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Proposal for efficient two-dimensional atom localization using probe absorption in a
microwave-driven four-level atomic system
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The behavior of two-dimensional (2D) atom localization is explored by monitoring the probe absorption in a
microwave-driven four-level atomic medium under the action of two orthogonal standing-wave fields. Because
of the position-dependent atom-field interaction, the information about the position of the atom can be obtained
via the absorption measurement of the weak probe field. It is found that the localization behavior is significantly
improved due to the joint quantum interference induced by the standing-wave and microwave-driven fields. Most
importantly, the atom can be localized at a particular position and the maximal probability of finding the atom in
one period of the standing-wave fields reaches unity by properly adjusting the system parameters. The proposed
scheme may provide a promising way to achieve high-precision and high-resolution 2D atom localization.
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I. INTRODUCTION

The effects of atomic localization have been extensively
discussed in the field of precision position measurement of an
atom via different optical techniques [1–4]. Earlier schemes
for the localization mainly involve one-dimensional (1D) atom
localization based on the atomic coherence and quantum in-
terference effects [5–7]. Quantum coherence and interference
are so fundamental that they cover many different aspects
of atomic physics and quantum optics, such as atom-field
interactions [8,9], the theory of measurement [10,11], giant
Kerr nonlinearities [12,13], and so on. A variety of schemes
have been proposed for 1D atom localization through quantum
interference. For example, Kien et al. [14] investigated the
position localization of a polarized atom interacting with an
off-resonant quantized standing-wave field. Paspalakis and
Knight [15] proposed a localization scheme for an atom
in a standing-wave field via quantum interference. Qamar
et al. [16] presented a scheme of atom localization based on
resonance fluorescence from a standing-wave field. Subwave-
length atom localization via amplitude and phase control of the
absorption spectrum has been reported in Refs. [17,18]. Also,
1D atom localization can be realized via dual measurement of
the field and the atomic internal state [19], phase and amplitude
control of the driving field [20,21], or interference of dark
resonances [22]. In addition to these theoretical studies, the
localization of an atom is already accessible experimentally
with all-optical techniques [23,24]. More recently, atom
localization has been demonstrated in a proof-of-principle
experiment using the technique of electromagnetically induced
transparency (EIT) [25]. The behavior of atom localization
has attracted so much attention mainly because of its po-
tential applications in laser cooling and trapping of neutral
atoms [26,27], atom nanolithography [28,29], Bose-Einstein
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condensation [30,31], and measurement of the center-of-mass
wave function of moving atoms [32,33].

In recent years, some schemes have been put forward
for two-dimensional (2D) atom localization by applying
two orthogonal standing-wave laser fields. For instance, a
scheme for 2D atom localization was proposed by Ivanov and
Rozhdestvensky using the measurement of the population in
the upper state or in any ground state in a four-level tripod
system under an influence of two orthogonal standing-wave
fields [34]. Another three related 2D localization schemes
have been studied by Wan and coworkers via controlled spon-
taneous emission from a driven tripod system [35], quantum
interference in a coherently driven inverted-Y system [36],
and interacting double-dark resonances in an N -type atomic
system [37]. In addition, atom nanolithography based on 2D
atom localization has been achieved in Ref. [38] by measuring
the probe absorption. High precision and high resolution in 2D
atom localization can be obtained in these schemes. However,
to the best of our knowledge, so far the maximum probability
of finding an atom at a particular position in a wavelength
domain is 1/2. It leads us to pose the next question: can we
obtain a 100% probability of finding the atom at a particular
position within one period of standing-wave fields?

In order to answer the above question, here we put
forward a scheme to realize 2D atom localization based on
the measurement of absorption of a weak probe field in a
four-level Y -type atomic system. The hyperfine transition
within the excited states is resonantly coupled by means of a
microwave-driven field. Of particular interest is the application
of the microwave field, since the microwave source is more
readily available and easier to control than an extra laser
field. Moreover, one such atomic model has been used to
realize the control of one- and two-photon absorption [39]
and simulation of multiple spontaneously generated coherence
[40]. By adjusting the system parameters, some interesting
localization patterns, such as craterlike, spikelike, bicycliclike,
and hill-like patterns, can be observed under the joint actions
of the standing-wave and microwave-driven fields. On the one
hand, when the two orthogonal standing-wave laser fields are
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FIG. 1. Schematic diagram of a four-level Y -type atomic system,
which consists of two excited levels |2〉 and |3〉, an intermediate

level |1〉, and a ground level |0〉. The transitions |1〉 G1(x,y)←→ |2〉 �mw←→
|3〉 G2(x,y)←→ |1〉 form a cyclic configuration, in which G1(x,y) is a
standing-wave field or a composition of two orthogonal standing
waves, G2(x,y) is a standing-wave or a traveling-wave field, and
�mw is one-half Larmor frequency for the relevant transition. �1 and
�2 are the frequency detunings of the corresponding standing-wave
or traveling-wave fields. A weak probe laser field with Rabi frequency
2�p and detuning �p is applied to couple the transition |0〉 ↔ |1〉.
All parameters are in units of γ .

