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Nondiffracting optical beams in a three-level Raman system
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Diffractionless propagation of optical beams through atomic vapors is investigated. The atoms in the vapor are
operated in a three-level Raman configuration. A suitably chosen control beam couples to one of the transitions,
and thereby creates a spatially varying index of refraction modulation in the warm atomic vapor for a probe
beam that couples to the other transition in the atoms. We show that a Laguerre-Gaussian control beam allows
the propagation of single Gaussian probe field modes as well as multi-Gaussian modes and non-Gaussian modes
over macroscopic distances without diffraction. This opens perspectives for the propagation of arbitrary images
through warm atomic vapors.
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I. INTRODUCTION

A long sought-after goal is the all-optical processing of
information, replacing state-of-the-art electronic handling. It
is well known, however, that major obstacles arise in particular
at spatial scales that are small compared to the involved
wavelengths. Light cannot be focused to arbitrarily small areas,
and it cannot directly be used to image or write structures below
a scale given by the involved wavelength [1,2]. A key origin
for these restrictions is diffraction, leading, for example, to the
Rayleigh limit for the case of imaging [3]. Due to the enormous
significance for applications (e.g., in nano- or life sciences) a
number of schemes have been invented to circumvent or even
surpass the standard limits in a various setups. Examples are
subwavelength microscopy [4–16], and optical subwavelength
lithography [17–23]. But more fundamentally, diffraction also
already impacts the propagation of a light beam in free space.
For example, a Gaussian probe beam with a certain width at the
focal plane spreads as it propagates away from the focal plane,
on a length scale given by the Rayleigh length [2]. This paraxial
diffraction spreading occurs in free space as well as inside a
medium, and affects applications such as the transmission of
small images, the transfer of small mask structures to the target
surface in lithography, or the steering or optical manipulation
of light beams.

It was recognized that this spreading due to paraxial
diffraction can be decreased, increased, or completely elim-
inated by propagating the light beam through a medium with
spatially varying optical properties. This can be achieved
via the use of external coherent control fields, inducing
a spatially varying susceptibility and inducing phase shifts
via different physical processes [24]. The spatial profile
of a strong control beam renders the medium inhomogeneous
along the transverse direction. Since absorption and dispersion
of the medium are crucially dependent on the intensity and
the shape of the strong control beam, the control beam
will strongly affect the propagation of the probe beam.
The ability to control the spatially varying susceptibility of
the medium via external fields holds the key to eventually
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being able to control the spreading of optical beams. These
and related techniques are of significance also because they
have the potential of complementing optical information
transmission with all-optical information processing, thereby
replacing the currently ubiquitous electronic information
processing.

Thus it is not surprising that a great number of schemes
both in theory and in experiment demonstrated the ability to
optically control the propagation of light. Most of these works
can be understood in analogy to a waveguide, confining the
light in specific modes transversally. This could enable one
to implement applications originally proposed for physical
waveguides [25,26] with all-optically induced waveguides. For
example, it was shown that spatial variations in a medium
induced by a control laser field can lead to focusing or
defocusing of a probe beam [27–30]. An optically written
waveguide realized by applying a Laguerre-Gaussian control
field near-resonantly to an atomic medium to propagate a probe
beam was demonstrated in [31] and discussed in [32,33].
Waveguiding in a warm rubidium vapor based on an off-
resonant Raman configuration was reported in Ref. [34]. A
signal beam was shown to propagate with small spot size
over several diffraction lengths. In a variant of such setups, the
spatial profile of a control beam can be cast onto a probe beam.
Recently, this concept was implemented in rubidium atomic
vapor, based on coherent population trapping [35]. In this
experiment, a spatial profile was transferred from the coupling
beam onto the probe beam, which was found to exhibit feature
size five times smaller than the diffraction-limited size.

