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We study large-amplitude one-dimensional solitary waves in photonic crystals featuring competition between
linear and nonlinear lattices, with minima of the linear potential coinciding with maxima of the nonlinear
pseudopotential, and vice versa (inverted nonlinear photonic crystals, INPCs), in the case of the saturable
self-focusing nonlinearity. Such crystals were recently fabricated using a mixture of SU-8 and Rhodamine-B
optical materials. By means of numerical methods and analytical approximations, we find that large-amplitude
solitons are broad sharply localized stable pulses (quasicompactons, QCs). With the increase of the total power,
P , the QC’s centroid performs multiple switchings between minima and maxima of the linear potential. Unlike
cubic INPCs, the large-amplitude solitons are mobile in the medium with the saturable nonlinearity. The threshold
value of the kick necessary to set the soliton in motion is found as a function of P . Collisions between moving
QCs are considered too.
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I. INTRODUCTION AND THE MODEL

Photonic and matter waves propagating under the combined
action of linear and nonlinear lattice (LL and NL) potentials
exhibit a number of dynamics [1]. In particular, solitons in
such media is a topic of considerable current interest, see
recent review in Ref. [2] and original works in Refs. [3,4]
devoted to the studies of 1D solitons. Other works were dealing
with solitons [5,6] and localized vortices [7] in 2D versions of
such systems, which represent, in particular, photonic crystal
fibers [8] and 2D photonic crystals [9] made of nonlinear
materials. The evolution of solitons in these systems obeys the
nonlinear Schrödinger equation (NLSE), in which the LL and
NL are represented, respectively, by a usual periodic potential
and by a periodic pseudopotential [2,10], which is induced
by a spatially periodic modulation of the local nonlinearity
coefficient. In optics, the NL represents the mismatch between
the nonlinearity of the host material and the stuff filling voids of
the photonic-crystal-fibers structure, which may be air, another
solid material [11], or a liquid crystal [12]. The same model,
in the form of the Gross-Pitaevskii equation, applies to matter
waves in a Bose-Einstein condensate (BEC), which is trapped
in a combination of a linear periodic potential, created by an
optical [13] or magnetic [14] lattice, and a pseudopotential
lattice, that may be induced by a periodic modulation of the
local nonlinearity provided by a properly patterned [2] external
magnetic [15] or optical fields [15].

Recently, a combination of competing π -out-of-phase-
juxtaposed LL and NL, with maxima of the refractive index
coinciding with minima of the local strength of the self-
focusing nonlinearity and vice versa, was considered in several
works [17–19]. This medium may be naturally called an
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inverted nonlinear photonic crystal (INPC). It was reported
that INPCs could be fabricated by means of the technique
based on direct laser writing in silica [20]. It was also predicted
that a similar setting can be created in a virtual form, using
the electromagnetically induced transparency acting on dopant
atoms periodically distributed in a passive matrix [19]. Due to
the competition between the LL and NL, solitons in INPCs
may feature specific power-dependent properties, such as
double symmetry breaking [19]. While previous studies of
INPCs were dealing with theKerr (cubic) nonlinearity, in
this work we consider solitary waves in the system with
saturable nonlinearity, which occurs in various optical media.
The extension of the analysis for this nonlinearity is natural,
while solitons in INPCs feature the strong sensitivity to the
power.

First, we propose an experiment setup to realize an
INPC with a saturable nonlinearity. Recent works reported
the creation of resonantly absorbing waveguide arrays and
imaginary-part photonic crystals that feature a spatially peri-
odic modulation of the absorption coefficient, built on the basis
of the SU-8 polymer (a commonly used transparent negative
photoresist) doped with Rhodamine B (RhB, a dye featuring
saturable absorption) [21,22]; see Fig. 1 for a schematic setup.

