γ ′
bB

′, (3.2)

Aout = √
γaa − A, (3.3)

Bout = √
γbb − B. (3.4)

where

g ≡ ωan
3rl

cτd

(
h̄ωb

2C

)1/2

(3.5)

is the electro-optic coupling coefficient in units of Hertz [10],
n is the optical index of refraction inside the electro-optic
medium, r is the electro-optic coefficient in units of m/V [3,4],
l is the length of the medium, d is the thickness, τ is the
optical round-trip time, C is the capacitance of the microwave
resonator, �a and �b are the total decay rates of the optical
and microwave modes and are sums of the traveling-field
coupling rates γa and γb and parasitic decay rates γ ′

a and γ ′
b;

viz.,

�a = γa + γ ′
a, �b = γb + γ ′

b, (3.6)

and α is the normalized pump field amplitude, such that |α|2 is
the number of pump photons inside the cavity. I have made the
usual undepleted-pump approximation, which assumes that
the fields a and b are much weaker than the pump and do
not perturb the pump amplitude significantly, so that α can be
approximated as a constant classical field.

Equations (3.1)–(3.4) are most easily solved using the
Laplace transform; viz.,

f̃ (s) ≡
∫ ∞

0
dtf (t) exp(−st), (3.7)

so that, for example,

da(t)

dt
→ sã(s) − a(0). (3.8)
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The solutions for Aout and Bout in the Laplace domain are given by

(
Ãout(s)

B̃out(s)

)
=

(
FAa(s) FAb(s)

FBa(s) FBb(s)

) (
a(0)

b(0)

)
+

(
SAA(s) SAB(s) SAA′(s) SAB ′(s)

SBA(s) SBB(s) SBA′ (s) SBB ′ (s)

) ⎛
⎜⎜⎜⎜⎝

Ã(s)

B̃(s)

Ã′(s)

B̃ ′(s)

⎞
⎟⎟⎟⎟⎠ . (3.9)

The first part of the solution that depends on an F matrix, a(0),
and b(0) is the transient solution. Explicitly, the F matrix is
given by

F (s) = 1

D(s)

(√
γa

(
s + �b

2

)
i
√

γagα

i
√

γbgα∗ √
γb

(
s + �a

2

)
)

, (3.10)

where the denominator is

D(s) ≡
(

s + �a

2

)(
s + �b

2

)
+ |gα|2 (3.11)

= (s − p+)(s − p−). (3.12)

The poles of the transfer functions p±, given by

p± ≡ −�a + �b

4
±

√(
�a − �b

4

)2

− |gα|2, (3.13)

play a crucial role in the system dynamical response. Figure 3,
the so-called root-locus plot [12], shows the loci of the poles
on the complex plane as |gα| is increased. This plot is typical
of a damped harmonic oscillator. When

|gα| >
|�a − �b|

4
, (3.14)

the poles become complex, indicating a phenomenon analo-
gous to Rabi splitting [11]. The coupled electro-optic response
then becomes oscillatory.

B. Electro-optic beam splitting

While the transient solution can be relevant to the task of
reading out resonator modes, the S matrix, which relates the
traveling fields, is of more interest to frequency conversion:

S(s) = 1

D(s)

(( − s + γa−γ ′
a

2

) (
s + �b

2

) − |gα|2 igα
√

γaγb

√
γaγ ′

a

(
s + �b

2

)
igα

√
γaγ

′
b

igα∗√γaγb

( − s + γb−γ ′
b

2

) (
s + �a

2

) − |gα|2 igα∗√γ ′
aγb

√
γbγ

′
b

(
s + �a

2

)
)

. (3.15)

The spectral behavior of the system is obtained by neglecting the transient solution and substituting s = −iω in the S matrix,
where ω is the detuning with respect to the carrier frequencies ωa and ωb. The Fourier transforms of the input and output fields
are related by the S(−iω) matrix:

f̂ (ω) ≡
∫ ∞

−∞
dtf (t) exp(iωt), (3.16)

(
Âout(ω)

B̂out(ω)

)
=

(
SAA(−iω) SAB(−iω) SAA′(−iω) SAB ′(−iω)

SBA(−iω) SBB(−iω) SBA′ (−iω) SBB ′ (−iω)

)⎛
⎜⎜⎜⎜⎝

Â(ω)

B̂(ω)

Â′(ω)

B̂ ′(ω)

⎞
⎟⎟⎟⎟⎠ . (3.17)

Equation (3.17) then resembles the spectral-domain input-
output relations for a lossy beam splitter with quantum
Langevin noise fields Â′ and B̂ ′ [13].