However, all of these schemes suffer from the fact that
the modes other than the specific supported mode cannot
propagate without diffraction, or even not at all. This prohibits
the desired transmission of arbitrary images. In order to
overcome this limitation, very recently, a scheme for the
direct propagation of arbitrary probe beam images without
diffraction was put forward theoretically [36] and verified
experimentally [37]. This setup is based on an atomic
three-level system reminiscent of electromagnetically induced
transparency, but assumes an explicit breaking of the usual
two-photon resonance condition such that strong absorption
occurs. The underlying physics in this setup is fundamentally
different from previous setups, as it relies on the movement
of the atoms in order to compensate the diffraction, rather
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than on a stationary waveguide. A method to propagate
optical images with reduced diffraction based on the saturated
absorption mechanism in a two-level atom was proposed
in Ref. [38]. Future ideas along this line therefore can be
expected to advance key applications in optical information
transmission and processing, as well in reading and writing at
the subwavelength scale.

In this paper, we discuss the light propagation through
waveguides written by a spatially structured control laser field
into a warm atomic vapor. The Laguerre-Gaussian control
field and the probe laser field couple with the atoms to
form a three-level system in � configuration as shown in
Fig. 1. We start by deriving analytical results for the steady-
state susceptibility experienced by the probe beam. We then
consider a thermal medium by averaging the susceptibility over
a Maxwellian velocity distribution of the vapor atoms. The
probe beam propagation dynamics is analyzed by numerically
solving the Maxwell-Schrödinger equation including diffrac-
tion and dispersion in two spatial dimensions transversal to
the propagation direction, the spatial profile of the control
field, and the thermal motion of the vapor atoms. We find
that for suitable parameter choices, a single Gaussian probe
field mode can be propagated diffractionless or even with
subdiffraction through the warm vapor. We then proceed to
analyze more complex mode structures of the probe beam,
and show that a Gaussian double pulse can be propagated
without distortion or diffraction through the optically written
waveguide. Finally, we demonstrate that a beam formed out of
multiple secant-hyperbolic shaped pulses can be propagated
diffractionless through the warm atomic vapor. Our results
thus relax the restriction of many previous theoretical and
experimental works for diffractionless beam propagation in
atomic waveguides to a specific mode of the probe beam.

FIG. 1. (Color online) Diffractionless beam propagation through
a vapor cell. (a) shows a schematic setup to study the propagation
of a probe laser field through an atomic vapor cell. The propagation
dynamics is controlled using an additional control laser field with a
Laguerre-Gaussian transversal profile. (b) Three-level � configura-
tion of the vapor atoms.

We have also shown that transmission and finesse of the
output probe beam can be enhanced by changing the width of
the Laguerre-Gaussian control beam. This opens perspectives
for the propagation of arbitrary images in warm atomic
vapors.

The paper is organized as follows. In Sec. II, we introduce
our model, discuss the susceptibility of a thermal vapor, and
describe the Maxwell-Schrödinger equation used to analyze
the propagation dynamics of the probe beam through the
optically written waveguide. In Sec. III A, we discuss the static
properties of the medium susceptibility under the action of the
spatially structured control laser beam. In Sec. III B, we then
discuss our results on the propagation of different probe beams
through the optically written waveguide. Finally, Sec. IV
discusses and summarizes our results.

II. THEORETICAL CONSIDERATIONS

A. Model

We consider the geometry as shown in Fig. 1. A weak
probe laser field with frequency ωp is focused at the entry of
an atomic vapor, and copropagating with an additional control
laser field with frequency ωc focused at the back of the vapor
cell. The cell is filled with a gas of three level atoms in �

configuration as shown in Fig. 1(b). The electric fields of the
two beams can be defined as

Ej (r,t) = E(+)
j (r,t) + c.c. , (1a)

E(+)
j (r,t) = ejEj (r,t)e−iωj t+ikj ·r , (1b)

where Ej is the slowly varying envelope and ej is unit
polarization vector of the field. The index j ∈ {c,p} denotes
the probe (p) or control (c) field, respectively. The polarization
vectors of the beams are chosen in such a way that the
control beam Ec is tuned to the atomic transition |1〉 ↔
|3〉 while the probe beam Ep is coupled to the atomic
transition |1〉 ↔ |2〉. The Hamiltonian of the � system under
electric-dipole and rotating-wave approximation can then be
written as

H = H0 + HI , (2a)

H0 = h̄ω13|1〉〈1| + h̄ω23|2〉〈2| , (2b)
HI = − (|1〉〈2|d12 · E(+)

p

+ |1〉〈3|d13 · E(+)
c + H.c.) , (2c)

where ωj3 denotes the resonance frequency on the transition
|j 〉 ↔ |3〉, d1j = 〈1|d̂|j 〉 is the matrix element of the electric
dipole moment operator d̂, and we have set the energy
of state |3〉 to zero. We now make use of the unitary
transformation