respectively applied to couple the different atomic transitions,
i.e., G1(x,y) = �1 sin(k1x) and G2(x,y) = �2 sin(k2y) in
Fig. 1, we find that the precision and spatial resolution of the
atom localization are gradually enhanced with an increase in
the probe detuning under the condition that the two standing-
wave fields are resonant with their respective transitions.
Besides, the position of the localized atom is dependent on
the phase of the microwave-driven field. On the other hand,
when the two standing-wave fields are used to drive the same
atomic transition, i.e., G1(x,y) = �1[sin(k1x) + sin(k1y)] and
G2(x,y) = �2, the atom can be localized at a particular
position as long as the probe detuning is adjusted to an
appropriate value. In this case, the probability of finding the
atom in one period of the standing-wave fields is 100%; this is
the main advantage in the present scheme because it doubles
the probability of finding the atom at a particular position for
a probe-absorption measurement compared with the previous
proposed schemes [35,37]. Furthermore, our proposed scheme
is based on the measurement of the probe absorption, which
is much easier to realize in the practical experiment than the
spontaneous-emission measurement scheme. Because spon-
taneous emission is a random process, the frequency of the
spontaneously emitted photon is hard to control. Finally, it
should be noted that these investigations may improve the
localization precision and spatial resolution of the atom under
certain conditions, and may provide a possibility of making
the atom localized at a given position by varying the system
parameters. Therefore, our scheme has more advantages than
other schemes for 2D atom localization.

This paper is organized as follows. In Sec. II, we present
the physical model and its theoretical description. In terms of
perturbation expansion, we further derive an explicit analytical
expression for the absorption of the weak probe field in
the Raman-Nath approximation based on the density-matrix
equations. In Sec. III, we give a detailed analysis and
explanation for the behavior of 2D atom localization. Finally,
we summarize our results in Sec. IV.

II. 2D ATOM LOCALIZATION SCHEME

We consider a four-level Y -type atom with two high-lying
excited levels |2〉 and |3〉, one intermediate level |1〉, and a
ground level |0〉, as depicted in Fig. 1. A weak probe field
with a carrier frequency ωp and a Rabi frequency 2�p is
used to drive the transition from the intermediate level |1〉
to the ground level |0〉. An extra microwave-driven field
with a Larmor frequency 2�mw is used to resonantly couple
the two hyperfine levels |2〉 and |3〉 through an allowed
magnetic dipole transition. The intermediate level |1〉 is
simultaneously coupled to the excited levels |2〉 and |3〉 by
two coherent laser fields with Rabi frequencies G1(x,y) and
G2(x,y), respectively. Here, we consider two cases in which
the atom interacts with the standing-wave laser fields. The first
case is that G1(x,y) and G2(x,y) correspond, respectively,
to the two orthogonal standing-wave fields that couple the
different atomic transitions, i.e., G1(x,y) = �1 sin(k1x) and
G2(x,y) = �2 sin(k2y), with k1 = ω1/c and k2 = ω2/c being
the wave vectors of the two laser fields. The next case
is that G1(x,y) corresponds to the combination of two
orthogonal standing-wave fields with the same frequency that
drives simultaneously the transition |1〉 ↔ |2〉, while G2(x,y)
corresponds to a traveling-wave field, that is, G1(x,y) =
�1[sin(k1x) + sin(k1y)] and G2(x,y) = �2. An atom moves
in the z direction and passes through the intersectant region of
the two orthogonal standing-wave fields in the x-y plane. As a
result, the interaction between the atom and the standing-wave
fields is spatially dependent on the x-y plane. Here we
assume that the center-of-mass position of the atom along
the directions of the standing-wave fields is nearly constant and
we can neglect the kinetic part of the atom in the Hamiltonian
by applying the Raman-Nath approximation [41]. Under these
assumptions, the resulting interaction Hamiltonian, which
describes the dynamics of this system in the electric dipole
approximation (EDA) and the rotating-wave approximation
(RWA), can be written in the form

H/h̄ = −�p|1〉〈1| − (�p + �1)|2〉〈2| − (�p + �2)|3〉〈3|
+[�p|0〉〈1| + G1(x,y)|1〉〈2| + G2(x,y)|1〉
× 〈3| + �mw|2〉〈3| + H.c.], (1)

where the symbol H.c. represents the Hermitian conjugate. The
quantities �p = ωp − ω10, �1 = ω1 − ω21, and �2 = ω2 −
ω31 stand for the frequency detunings of the coherent laser
fields from the corresponding atomic resonance frequencies.
Here �p and �mw are one-half Rabi and Larmor frequencies
for the relevant driven transitions, i.e., �p = μ10Ep/(2h̄)
and �mw = μ32Bmw/(2h̄), with μjk = �μjk · �eL (�eL is the
unit polarization vector of the corresponding laser field;
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j,k = 0 − 3) denoting the dipole moment for the transition
|j 〉 ↔ |k〉.

In the following calculations, we set �p, �1, and �2 as
real parameters, while �mw is set as a complex parameter, i.e.,
�mw = |�mw|eiϕ ; here ϕ is the phase of the microwave-driven
field and may also be called the relative phase. It is quite
obvious from the general structure of Fig. 1 that two possible

transition pathways from state |0〉 to state |3〉 exist: |0〉 �p−→
|1〉 �2−→ |3〉 and |0〉 �p−→ |1〉 �1−→ |2〉 �mw−→ |3〉. The role of the
relative phase ϕ on optical-absorption characteristics of the
weak probe field in such a four-level Y -type atomic system
with the closed-loop structure can be explained from quantum
interference induced by these two excitation channels. As a
consequence, the relative phase ϕ can be used as a control
parameter to investigate the behavior of 2D atom localization,
which can also be verified by Eq. (8) below.