For frequency conversion, the most important quantity is
the electro-optic conversion efficiency, defined by

R(ω) ≡ |SAB(−iω)|2 = |SBA(−iω)|2 (3.18)

= |gα|2γaγb

|(−iω − p+)(−iω − p−)|2 . (3.19)

At zero detuning (ω = 0),

R(0) = 4ηG0

(1 + G0)2
, (3.20)

where

G0 ≡ 4|gα|2
�a�b

(3.21)

043845-3



MANKEI TSANG PHYSICAL REVIEW A 84, 043845 (2011)

FIG. 3. (Color online) Root-locus plot for increasing red-
sideband pump strength |gα|.

is analogous to the cooperativity parameter in cavity QED [14]
and

η ≡ γaγb

�a�b

(3.22)

is the intrinsic efficiency of the system.
Figure 4 plots the conversion efficiency R(0)/η at zero

detuning. The highest efficiency at zero detuning is achieved
when

G0 = 1, R(0) = η. (3.23)

Since the zero-detuning efficiency drops when G0 > 1, G0 =
1 can be regarded as a critical coupling condition. For other
frequencies, the efficiency given by Eq. (3.19) depends on the
product of the distances between −iω and the poles p± on the
complex plane. Figure 5 plots the conversion efficiency with
respect to the normalized detuning frequency 	 ≡ 2ω/

√
�a�b

and increasing G0, showing that the highest efficiencies indeed
occur at frequencies near the poles. The conversion bandwidth
is thus maximum when the imaginary parts of the poles are
the farthest apart. For a fixed |gα|2, this means that

�a = �b, (3.24)

and the resonators should ideally have the same decay rates.
Figure 6, which plots the efficiency at critical coupling against
ln(�b/�a), confirms this behavior.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

G0

4G
0
/
(1

+
G

0
)2

R(0)/η

FIG. 4. (Color online) Conversion efficiency R(0)/η at zero
detuning versus the cooperativity parameter G0.

FIG. 5. (Color online) The color plot shows the conversion
efficiency R(ω)/η at �a = �b and a fixed η with respect to G0 on the
horizontal axis and 	 ≡ 2ω/

√
�a�b on the vertical axis. The solid

lines are the imaginary parts of the poles.

In the case of γ ′
a = γ ′

b = 0, SAA′ , SAB ′ , SBA′ , and SBB ′ are
all zero, and the ideal lossless beam-splitting relations are
recovered:(

Âout(ω)

B̂out(ω)

)
=

(
SAA(−iω) SAB(−iω)

SBA(−iω) SBB(−iω)

)(
Â(ω)

B̂(ω)

)
, (3.25)

in which case the conversion efficiency at zero detuning can
be perfect at critical coupling:

G0 = 1, R(0) = 1, T (0) ≡ |SAA(0)|2 = |SBB(0)|2 = 0.

(3.26)

Faithful frequency conversion thus requires relatively low
parasitic losses (γ ′

a � γa,γ
′
b � γb) and the critical coupling

condition (G0 = 1).

FIG. 6. (Color online) The color plot shows the conversion
efficiency R(ω)/η at critical coupling (G0 = 1) and a fixed η with
respect to ln(�b/�a) on the horizontal axis and 	 ≡ 2ω/

√
�a�b on

the vertical axis. The solid lines are the imaginary parts of the poles.
The bandwidth is maximum when �a = �b and the imaginary parts
of the poles are the farthest apart.
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IV. BLUE-SIDEBAND OPTICAL PUMPING

A. Laplace analysis

The analysis of a blue-sideband optical pumping scheme
(Fig. 7) is similar; the equations of motion are now
given by

da

dt
= igαb† − �a

2
a + √

γaA + √
γ ′

aA
′, (4.1)

db

dt
= igαa† − �b

2
b + √

γbB +
√

γ ′
bB

′, (4.2)

Aout = √
γaa − A, (4.3)

Bout = √
γbb − B. (4.4)

FIG. 7. (Color online) Blue-sideband optical pumping scheme in
(a) a doubly resonant configuration with an off-resonance pump and
(b) a triply resonant configuration with a resonant pump.