A similar pattern can be used for our purposes. In the
paraxial approximation, the light propagation in the array
obeys the spatial-domain NLSE for the local amplitude of
the electromagnetic field, u(z,x), where z and x are the
propagation distance and transverse coordinate:

iuz = − 1

2k
uxx − (k0δn + iα/2)R(x)

1 + |u|2 u. (1)

Here, R(x) is the array’s structure function, which is to be taken
as per Fig. 1(a), k = k0n, where n = 1.62 is the refractive index
of pure SU-8, k0 = 2π/λ, and λ is the wavelength of light in
vacuum. Further, α and δn are the absorption coefficient and

043839-11050-2947/2011/84(4)/043839(9) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.84.043839


LI, MALOMED, WU, PANG, WANG, AND ZHOU PHYSICAL REVIEW A 84, 043839 (2011)

FIG. 1. (Color online) (a) The 1D nonlinear photonic crystal, with the blue and gray areas depicting the nonlinear and linear stripes,
respectively. (b) The wavelength dependence of the absorption coefficient and refractive-index variation, α and �n (solid and dashed lines,
respectively) in the SU-8–RhB mixture.

refractive index difference between the SU-8–RhB mixture
and pure SU-8, respectively, which are coupled by the
Kramers-Kronig relation, and are plotted versus λ in Fig. 1(b)
[22]. According to experimental data [22], in the relevant
range of far blueshift from the absorption peak (λ ≈ 460 nm),
α/2 � (1/20)k0 |δn|, which allows one to neglect the dissipa-
tive term in Eq. (1), simplifying it to

iuz = −1

2
uxx + V (x)

1 + |u|2 u, (2)

where k was removed by rescaling of x, and V (x) ≡
− (k0δn) R(x).

In the system under consideration, light experiences strong
saturable self-focusing induced by RhB in the mixed material,
while the nonlinearity of pure SU-8 is negligible. On the
other hand, the refractive index of the mixture is smaller than
in pure SU-8, i.e., δn < 0 at λ = 460 nm, hence, function
V (x) in Eq. (2) takes positive values, and the waveguide array
meets the condition of the π phase shift between the spatial
modulations on the linear and nonlinear local characteristics
of the medium, thus realizing the INPC with the saturable
nonlinearity.

The objective of this work is to study the existence, stability,
mobility, and interactions of solitons in the INPC model
based on Eq. (2). In Sec. II, we study properties of the
solitons by means of numerical simulations and analytical
approximations. It will be demonstrated that they feature sharp
localization, i.e., a quasicompacton (QC) shape. Following the
increase of the total power, P , the QC switches its position
between maxima and minima of the linear refractive index. In
Sec. III, we study mobility of the QCs, imposing the phase
tilt onto them, i.e., suddenly multiplying the wave form by
exp(iηx). A critical tilt (alias kick), ηc(P ), beyond which the
compacton starts to move, is found. The dependence ηc(P )
features variations with the same period in P as the above-
mentioned switching of the quiescent solitons. Collisions
between moving compactons are also studied in Sec. III
by means of direct simulations. The paper is concluded by
Sec. IV.

II. QUASICOMPACTONS: NUMERICAL AND
ANALYTICAL RESULTS

A. Numerical simulations

Modulation function V (x) in Eq. (2) corresponding to
Fig. 1 is a piecewise-constant one, of the Kronig-Penny type.
In this paper, we approximate V (x) by the first term of
its harmonic decomposition, assuming that contributions of
higher harmonics are negligible for sufficiently broad solitons:

V (x) = (V0/2) [1 − cos (2πx/d)] , (3)

where d and V0 > 0 are the modulation period and depth.
The scaling is set by fixing d ≡ 20, which leaves V0 as a
free parameter. In this section, we present numerical results
for V0 = 0.02,0.03, and 0.04, which adequately illustrate
the generic situation. Below, we focus on solitons with a
sufficiently large amplitude, as for small amplitudes the
truncated expansion of the saturable nonlinearity amounts to
the previously studied Kerr model [17–19].