The dynamics of this system can be described by utilizing
the density-matrix approach as

ρ̇ = − i

h̄
[H,ρ] − 1

2
{�,ρ}, (2)

where {�,ρ} = �ρ + ρ�. In general, the decay rate is com-
bined into Eq. (2) by a relaxation matrix �, which can be
defined by 〈n|�|m〉 = γnδnm.

By substituting the interaction Hamiltonian given by Eq. (1)
into Eq. (2), the equations of motion for the density-matrix
elements can be readily obtained as

iρ̇00 = iγ1ρ11 + �p(ρ10 − ρ01), (3a)

iρ̇11 = −iγ1ρ11 + iγ2ρ22 + iγ3ρ33 + �p(ρ01 − ρ10)

+G1(x,y)(ρ21 − ρ12) + G2(x,y)(ρ31 − ρ13), (3b)

iρ̇22 = −iγ2ρ22 + G1(x,y)(ρ12 − ρ21)

+�mwρ32 − �∗
mwρ23, (3c)

iρ̇33 = −iγ3ρ33 + G2(x,y)(ρ13 − ρ31)

+�∗
mwρ23 − �mwρ32, (3d)

iρ̇10 = −
(

�p + i
γ1

2

)
ρ10 + �p(ρ00 − ρ11)

+G1(x,y)ρ20 + G2(x,y)ρ30, (3e)

iρ̇20 = −
(

�p + �1 + i
γ2

2

)
ρ20

+G1(x,y)ρ10 − �pρ21 + �mwρ30, (3f)

iρ̇30 = −
(

�p + �2 + i
γ3

2

)
ρ30

+G2(x,y)ρ10 − �pρ31 + �∗
mwρ20, (3g)

iρ̇21 = −
(

�1 + i
γ2 + γ1

2

)
ρ21 + G1(x,y)(ρ11 − ρ22)

−G2(x,y)ρ23 − �pρ20 + �mwρ31, (3h)

iρ̇31 = −
(

�2 + i
γ3 + γ1

2

)
ρ31 + G2(x,y)(ρ11 − ρ33)

−G1(x,y)ρ32 − �pρ30 + �∗
mwρ21, (3i)

iρ̇32 =
(

�1 − �2 − i
γ3 + γ2

2

)
ρ32 − G1(x,y)ρ31

+G2(x,y)ρ12 + �∗
mw(ρ22 − ρ33), (3j)

where γ1, γ2, and γ3 are the spontaneous decay rates from the
excited state |1〉 to the ground state |0〉, from the excited state
|2〉 to the excited state |1〉, and from the excited state |3〉 to
the excited state |1〉, respectively. It should also be pointed out
that decay rates from states |3〉 and |2〉 to state |0〉 are zero
because these transitions are nondipole, which is allowed in
our considered model. The relaxation rate of coherence among
states |3〉 and |2〉 by collisions, etc., is negligible if we assume
the cold atomic gas, and thus can be safely neglected.

Such an atomic structure can be realized in cold 87Rb atoms
[40,42–44] using the transitions 5S1/2 − 5P3/2 − 5D5/2, 3/2.
The designated states can be chosen as follows: |0〉 =
|5S1/2,F = 2〉, |1〉 = |5P3/2,F = 3〉, |2〉 = |5D5/2,F = 4〉,
and |3〉 = |5D3/2,F = 3〉, respectively. In this case, the decay
rates of the intermediate and the excited states are γ1 = 6 MHz
and γ2 = γ3 = 0.97 MHz, respectively. In practical experi-
ments, (i) when two standing-wave fields couple different
atomic transitions, the standing-wave field G1(x,y) at a
wavelength of 775.8 nm propagates in the x direction, and
the standing-wave field G2(x,y) at a wavelength of 776.2 nm
propagates in the y direction; and, (ii) when two standing-wave
fields couple one atomic transition, G1(x,y) is the combina-
tion of two standing-wave fields with the same wavelength
775.8 nm which, respectively, propagate along the x and
y directions; the traveling-wave field G2(x,y) (wavelength
776.2 nm) propagates in the x-y plane; and the weak probe field
�p at a wavelength of 780.2 nm propagates in the x-z plane.
All of them can be obtained from the external cavity diode
lasers. Here, the standing-wave field G1(x,y) interacts with
the transition |5P3/2,F = 3〉 ↔ |5D5/2,F = 4〉, the standing-
or traveling-wave field G2(x,y) interacts with the transition
|5P3/2,F = 3〉 ↔ |5D3/2,F = 3〉, and the weak probe field
interacts with the transition |5S1/2,F = 2〉 ↔ |5P3/2,F = 3〉.
The hyperfine transition |5D5/2,F = 4〉 ↔ |5D3/2,F = 3〉 is
coupled by a resonant microwave-driven field with frequency
around 120 GHz. The value of the decay rate γ1 in this system
is 6 MHz. The magnetic dipole moment μ32 of the microwave-
driven transition is 6+√

6
4 μB , with the Bohr magneton μB =

9.27 × 10−24 J/T. For a given value of Larmor frequency, the
amplitude of the microwave-driven field can be derived from
the relationship |�mw| = μ32Bmw/(2h̄). Taking |�mw| = 3γ1

in Fig. 4(c) as an example, the amplitude of the microwave-
driven field is Bmw = 2h̄|�mw|/μ32 = 1.92 × 10−4 T; it is
thus feasible for our proposed atomic system to be driven by
the microwave field in the practical experiment. Alternatively,
the probe absorption observed at appropriate frequencies is
position dependent. Such position-dependent probe absorption
can be reflected by a standard spectroscopic method or
the heterodyne measurement of fluorescence, which may be
realized via the experiment proposed in Refs. [25,45].