In deriving Eqs. (4.1) and (4.2), the optical frequency ωa + 2ωb

is assumed to be far away from any optical resonance, as shown
in Fig. 7, and the undepleted pump approximation is again
made. The solutions for Aout and B

†
out in the Laplace domain

can be written as

(
Ãout(s)

B̃
†
out(s

∗)

)
=

(
FAa(s) FAb(s)

FBa(s) FBb(s)

) (
a(0)

b†(0)

)
+

(
SAA(s) SAB(s) SAA′(s) SAB ′(s)

SBA(s) SBB(s) SBA′(s) SBB ′ (s)

) ⎛
⎜⎜⎜⎜⎝

Ã(s)

B̃†(s∗)

Ã′(s)

B̃ ′†(s∗)

⎞
⎟⎟⎟⎟⎠ . (4.5)

These relations suggest that the electro-optic modulator now
acts as a nondegenerate parametric amplifier. The F matrix is

F(s) = 1

D(s)

(√
γa(s + �b/2) i

√
γagα

−i
√

γagα∗ √
γb(s + �a/2)

)
, (4.6)

D(s) ≡
(

s + �a

2

)(
s + �b

2

)
− |gα|2 (4.7)

= (s − π+)(s − π−). (4.8)

The poles are

π± = −�a + �b

4
±

√(
�a − �b

4

)2

+ |gα|2, (4.9)

which, as shown in Fig. 8, follow very different loci than the
ones for red-sideband pumping in Fig. 3 and remain real. When

G0 ≡ 4|gα|2
�a�b

� 1, π+ � 0, (4.10)

the π+ pole moves to the right-half plane, and the system
becomes unstable. In other words, G0 � 1 is the threshold
condition for electro-optic parametric oscillation.

B. Electro-optic parametric amplification

Below threshold (G0 < 1), the input-output relations for
the nondegenerate parametric amplifier are

S(s) = 1

D(s)

(( − s + γa−γ ′
a

2

) (
s + �b

2

) + |gα|2 igα
√

γaγb

√
γaγ ′

a

(
s + �b

2

)
igα

√
γaγ

′
b

−igα∗√γaγb

( − s + γb−γ ′
b

2

) (
s + �a

2

) + |gα|2 −igα∗√γ ′
aγb

√
γbγ

′
b

(
s + �a

2

)
)

.

(4.11)

The parametric gains in the spectral domain are given by

(
Âout(ω)

B̂
†
out(−ω)

)
=

(
SAA(−iω) SAB(−iω) SAA′(−iω) SAB ′(−iω)

SBA(−iω) SBB(−iω) SBA′(−iω) SBB ′ (−iω)

) ⎛
⎜⎜⎜⎜⎝

Â(ω)

B̂†(−ω)

Â′(ω)

B̂ ′†(−ω)

⎞
⎟⎟⎟⎟⎠ . (4.12)

In particular, the amplified electro-optic conversion efficiency, or the idler gain, is

R(ω) ≡ |SBA(−iω)|2 = |SAB(−iω)|2 (4.13)

= |gα|2γaγb

(ω2 + π2+)(ω2 + π2−)
. (4.14)
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FIG. 8. (Color online) Root-locus plot for increasing blue-
sideband pump strength |gα|.

With the real poles, the spectral behavior of the amplifier in
general resembles a bandpass filter around zero detuning, at
which the gain is

R(0) = 4ηG0

(1 − G0)2
. (4.15)

Figure 9 plots this function in dB against the cooperativity
parameter G0. Unlike the conversion efficiency for red-
sideband pumping in Fig. 4, the gain increases indefinitely
for increasing G0 until the threshold condition.