W = e− i
h̄
Ut , (3a)

U = h̄ωc|1〉〈1| + h̄(ωc − ωp)|2〉〈2| , (3b)

to rewrite the Hamiltonian as

V = h̄�c|1〉〈1| + h̄(�c − �p)|2〉〈2|
−h̄(G|1〉〈3| + g |1〉〈2| + H.c.) . (4)

043842-2



NONDIFFRACTING OPTICAL BEAMS IN A THREE-LEVEL . . . PHYSICAL REVIEW A 84, 043842 (2011)

Here, �j for j ∈ {c,p} are the detunings of the fields
defined as

�p = ω12 − ωp , (5a)

�c = ω13 − ωc . (5b)

The Rabi frequencies of the probe and control fields 2g and
2G are related to the slowly varying amplitudes of Ep and
Ec as

2g = 2Epd12 · ep

h̄
, (6a)

2G = 2Ecd13 · ec

h̄
. (6b)

As shown in Fig. 1(b), the upper atomic state |1〉 decays to
|3〉 with rate γ1, and to |2〉 with rate γ2. Furthermore, �23 is
the decay rate of the ground state atomic coherence. In order
to incorporate these incoherent processes, we use the master
equation approach to describe the dynamics of the atomic
populations and coherences of the three-level atoms. From
Eq. (4), the equations of motion for the elements of the density
matrix ρ can be written as

ρ̇11 = − (γ1 + γ2)ρ11 + ıgρ21 + ıGρ31

− ıg∗ρ12 − ıG∗ρ13 , (7a)

ρ̇22 = γ2ρ11 + ıg∗ρ12 − ıgρ21 , (7b)

ρ̇12 = −
[

1

2
(γ1 + γ2) + ı�p

]
ρ12 + ıgρ22

+ ıGρ32 − ıgρ11 , (7c)

ρ̇13 = −
[

1

2
(γ1 + γ2) + ı�c

]
ρ13 + ıgρ23

+ ıGρ33 − ıGρ11 , (7d)

ρ̇23 = −[� − ı(�p − �c)]ρ23 + ıg∗ρ13 − ıGρ21 . (7e)

The third population follows from the conservation law ρ11 +
ρ22 + ρ33 = 1. In the following, we for simplicity restrict the
analysis to the case γ1 = γ2 = γ .

B. Susceptibility of a thermal medium

In the steady state, the density matrix equations (7) can
be solved analytically. We are in particular interested in
the steady-state value of the atomic coherence ρ12, which
determines the probe field susceptibility χ of the medium
at frequency ωp. The analytical expression for χ to all
orders in the control and probe Rabi frequencies is given
in Appendix A. The susceptibility crucially depends on the
two-photon detuning of the Raman system defined as

δR = �p − �c . (8)

For a warm atomic medium, the thermal motion of the atoms
causes inhomogeneous broadening of the atomic spectra.
This broadening plays an important role when considering
the optical properties of the medium to determine the probe
beam propagation dynamics through the medium [39,40]. We
incorporate the motion in the susceptibility χ in Eq. (A1) by
defining velocity-dependent detuning of a given atom

�p(v) = �p − kv , (9a)

�c(v) = �c − kv , (9b)

where v is the velocity of the atom. For simplicity, we have
assumed assume k ≈ kp ≈ kc. The velocities of all atoms obey
the Maxwellian distribution

P (kv)d(kv) = 1√
2πD2

e
− (kv)2

2D2 d(kv), (10)

with D as the Doppler width defined by

D =
√

KBT ω2

Mc2
(11)

at temperature T . For a warm atomic system, the averaged
susceptibility is given by

〈χ〉 =
∫ ∞

−∞
χ (kv)P (kv)d(kv) . (12)

C. Beam propagation dynamics

In general, the medium susceptibility is a function of the
position in the vapor cell due to the spatial structure of
the applied laser fields. In order to account for the spatial
variations, we study the propagation of the light beams
through the medium using Maxwell’s equations. For this, we
use the slowly varying envelope approximation, and assume
that the changes along the longitudinal direction z of the probe
envelope is very small compared to the changes that occur
along the transverse directions x,y. The beam propagation
equation for the Rabi frequency g of the probe field under the
paraxial wave approximation then follows as