In the following, we will solve Eqs. (3a)–(3j) in the weak-
field approximation, where the intensity of the probe field is
sufficiently weak. Under the weak-field approximation, the
perturbation approach can be applied to the density-matrix
equations, which is introduced in terms of the perturbation
expansion,

ρjk = ρ
(0)
jk + λρ

(1)
jk + λ2ρ

(2)
jk + · · ·(j,k = 0,1,2,3), (4)
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where λ represents a continuously varying parameter ranging
from zero to unity. Here ρ

(0)
jk is of the zeroth order in �p, ρ(1)

jk is

of the first order in �p, ρ(2)
jk is of the second order in �p, and so

on. Because our analysis is in the weak-field approximation,
the atom is predominantly populated in the initial ground
state |0〉. In this limit, we have ρ

(0)
00 = 1 and others such as

ρ
(0)
jk = 0 (j 
= 0,k 
= 0) for the zeroth-order density-matrix

elements. In the following calculations, we keep the terms
up to the first order in the density-matrix equations. When
the field is sufficiently weak, only the first-order term is
important. Therefore, we only keep the first order in the probe
field and keep all of the orders of the standing-wave and
microwave-driven fields, which is due to the fact that these
driving fields are strong fields and the probe field is very weak.

By substituting Eq. (4) into Eqs. (3a)–(3j), we can obtain the
equations of motion for the first-order density-matrix element
ρ

(1)
jk after carrying out some algebraic calculations. Our aim

in the present paper is to obtain the information about the
atomic position from the susceptibility of the system at the

probe frequency. Hence, in order to derive the expression of
the off-diagonal density-matrix element ρ10, we only need the
following equations:

iρ̇
(1)
10 = −

(
�p + i

γ1

2

)
ρ

(1)
10 + G1(x,y)ρ(1)

20

+G2(x,y)ρ(1)
30 + �p, (5a)

iρ̇
(1)
20 = −

(
�p + �1 + i

γ2

2

)
ρ

(1)
20 + G1(x,y)ρ(1)

10 + �mwρ
(1)
30 ,

(5b)

iρ̇
(1)
30 = −

(
�p + �2 + i

γ3

2

)
ρ

(1)
30 + G2(x,y)ρ(1)

10 + �∗
mwρ

(1)
20 .

(5c)

According to Eqs. (5a)–(5c), we can obtain the steady-state
solutions of ρ

(1)
10 corresponding to the probe field. After some

simple algebraic calculations, the off-diagonal density-matrix
element ρ

(1)
10 can be given by

ρ
(1)
10 = �p

�p + iγ1

2 + G2
1(x,y)(�p+�2+iγ3/2)+G2

2(x,y)(�p+�1+iγ2/2)+G1(x,y)G2(x,y)(�mw+�∗
mw)

|�mw |2−(�p+�1+iγ2/2)(�p+�2+iγ3/2)

. (6)

The linear susceptibility of the medium for the weak probe laser field is determined by the term ρ10. Consequently, the linear
susceptibility can be written as [46]

χ = Nμ01

ε0Ep

ρ10 = K

�p

ρ
(1)
10 , (7)

where K = N |μ10|2/(2h̄ε0) with N being the atom number density in the medium and ε0 being the permittivity in free space.
Based on Eq. (7), we can straightforwardly obtain the normalized absorption for the probe field from the imaginary part of the
susceptibility given as

χ ′′(x,y; �p)

K
= γ1/2 + D/[||�mw|2 − (�p + �1 + iγ2/2)(�p + �2 + iγ3/2)|2]∣∣�p + i

γ1

2 + G2
1(x,y)(�p+�2+iγ3/2)+G2

2(x,y)(�p+�1+iγ2/2)+G1(x,y)G2(x,y)(�mw+�∗
mw)

|�mw |2−(�p+�1+iγ2/2)(�p+�2+iγ3/2)

∣∣2
, (8)

with

D = 1
2

[
γ3G

2
1(x,y) + γ2G

2
2(x,y)

][|�mw|2
− (�p + �1)(�p + �2) + γ2γ3/4

]
+ 1

2

[
γ2(�p + �2) + γ3(�p + �1)

]
× [

G2
1(x,y)(�p + �2) + G2

2(x,y)(�p + �1)

+G1(x,y)G2(x,y)(�mw + �∗
mw)

]
.

Equation (8) is the central result of the present study, which
reflects the conditional position probability distribution of
the atom [17,18,22,47]. It is worth noting that the analytical
expression for the probe absorption is dependent on the
controllable parameters of the system such as the detunings
and intensities of the standing-wave driving fields, the intensity
and phase of the microwave-driven field, as well as the
detuning of the probe field. On the other hand, due to
the fact that the normalized probe absorption depends on the
position-dependent Rabi frequencies G1(x,y) and G2(x,y),

it is possible to obtain the information about the position of
the atom when it passes through the standing-wave fields.
Moreover, the peak maxima of the probe absorption reflect the
precise localization of the atom. Specifically, the peak position
of the probe absorption denotes where the atom is localized,
and the number of peaks in one period of the standing-
wave fields means the conditional position probability. As
a consequence, we can obtain the position information of
the atom as it passes through the standing-wave fields by
measuring the probe absorption under proper conditions.