Parametric amplification may be useful for electro-optic
conversion in the classical regime, but amplification in the
quantum regime necessarily comes with noise. For coherent-
state inputs, the noise statistics are completely determined by

〈Â†
out(ω)Âout(ω

′)〉 = 〈Â†
out(ω)〉〈Âout(ω

′)〉
+ 2πδ(ω − ω′)[R(ω) + R′

A(ω)],

(4.16)

〈B̂†
out(ω)B̂out(ω

′)〉 = 〈B̂†
out(ω)〉〈B̂out(ω

′)〉
+ 2πδ(ω − ω′)[R(ω) + R′

B(ω)], (4.17)

〈Âout(ω)B̂out(ω
′)〉=〈Âout(ω)〉〈B̂out(ω

′)〉 + 2πδ(ω + ω′)K(ω),

(4.18)

0 0.2 0.4 0.6 0.8 1
−10

0

10

20

30

G0

10
lo

g 1
0
4G

0
/
(1

–G
0
)2

R(0)/η (dB)

FIG. 9. (Color online) Idler gain R(0)/η in dB at zero detuning
versus G0.

where

R′
A(ω) ≡ |SAB ′(−iω)|2 = |gα|2γaγ

′
b

(ω2 + π2+)(ω2 + π2−)
, (4.19)

R′
B(ω) ≡ |SBA′(−iω)|2 = |gα|2γ ′

aγb

(ω2 + π2+)(ω2 + π2−)
, (4.20)

K(ω) ≡ SAA(−iω)S∗
BA(−iω) + SAA′(−iω)S∗

BA′(−iω)

(4.21)

= igα
√

γaγb

(ω2 + π2+)(ω2 + π2−)

×
[(

iω + �a

2

)(
−iω + �b

2

)
+ |gα|2

]
. (4.22)

To investigate the nonclassicality of the hybrid squeezed state
when the inputs are vacuum, one can use the optical equiv-
alence theorem [11] to write the phase-sensitive covariance
as

〈Âout(ω)B̂out(ω
′)〉 =

∫
DADBPout[A,B]A(ω)B(ω′), (4.23)

where A and B are classical fields and Pout[A,B] is the P

functional for the output fields. If the P representation is
nonnegative, the Cauchy-Schwarz inequality gives

|〈Âout(ω)B̂out(ω
′)〉|2 �

∫
DADBPout[A,B]|A(ω)|2

×
∫

DADBPout[A,B]|B(ω′)|2

(4.24)

= 〈Â†
out(ω)Âout(ω)〉〈B̂†

out(ω
′)B̂out(ω

′)〉.
(4.25)

This implies that, for a classical state,

|K(ω)|2 = 1

η
R2(ω) + R(ω) (4.26)

� [R(ω) + R′
A(ω)][R(ω) + R′

B(ω)] (4.27)

= 1

η
R2(ω) ≡ |Kc(ω)|2. (4.28)

One can then define a nonclassicality parameter as

�(ω) ≡ ln
|K(ω)|2
|Kc(ω)|2 = ln

[
1 + η

R(ω)

]
. (4.29)

At zero detuning,

�(0) = ln
(1 + G0)2

4G0
, (4.30)

which depends on G0 but not η. The phase-sensitive correlation
is strongly nonclassical (� � 1) when G0 � 1 but vanishes
at threshold, as shown in Fig. 10.

This nonclassical correlation may be useful for quantum
illumination [15]. In quantum illumination, the reflection of
a signal is measured to detect the presence of a target, and a
quantum-enhanced performance can be achieved even in the
presence of high loss and high thermal noise, if the signal is
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FIG. 10. (Color online) Nonclassicality parameter �(0) at zero
detuning versus G0.

entangled with an idler before being sent out and the return
signal is measured jointly with the retained idler. This concept
can also be useful for secure communication [16]. As shown by
Guha and Erkmen, the joint measurement can be performed by
injecting the signal and idler into another parametric amplifier
and counting the photon number of the output idler mode [17].
Since thermal noise is much higher at microwave frequencies,
quantum illumination should be more useful in the microwave
regime. The microwave photons created by an electro-optic
parametric amplifier can be used as the signal, while the
joint measurement of the microwave signal and the retained
optical idler can be done using another electro-optic parametric
amplifier. The optical photon number of the output idler mode
can then be counted using currently available high-efficiency
optical photon counters.

In the case of γ ′
a = γ ′

b = 0, the ideal parametric-
amplification relations are recovered:(

Âout(ω)

B̂
†
out(−ω)

)
=

(
SAA(−iω) SAB(−iω)

SBA(−iω) SBB(−iω)

) (
Â(ω)

B̂†(−ω)

)
.

(4.31)

The standard analysis of two-mode parametric amplification
and squeezing [18,19] then applies.