∂g

∂z
= ic

2ω

(
∂2

∂x2
+ ∂2

∂y2

)
g + 2iπk〈χ〉g , (13)

where ω = ck and c is the speed of light in free space.
The thermal motion of the atoms is included in the the
beam propagation by considering the average response of the
susceptibility 〈χ〉. The terms in the parentheses in Eq. (13)
are responsible for the diffraction of the probe beam. In order
to study the effect of diffraction and spatial dispersion on the
probe beam propagation, we solve Eq. (13) numerically using
a higher order split step operator method [41].

III. RESULTS

A. Tailoring the medium susceptibility using a
shaped control beam

In order to illustrate how the spatial structure of the
control field enables us to guide the weak probe beam
through warm atomic vapor, we first study the behavior
of the susceptibility of the medium as a function of the
spatial variation of the control field intensity. We chose a
doughnut shaped Laguerre-Gaussian (LG) control field to
induce a waveguidelike refractive index pattern inside the
atomic vapor. The Rabi frequency of the LG control field can be
written as

G = G0 wcr

w2
z

exp

[
− ikr2

2q
+ iθ

]
, (14a)

r =
√

x2 + y2 , (14b)
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FIG. 2. (Color online) Normalized spatial intensity profile of the
control laser field. The solid (dashed) line shows the profile at the
entry (exit) plane of the vapor cell. r is the radial distance from
the beam center. The beam waist and the Rayleigh length of the
Laguerre-Gaussian beam are chosen as 120 μm and 5.7 cm,
respectively.

wz = wc

√
1 +

(
z − z0

zR

)2

(14c)

q = izR − z + z0 , (14d)

θ = tan−1
[y

x

]
, (14e)

zR = πw2
c

λ
, (14f)

where z0 and zR are the location of the beam waist and the
Rayleigh length, respectively.

Figure 2 shows the intensity variation of the control field
against radial position r at the entry and exit faces of the
medium. For this figure, we have considered a vapor cell
of length 5 cm and filled with Rb atoms. The intensity of
the control field approaches zero for r → 0 and maxima
occur at |r| = 0.0115 cm at the entry face of the medium.
It should be noted that there is no significant change in
the structure of the control field envelope throughout the
propagation through the medium. This is consistent with the
results in the experiment by Howell et al. [34]. From the point
of view of an additional probe beam, the control field structure
renders the susceptibility inhomogeneous along the transverse
direction.

Next, we have solved Eq. (12) numerically in the presence
of a continuous wave probe field to analyze the spatial
inhomogeneity of the susceptibility. Figures 3(a) and 3(b)
show surface plots of the real and imaginary parts of 〈χ〉 as
a function of the radial position (r) and the Raman detuning
(δR). For the calculation, we have fixed the single photon probe
detuning to �p = −170γ , and use typical parameters for the
85Rb transition: γ = 3π × 106 rad/s, D = 1.33 × 109 rad/s,
and N = 1012 atoms/cm3. It can be seen from Fig. 3(a) that
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FIG. 3. (Color online) Real part (a) and imaginary part (b) of the
averaged susceptibility 〈χ〉 in a thermal vapor obtained from Eq. (12)
in the presence of the LG control beam. The results are shown as a
function of the radial position r in the beam and the Raman detuning
δR/γ . The other parameters are chosen as G0 = 1γ , wc = 120μm,
g0 = 0.2γ , �p = −170γ , D = 70γ , N = 1012 atoms/cm3, and � =
0.001γ .

the refractive index is high at radial positions symmetrically
located around r = 0 at which the control intensity is high.
Towards the beam center and for larger radial distances |r|,
it decreases. The difference between the maximum and the
minimum of the refractive index is of order 10−5, which is in
agreement with the experimental results of Howell et al. [34].
This shows that a LG control beam allows one to mimic a
fiberlike refractive index profile inside the atomic medium.
From Fig. 3(b) we find that the absorption of the medium has
a minimum at δR = −0.02γ , whereas an increase or decrease
of the Raman detuning from this value results in increased
absorption by the medium.