III. RESULTS AND DISCUSSION

In this section, we discuss the conditional position prob-
ability distribution of the atom via a few numerical calcula-
tions based on the normalized probe absorption in Eq. (8),
and the 2D atom localization which can be achieved by
measuring the probe absorption. In the following discussion,
we analyze the effect of the system parameters on the
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atom localization by considering two cases. For case (i),
two orthogonal standing-wave fields are, respectively, used
to couple the different atomic transitions, i.e., G1(x,y) =
�1 sin(k1x) and G2(x,y) = �2 sin(k2y); for case (ii), the two
orthogonal standing-wave fields with the same frequency are
applied to drive the same atomic transition, i.e., G1(x,y) =
�1[sin(k1x) + sin(k1y)] and G2(x,y) = �2. The radiative
decay rate of the level |1〉 is set as γ1 = 2γ . All the parameters
used in this paper are in units of γ , which should be in the
order of MHz for rubidium atoms.

A. Case (i): Two standing-wave fields couple different
atomic transitions

First of all, we consider the case where the two orthogonal
standing-wave fields couple the different atomic transitions,
respectively. As can be seen from Eq. (8), it is still difficult
to get the analytical solutions of the positions of the maxima
of the probe absorption, even though the two standing-wave
fields are both tuned to the resonant interaction with the
respective atomic transitions. In Fig. 2, we give the numerical
simulations and show the dependence of the normalized probe
absorption versus the probe detuning �p. The location of
the probe-absorption peak indicates that the position of the
atom is localized, while the number of peaks in one period
of the standing-wave fields shows the conditional position
probability. In the case of �p = 5γ , the maxima of the probe
absorption are situated in the second and fourth quadrants with
a latticelike pattern, as shown in Fig. 2(a). When the probe
detuning is tuned to �p = 10.3γ , the localization peaks are
also mainly distributed in the second and fourth quadrants of
the x-y plane with little in the first and third quadrants. More-
over, the normalized probe absorption χ ′′(x,y) in Fig. 2(b)
displays a hill-like pattern. However, when the frequency
detuning of the probe field is increased to �p = 16γ , the
result is completely contrary: the maxima of the absorption
peaks are all located in the first and third quadrants with a

FIG. 2. (Color online) The normalized probe absorption χ ′′(x,y),
which directly reflects the conditional position probability distribu-
tion, as a function of (k1x,k2y) in dependence on the detuning �p of
the probe field. �p = (a) 5γ , (b) 10.3γ , (c) 16γ , (d) 19.3γ . The other
parameters used are �1 = �2 = 10γ , |�mw| = 9γ , �1 = �2 = 0,
γ1 = 2γ , γ2 = γ3 = 0.32γ , and ϕ = 0. All parameters are in units
of γ .

FIG. 3. (Color online) The normalized probe absorption χ ′′(x,y)
as a function of (k1x,k2y) for different combinations of the three de-
tunings. (�1,�2,�p) = (a) (0, 0, 0), (b) (5γ,5γ,0), (c) (5γ,5γ,9.2γ ),
(d) (9.8γ,9.8γ,9.2γ ). The system parameters used are the same as
Fig. 2. All parameters are in units of γ .

craterlike pattern, and the atom is localized at the circular
edges of the two craters [see Fig. 2(c)]. Furthermore, when
the probe detuning is detected at an appropriate value [i.e.,
�p = 19.3γ in Fig. 2(d)], the resulting absorption spectrum
exhibits a spikelike pattern in the first and third quadrants. In
such a case, we can achieve much better spatial resolution in
the conditional position probability distribution of the atom.
Therefore, we can always obtain a higher probability to find
the atom in two of the four quadrants by measuring the probe
absorption under two-photon resonance conditions.

In Fig. 3, we plot the normalized probe-absorption spec-
trum χ ′′(x,y) versus the normalized positions (k1x, k2y)
by modulating the three controllable detuning parameters
simultaneously. When the three laser fields are tuned resonant
with the corresponding atomic transitions, i.e., (�1,�2,�p) =
(0,0,0), the probe absorption displays a latticelike pattern and
the atom is localized around the nodes of two orthogonal
standing-wave fields, as shown in Fig. 3(a). For the case that
(�1,�2,�p) = (5γ,5γ,0), the maxima of the probe absorption
are mostly distributed in the second and fourth quadrants of
the x-y plane, with little in the first and third quadrants [see
Fig. 3(b)]. When the probe field is far detuned from the atomic
transition and the values of the other two detunings are kept the
same as those in Fig. 3(b) [i.e., (�1,�2,�p) = (5γ,5γ,9.2γ )
in Fig. 3(c)], the absorption peaks are situated in the four
quadrants but with different patterns. In such a condition,
the probe-absorption maxima in the first and third quadrants
show a latticelike pattern, and the absorption peaks in the
second and fourth quadrants display a spikelike pattern.
Interestingly, when all three laser fields are far off resonance,
that is, (�1,�2,�p) = (9.8γ,9.8γ,9.2γ ), the maxima of the
probe absorption are mainly distributed in the first and third
quadrants of the x-y plane with a craterlike pattern, with
little in the second and fourth quadrants, as can be seen from
Fig. 3(d). In this case, we can obtain a higher probability
to find the atom in the standing-wave fields compared to
Figs. 3(a)–3(c).