C. Hybrid entangled photons

An alternative way of studying the entanglement between
the two fields is to consider the Schrödinger picture. Assume
that the idler gain is small enough such that one can write

Âout(ω) ≈ Â(ω) − i[Â(ω),ε], (4.32)

with ε being an Hermitian operator, and likewise for the other
output fields. It is not difficult to show that this can be satisfied
if G0 � 1 and

ε =
∫ ∞

−∞

dω

2π
[iSAB(−iω)Â†(ω)B̂†(−ω)

+ iSAB ′ (−iω)Â†(ω)B̂ ′†(−ω)

+ iS∗
BA′ (−iω)Â′†(ω)B̂†(−ω) + H.c.], (4.33)

with H.c. denoting the Hermitian conjugate. One can then
write the unitary evolution operator as

U ≈ 1 − iε, (4.34)

and the Schrödinger-picture output state for a vacuum input
state |vac〉 as

|
〉 = U |vac〉 ≈ (1 − iε)|vac〉 (4.35)

= |vac〉 +
∫ ∞

−∞

dω

2π
[SAB(−iω)Â†(ω)B̂†(−ω)

+SAB ′ (−iω)Â†(ω)B̂ ′†(−ω)

+S∗
BA′ (−iω)Â′†(ω)B̂†(−ω)]|vac〉. (4.36)

Tracing out the inaccessible A′ and B ′ modes and denoting the
vacuum state in the subspace of A and B modes as |0,0〉, one
obtains

ρAB = trA′B ′ |
〉〈
| (4.37)

≈ |ψ〉〈ψ | +
∫ ∞

−∞

dω

2π
R′

A(ω)|1ω,0〉〈1ω,0|

+
∫ ∞

−∞

dω

2π
R′

B(ω)|0,1ω〉〈0,1ω|, (4.38)

|ψ〉 ≡ |0,0〉 +
∫ ∞

−∞

dω

2π
SAB(−iω)|1ω,1−ω〉, (4.39)

where the unnormalized Fock states are defined by

|1ω,0〉 ≡ Â†(ω)|0,0〉, (4.40)

|0,1ω〉 ≡ B̂†(ω)|0,0〉, (4.41)

|1ω,1−ω〉 ≡ Â†(ω)B̂†(−ω)|0,0〉. (4.42)

Thus, R(ω) is the entangled photon-pair generation rate per
Hertz and R′

A,B(ω) are the accidental photon generation rates
per Hertz. If, for instance, an optical photon is used to herald
a microwave photon, the heralding efficiency is

R(ω)

R′
A(ω) + R(ω)

= γb

�b

, (4.43)

which suggests that γ ′
a � γa and γ ′

b � γb are desirable for
generating pure entangled photons. The entangled photons are
frequency anticorrelated, as one would expect from energy
conservation.

V. CONCLUSION

The most important result of this paper is that efficient
electro-optic frequency conversion requires the cooperativity
parameter G0 and the intrinsic efficiency η to be close to 1.
While it should be possible to make η close to 1 using current
microwave and optical resonator technology, G0 of existing
lithium niobate devices [6] is unfortunately on the order of
10−5 only [10]. This should be enough to demonstrate hybrid
entangled photons if the electro-optic modulator is kept at a
cryogenic temperature such that thermal microwave noise can
be neglected, but the small G0 is hardly useful for coherent
frequency conversion. That said, there are reasons to feel
optimistic about the future of cavity quantum electro-optics.
There should be significant room for improvement of lithium
niobate devices, which can make g ∼ 2π × 5 kHz and G0 ∼ 5
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for achievable parameters [10]. There also exist other crystals
with electro-optic coefficients r one to two orders of magnitude
higher than that of lithium niobate, such as barium titanate
and potassium tantalum niobate [4], which can boost g ∝ r

and G0 ∝ r2 even further. Last but not the least, current
electro-optics technology [5,6,8] is much more advanced
experimentally than competing electro-optomechanics pro-
posals [2], which require the integration of three different
types of high-quality resonators; a technical feat not achieved
so far. For these reasons, the cavity electro-optic modulator
is easily the most promising candidate for future quantum
optical interconnect technology, and the study presented here

and in the previous paper should motivate further experimental
investigations in that direction.
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