B. Probe beam propagation in the tailored medium

The analytical expressions [Eqs. (14)] for the control field
Rabi frequency allow us to study the effect of the spatial
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FIG. 4. (Color online) Normalized intensity of the transmitted
probe beam plotted against the radial distance from the beam center
r . The solid black line shows the profile at the input of the vapor cell.
The other two curves show the profile at the output after a propagation
length of 5 cm. The red short-dashed curve is obtained without
control field, whereas the blue long-dashed line is obtained with a LG
control laser field. The inset shows the variation of the unnormalized
output intensity of the probe beam. The initial width and Raman
detuning of the off-resonant probe field are chosen as wp =
48μm and δR = −0.015γ , respectively. All other parameters are as
in Fig. 3.

structure of the control beam on the probe beam propagation
dynamics. For this, we have included the control field profile
Eqs. (14) in the propagation equation (13).

1. Single Gaussian probe field mode

First, we study the propagation dynamics of a Gaussian
probe beam. The shape of the probe beam is defined as

g = g0e−r2/w1(z)2
, (15a)

w1(z) = wp

√
1 +

(
z

zR

)2

, (15b)

where w1(z) is the beam width. Numerical results are shown
in Fig. 4, for a Rayleigh length of the probe beam chosen
as 0.9 cm. The figure compares the propagation of the probe
beam through the medium in the presence and the absence of
the control field. In free space or in the absence of the control
beam, we observe from Fig. 4 that the probe beam spreads
to nearly 5.64wp during the propagation over a distance of
5 cm. The most intuitive way to understand the spreading
of the beam is by decomposing it into a set of plane waves.
In the course of the propagation, each plane wave acquires its
own unique phase shift. The superposition of the phase-shifted
plane waves at the output gives rise to spreading. In contrast,
for Bessel, Mathieu, and Airy beams each constituent plane
wave acquires exactly the same phase shift. In these cases,
diffractionless propagation is possible through free space.
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FIG. 5. (Color online) Normalized intensity of the transmitted
probe beam. In (a), the intensity profile is shown against the transverse
coordinate x in the y = 0 plane at different propagation distances z.
(b) compares the probe beam profile with and without the LG control
field at the output of the vapor cell after a propagation of 2.5 cm. The
variation of the unnormalized output intensity of the probe beam is
shown in the inset. The initial amplitude and width of the off-resonant
control and probe fields are chosen as G0 = 0.75γ , g0 = 0.2γ , wp =
48μm, wc = 100μm, and 200μm. All other parameters are the same
as in Fig. 3.

Analogously, the manipulation of diffraction-induced
spreading is possible by changing the spatial dispersion of the
medium. This spatial dispersion can be substantially modified
by employing a suitable structure of the control field. In
particular, a suitable structure of the control field can cancel or
even reverse the effect of diffraction. Our numerical results in
Fig. 4 obtained with the LG control field show that the width
of the probe beam is 37 μm after a 5 cm propagation distance.
Thus, the width of the output probe beam in the presence of the
LG control beam is narrower than the width of the input probe
beam, demonstrating that the LG control field can be used
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FIG. 6. (Color online) Intensity of the transmitted probe beam in
the x-y plane transversal to the beam propagation direction at the
output of the vapor cell in the absence (upper panel) and presence
(lower panel) of the LG control beam, respectively. The parameters
are as in Fig. 5.

to reverse and even overcompensate the effect of diffraction.
These results are in good agreement with the experiment of
Howell et al. [34]. We also notice from the inset of Fig. 4 that
the integrated transmission intensity of the output probe beam
is 44% of the integrated intensity of the input probe beam. This
indicates that the probe beam can be guided efficiently in an
atomic vapor.