Now, let us investigate the influence of the intensity
and phase of the microwave field on the behavior of 2D
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FIG. 4. (Color online) The normalized probe absorption χ ′′(x,y)
as a function of (k1x,k2y) in dependence on the microwave-driven
field. (a) |�mw| = 3γ , ϕ = 0; (b) |�mw| = 3γ , ϕ = π/4; (c) |�mw| =
6γ , ϕ = π/2; (d) |�mw| = 6γ , ϕ = 3π/4. The system parameters
used are the same as Fig. 2, except that �p = 2γ . All parameters are
in units of γ .

atom localization. The normalized probe-absorption spectrum
χ ′′(x,y) is plotted in Fig. 4 as a function of the normalized
positions (k1x, k2y) with four different sets of parameter values
of the microwave field. In the case of |�mw| = 3γ and ϕ = 0,
the peak maxima of the probe absorption lie around the
intersections of the nodes of the two standing-wave fields in
the second and fourth quadrants of the x-y plane, as shown in
Fig. 4(a). It can be seen from Fig. 4(a) that these localization
peaks are very sharp, which means that one can achieve
much better spatial resolution at these positions compared with
Fig. 3(b). For a given intensity of the microwave field, when the
phase ϕ is varied from 0 to π/4, the positions of the maxima
of the absorption peaks remain almost unchanged, but the
localization precision of the atom is decreased [see Fig. 4(b)].
However, for the case that |�mw| = 6γ and ϕ = π/2, the
peak maxima of the absorption spectrum are located at the
intersections of the nodes of the two standing-wave fields with
a spikelike pattern, as illustrated in Fig. 4(c), which is similar to
Fig. 4(a) in Ref. [35] and Fig. 3(d) in Ref. [36]. When the phase
ϕ is further varied from π/2 to 3π/4, the probe-absorption
maxima with latticelike patterns are distributed on the nodes
of two standing-wave fields in the first and third quadrants of
the x-y plane, as can be seen from Fig. 4(d), and the atom
is localized at the edges of the two lattices. The conditional
position probability distribution of the atom is contrary to that
shown in Figs. 4(a) and 4(b) when the phase is increased by a
factor of π/2.

B. Case (ii): Two standing-wave fields couple one
atomic transition

In the following, we investigate the case where the two
standing-wave fields drive simultaneously the same atomic
transition, and the other atomic transition is coupled by a
traveling-wave field, i.e., G1(x,y) = �1[sin(k1x) + sin(k1y)]
and G2(x,y) = �2. Figure 5 shows the effects of the probe
detuning on the atom localization behavior in such a case.

FIG. 5. (Color online) The normalized probe absorption χ ′′(x,y)
as a function of (k1x,k1y) in dependence on the probe detuning �p .
�p = (a) 0, (b) 10γ , (c) 20γ , (d) 26.7γ . The system parameters used
are the same as Fig. 2. All parameters are in units of γ .

Since the driving and probe fields are resonant with the
corresponding atomic transitions, i.e., �1 = �2 = �p = 0, it
can be seen from Fig. 5(a) that the probe-absorption maxima
are distributed on the diagonal in the second and fourth
quadrants; this indicates that the atom localization peaks are
determined by k1x + k1y = 2mπ or k1x − k1y = (2n + 1)π
(m,n are integers). When the probe detuning is adjusted
to �p = 10γ , the peak maxima of the probe absorption
are situated in the second, third, and fourth quadrants, and
are mainly localized in the third quadrant with a craterlike
pattern [see Fig. 5(b)]. When the detuning of the probe
field is tuned to an appropriate value, i.e., �p = 20γ in
Fig. 5(c), the probe-absorption maxima are distributed in the
first and third quadrants with different patterns, in which the
localization peaks in the first quadrant display a craterlike
pattern and the localization peaks in the third quadrant exhibit
a spikelike pattern with a high precision. Most interestingly,
when the probe detuning is increased to �p = 26.7γ , the
probe-absorption maxima are only situated in the first quadrant
with a spikelike pattern and thus the atom is localized at
position (k1x,k1y) = (π/2,π/2), as shown in Fig. 5(d), and the
localization peak with a spikelike pattern in the third quadrant
[see Fig. 5(c)] has completely disappeared. As a matter of
fact, when the probe detuning �p is varied within the interval
[22γ,26.5γ ], the localization peak with a craterlike pattern lies
completely in the first quadrant. Furthermore, the localization
precision is improved with an increase in the probe detuning.
However, when �p ∈ [26.6γ,29.6γ ], the localization peak
becomes a spikelike pattern and is still located in the first
quadrant. In such a condition, the probability of finding the
atom in one period of the standing-wave fields is increased
from 1/2 [see Fig. 2(d)] to 1; that is to say, the atom can be
localized at a particular position and the 2D atom localization
is, indeed, achieved. Therefore, the probability of finding the
atom at a particular position is increased by a factor of 2
or 4 compared to the previous proposed schemes [35–38].
Moreover, the localization of an atom in one specific quadrant
is almost unchanged when the detuning is varied in the two
intervals, [22γ,26.5γ ] and [26.6γ,29.6γ ]. It can be readily
verified that the change of the probe detuning within a certain
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FIG. 6. (Color online) The normalized probe absorption χ ′′(x,y)
as a function of (k1x,k1y) for different values of the detuning �2

and the phase ϕ. (a) �2 = 3γ , ϕ = 0; (b) �2 = 6γ , ϕ = π/4;
(c) �2 = 6γ , ϕ = π/2; (d) �2 = 8γ , ϕ = 3π/4. The system param-
eters used are the same as Fig. 2, except that �1 = 5γ and �p = 0.
All parameters are in units of γ .

range of parameters does not affect the result concerning the
high precision and high resolution of the atom localization.
This is a significant advantage of our proposed scheme.

In Fig. 6, we present the different patterns of the normalized
probe absorption by varying the driving field detuning �2 and
the phase ϕ of the microwave-driven field when the probe field
is tuned to the resonant interaction with the corresponding
atomic transition. For the case that �2 = 3γ and ϕ = 0, the
probe-absorption maxima are mostly distributed in the third
quadrant, with little in the second and fourth quadrants, as
shown in Fig. 6(a). Furthermore, owing to the destructive
quantum interference caused by the microwave-driven field,
the probability of finding an atom in the standing-wave fields
is improved by a factor of 2, compared with Figs. 5(a) and 5(b)
in Ref. [37]. However, when �2 = 6γ and ϕ = π/4, the
localization peaks in the third quadrant exhibit a bicycliclike
pattern, and the localization peaks in the second and fourth
quadrants remain almost unchanged [see Fig. 6(b)]. The
maxima of the probe absorption are mainly distributed on
the diagonal in the second and fourth quadrants when the
phase is changed from ϕ = π/4 to ϕ = π/2 [see Fig. 6(c)],
which is similar to that shown in Fig. 5(a); the difference is
that the degree of atom localization is decreased. Under the
condition of �2 = 8γ and ϕ = 3π/4, the probe-absorption
maxima are mainly situated in the first quadrant, with little in
the second and fourth quadrants, of the x-y plane, as shown
in Fig. 6(d), which is the mirror reflection of the localization
patterns observed in Fig. 5(b).

The aim now is to properly discuss the momentum distri-
bution behaviors of the 2D atom localization. Under certain
conditions, it is shown that a sharp single localization peak
can be obtained in a subwavelength region [see, for example,
Fig. 5(d)]. However, when this happens, how is the momentum
distribution of the sharp single localization peak? Is such a
sharp localization accompanied by a very wide momentum
spread? In order to address this problem, we first carry out

the Fourier transform of the normalized susceptibility given in
Eq. (8), and thus we can obtain

F (px,py) =
∫ ∞

−∞

∫ ∞

−∞
f (x,y)e− i

h̄
pxxe− i

h̄
pyydxdy, (9)

where f (x,y) = χ ′′(x,y;�p)
K

. Based on Eq. (9), we present
in Fig. 7 the corresponding momentum distribution in con-
junction with the spatial distribution for the case shown in
Fig. 5(d) by numerical simulations. We find that the atom can
still be localized at a particular position in the momentum
space. The difference between the momentum space and the
position space is that the momentum spread is wider and the
localization peak is not sharper than that shown in Fig. 5(d),
which is originated from the uncertainty relations of position
and momentum. Consider that the position and momentum
are two Hermitian operators, which satisfy the commutation
relation [x,px] = ih̄. According to the Heisenberg uncertainty
relation, the product of the uncertainties in determining the
expectation values of position and momentum is given by [46]

(�x)(�px) � h̄

2
, (10)

where �x is the root-mean-square deviation of the coordinate
x, and �px is the root-mean-square deviation of the momen-
tum px . Similarly, we can get (�y)(�py) � h̄

2 . According to
the relation between momentum and wave vector �p = h̄�k, we
have

(k1�x)(�px) � h̄k1

2
, (k1�y)(�py) � h̄k1

2
. (11)

As a result, the uncertainty range of momentum can be
represented as

�px

px

� 1

2k1�x
,

�py

px

� 1

2k1�y
. (12)

From Fig. 5(d) and Fig. 7, we can estimate that �px

px
≈ 1

1.7 ,
�py

px
≈ 1

1.7 , 1
2k1�x

≈ 1
2 , and 1

2k1�y
≈ 1

2 . As can be seen, these
numerical simulation results are in complete agreement with
theoretical calculations. This means that the result in Fig. 7
is reasonable within the uncertainty relations and practical

FIG. 7. (Color online) Momentum distribution of the normalized
probe absorption χ ′′(x,y) for the case shown in Fig. 5(d). Note that
Px and Py in the horizontal axis are in units of h̄k1. Other parameters
are in units of γ .

043840-7



DING, LI, YANG, ZHANG, AND XIONG PHYSICAL REVIEW A 84, 043840 (2011)

applications. Accordingly, under certain conditions, we can
obtain a sharp localization peak in the position space, while
the localization peak becomes wider in the momentum space.
These investigations are consistent with the basic principle
of quantum mechanics. Therefore, these localization peaks
can also be observed in momentum space but they are
accompanied with a wide momentum spread due to the
influence of the uncertainty principle. Also, it can be seen
from the position-momentum uncertainty relations that the
mean-square deviation of the position gets smaller and the
mean-square deviation of the momentum gets larger, which
means that the more precise the position distribution of an
atom is, the less precise is its momentum distribution.