2. Double Gaussian probe field mode

Next, we study the propagation of a beam with two Gaussian
modes, using the same method as for the single Gaussian
probe beam. Figure 5(a) shows the normalized intensity of
both transmitted Gaussian beams in the y = 0 plane along the
z axis for a propagation length up to 2.5 cm in the presence of

(a)
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FIG. 7. (Color online) (a) Image of a non-Gaussian multipeak
beam at the output of a vapor cell with length L = 2.5 cm. (b) shows
a comparison of the cases with and without control beam at the output
of the vapor cell for the non-Gaussian beam. The parameters are as
in Fig. 5 except that the non-Gaussian probe beam has width 35 μm
and the LG control beam has width 200 μm.

the LG control field. In comparison, without the control beam
or in free space the incident probe beam undergoes spreading
due to its geometrical shape as shown in Fig. 5(b). It can be
seen from Fig. 5(b) that again, the spreading due to diffraction
can be eliminated using the LG control beam. The inset of
Fig. 5(b) shows the unnormalized transmission of the two
Gaussian beams in the y = 0 plane. It is clear from the inset
of the Fig. 5(b) that the transmitted energy of probe beam gets
reduced by 50% while the width of the LG control beam is
changed from wc = 100 μm to 200 μm. We also notice that
the spacing between two peaks of the output probe beam can
be increased by decreasing the width of the LG control beam.
This shift in the probe beam peak positions arises if the probe
beam spectrum is located on the sides of the control field
intensity pattern, rather than symmetrically around the control
field intensity maximum. As an application, the finesse of the
output probe beam can be controlled by changing the width of
the LG control beam.

Figure 6 shows the radial distribution of the output probe
beams at z = 2.5 cm, for a medium without and with the LG
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control beam, respectively. As in Fig. 5(b) it can be seen that
in free space or without the control beam, the beam profiles
are severely distorted. In contrast, with the LG control beam,
the shape of the two Gaussian beams is preserved. This shows
that the spatial structure of the control field can be used to
transmit more complicated structures over a large distance
without much diffraction and attenuation.

3. Non-Gaussian probe field mode

We proceed with a probe beam formed out of multiple
secant-hyperbolically shaped patterns as an example for the
transmission of a non-Gaussian field mode. The probe beam
is defined as

g = g0
n∑

i=0

sech

[√
(x − xi)2 + y2

w1

]
, (16)

where n, xi , and wi are the total number, the center, and
the widths of the peaks, respectively. For simplicity, in our
calculation, we assume that the individual peaks have equal
widths wi . Figure 7(a) shows the radial variation of probe
beam intensity in the presence of the LG control beam at
the exit plane of the vapor at z = 2.5 cm. A corresponding
comparison of the non-Gaussian beam propagation through
the medium with and without the control beam is shown in
Fig. 7(b). It is important to note from Fig. 7(b) that the output
beam retains subpeaks of secant-hyperbolic profile as they
were present in the input beam. Thus the LG control beam
allows to propagate Gaussian as well as non-Gausssian beams
through the medium without diffraction.

IV. CONCLUSION

We have discussed diffractionless propagation of single or
multimodes Gaussian as well as non-Gaussian probe beams
through a warm atomic vapor suitably tailored using an
additional control beam. The Laguerre-Gaussian control beam
enables us to write a spatially modulated index of refraction in
the vapor that leads to a modified dispersion experienced by

the probe beam and subsequently, diffractionless propagation
of the probe beam is achieved. Our results relax the restriction
of diffractionless beam propagation in atomic waveguides to a
specific mode, which has been studied extensively both exper-
imentally and theoretically using Laguerre-Gaussian control
beams [31–34,38]. We have also shown that transmission and
finesse of the output probe beam can be enhanced by changing
the width of the Laguerre-Gaussian control beam. This reveals
a possibility of arbitrary image propagation through warm
atomic vapors.
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APPENDIX A: STEADY-STATE SUSCEPTIBILITY

The steady-state susceptibility is given by

χ = N|d|2
h̄

N
D , (A1)

where the numerator N and the denominator D evaluate to

N = |G|2[γ (ı� − δR){|G|2 + (γ − ı�p)(� − ıδR)}
+ |g|2{γ (ı� − δR) + �(�c + �p)}] , (A2)

D = γ |g|6 + |g|4{3|G|2(γ + 2�) + 2γ (γ� + δR�c)}
+ γ |G|2{(�2 + δ2

R

)(
γ 2 + �2

p

) + 2|G|2(γ� + δR�p)

+ |G|4} + |g|2{3|G|4(γ + 2�)

+ γ
(
γ 2 + �2

c

)(
�2 + δ2

R

) + (
4γ 2� + γ

(
6�2 + 4δ2

R

)
+�(�c + �p)2)|G|2} . (A3)
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