Before ending this section, we will give some physical
explanations of the above results. On the one hand, it is
clear from the above discussion that our scheme of applying
a microwave field associated with two orthogonal standing-
wave fields can greatly increase the detecting probability and
improve the localization precision, as well as, indeed, realize
the 2D atom localization in the x-y plane. It is obvious
that the maxima of the probe absorption directly reflects
the position probability distribution of the atom, and the
standing-wave fields are dependent on the spatial position, and
thus high-precision and high-resolution atom localization can
be obtained by measuring the probe absorption at a particular
frequency. When the phase of the microwave-driven field is
equal to (2n + 1)π/2 (n is an integer), it can be seen from
Eq. (8) that the interference term G1(x,y)G2(x,y)(�rf +
�∗

rf ) = 0, which means that there is no quantum interference
between the atomic transitions. Therefore, in this case,
the atom localization behavior is similar to that shown in
Refs. [35,36]. On the other hand, when the phase ϕ = nπ , the
interference term in Eq. (8) is G1(x,y)G2(x,y)(�rf + �∗

rf ) =
±2G1(x,y)G2(x,y)|�rf |; this means that there exists maximal
quantum interference between the relevant atomic transitions.
Under two-photon resonance conditions, the localization peaks
are confined to two of the four quadrants as a result of the
joint quantum interference effects. Especially for a large probe
detuning, the atom can be localized at a given position when
the two standing-wave fields drive the same atomic transition.
Due to the destructive quantum interference induced by the
microwave-driven field, the probability of finding the atom in
one period of the standing-wave fields is doubled compared to
that shown in Ref. [37] under certain conditions.

On the other hand, by using the dressed-state picture, the
bare-state levels |1〉, |2〉, and |3〉 can be replaced by three
dressed states, |a〉, |b〉, and |c〉 (not shown here), under the
action of three driving laser fields. After some mathematical
calculations, the energy eigenvalues of the three dressed states
for the two-photon resonant case that �1 = �2 = 0 can be
obtained as

Eb(x,y) = 1

6
M(x,y) + 2A(x,y)

M(x,y)
, (13a)

Ea,c(x,y) = −
[
M(x,y)

12
+ A(x,y)

M(x,y)

]

± i

√
3

2

[
M(x,y)

6
− 2A(x,y)

M(x,y)

]
, (13b)

with

M(x,y) = 3

√
−108B(x,y) + 12

√
−12A3(x,y) + 81B2(x,y),

A(x,y) = G2
1(x,y) + G2

2(x,y) + |�mw|2,
B(x,y) = G1(x,y)G2(x,y)(�mw + �∗

mw).

The corresponding energy eigenstates can be written as

|j 〉 = [G1(x,y)�mw − G2(x,y)Ej (x,y)]|3〉
+ [G2(x,y)�∗

mw − G1(x,y)Ej (x,y)]|2〉
+ [

E2
j (x,y) − |�mw|2]|1〉, (14)

where j = a,b,c. The origin of the localization peaks can be
explained in the dressed-state representation of the standing-
wave and microwave-driven fields. It can be seen from the
above Eqs. (13) and (14) that the contribution of three
bare-state levels to the dressed states is different; in addition,
the quantum interference effects between three transition
channels (from the ground level to the dressed levels) are also
different from each other, and thus lead to different localization
patterns and precision of an atom. When the two standing-wave
fields are, respectively, applied to couple the different atomic
transitions, the contribution of the bare-state levels to the
dressed state |a〉 is identical to that of |c〉, and the quantum in-
terference between |i〉 ↔ |0〉 (i = a,c) and |b〉 ↔ |0〉 leads to
the probe-absorption maxima distributing equally in two of the
four quadrants. However, when the probe field is tuned to the
resonance with the corresponding atomic transition, the probe
field is always absorbed by the atom at the position k1x = mπ

or k2y = nπ (m,n are integers) of the x-y plane; as a result,
the atom is localized around the nodes of two standing-wave
fields. When the phase is equal to π/2, we have Eb(x,y) = 0
and Ea,c(x,y) = ∓√

A(x,y) = Ea,c(−x, − y), and therefore
the localization peaks distribute equally in the four quadrants.
On the other hand, when the two standing-wave fields are used
to drive the same atomic transition, the energy eigenvalues of
the three dressed states are varied with the coordinate positions,
and the probability distribution of the absorption peaks is un-
equal in the four quadrants. In particular, for a larger detuning
of the probe field, we can find the atom at a particular position
due to the combined effects of the quantum interference.

IV. CONCLUSIONS

In conclusion, we have proposed and analyzed a scheme
for 2D atom localization via probe absorption in a four-level
Y -type atomic system, in which the hyperfine transition
between two high-lying excited levels is coupled by a resonant
microwave-driven field. We have shown that the behavior of
atom localization depends upon these controllable detunings
of probe and standing-wave fields, as well as the parameter
values of the microwave field. Some interesting localization
patterns, such as craterlike, spikelike, bicycliclike, and hill-like
patterns, can be obtained by adjusting these system parameters.
When two standing-wave fields are, respectively, coupled to
different atomic transitions, the localization precision and
spatial resolution of the atom are improved with the increase
of probe detuning under two-photon resonance conditions.
Moreover, we can obtain a higher probability to find the
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atom in two of the four quadrants. In the case that the
two standing-wave fields drive the same transition, we can
make an atom localized at a particular position with high
precision and high resolution when the probe detuning is
tuned to an appropriate value. The main advantage of our
proposed scheme is that the probability of finding the atom
in one period of the standing-wave fields is 100%, which is
originated from the joint quantum interference induced by the
two orthogonal standing-wave fields, the traveling-wave field,
and the microwave-driven field.

Finally, it should be pointed out that our scheme is based
on the probe-absorption measurement, and the absorption
measurement is much easier to carry out in a laboratory
compared to the measurement of spontaneous emission. In
our absorption-measurement scheme, the atom is prepared in

the ground state, which is very easy to implement in atomic
physics experiments. These advantages provide a possibility
to observe 2D atom localization in the experiment.
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