Typical numerical results for solitons solution at different
values of the total power, P = ∫ +∞

−∞ |u(x)|2dx, are displayed
in Fig. 2. The stationary profiles, presented in Figs. 2(a)–2(c),
were generated by dint of the the imaginary-time-propagation
method [23]. It is concluded that the profiles are strongly
localized, making the solitons QCs (quasicompactons) [a
solution fully localized within a finite (compact) interval of
y is usually called a compacton [24,25]]. On the other hand,
the soliton broadens with the increase of P . At relatively small
values of the total power, e.g., P = 400, the center of the
soliton is located at a minimum of V (x) [Fig. 2(a)]; then, at
P = 800 [Fig. 2(b)], the position of the soliton is switched to
a maximum of V (x), and at P = 2000 it switches back to the
minimum [Fig. 2(c)].

To quantify power-dependent properties of the solitons, we
define the center-of-mass coordinate and average width of the
soliton as follows:

Xmc(P ) = P −1
∫ +∞

−∞
x|U (x,P )|2dx,

(4)

Wa(P ) = P −1
∫ +∞

−∞
(x − xmc)2|U (x,P )|2dx,
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FIG. 2. (Color online) Numerically found soliton profiles (blue solid lines) for the modulation function (shown by the black solid line) with
depth V0 = 0.02 (recall the modulation period is scaled to be d ≡ 20). (a) At total power P = 400, the center of the soliton is located at the
minimum of V (x). (b) At P = 800, the soliton shifts to the maximum of V (x). (c) At P = 2000, the solitons shifts back to the minimum of
V (x). Panels (d), (e), and (f) illustrate the stability of the solitons via direct simulations of their perturbed evolution.

where U (x,P ) is the soliton solution with power P . Using the
integration in imaginary time, the data were collected for the
solitons from P = 100 to 10000, with modulation depths V0 =
0.02,0.03, and 0.04. Real-time simulations of the evolution of
these solutions in the framework of Eq. (2) demonstrate that
they all are stable against perturbations.

Numerically found dependencies (4) are displayed in Fig. 3.
The upper panels, Figs. 3 a–3(c), show that the soliton’s center
of mass switches (as said above) between the minimum (x =
0) and maximum (x = −10) of the modulation function V (x).
The period of the switching, �P , increases with the increase
of modulation depth V0. Further, Figs. 3(d)–3(f) show that the
average width of the soliton grows with the increase of P and
decrease of V0.

B. Analytical approximations

In saturable nonlinear media, large-amplitude solitons are
always broad. Accordingly, to develop an analytical approxi-
mation, we assume a soliton with the width much larger than
d. Then, in the zero-order approximation, Eq. (2) is replaced
by the equation with the averaged potential, V (x) → V0/2,

iuz = −1

2
uxx + V0

2(1 + |u|2)
u. (5)

Equation (5) gives rise to soliton solutions, u(z,x) =
eikzU (x − ξ ), with the coordinate of the soliton’s center ξ ,
and real function U (y) obeying the following equation:

d2U

dy2
= 2kU + V0U

1 + U 2
≡ −dW

dU
, (6)

where y ≡ x − ξ . The effective potential in Eq. (6),

W (U ) = kU 2 + V0

2
ln

(
1 + U 2

0

1 + U 2

)
, (7)

formally corresponds to the Newton’s equation of motion for
a particle with coordinate U (y) (y plays the role of time) and
unitary mass. Then, the shape of the soliton is determined by
the respective energy equation,

(
dU

dy

)2

+ 2k
(
U 2

0 − U 2) + V0 ln

(
1 + U 2

0

1 + U 2

)
= 0, (8)

where U0 is the amplitude of the soliton (the largest value of U ).
As usual, the soliton trajectory corresponds to the solution of
Eq. (8) starting from U = 0 at y = −∞, bouncing back from
the potential well at U = U0, y = 0, and returning to U = 0 at
y → +∞. Setting in Eq. (8) U = dU/dy = 0, one can find a
relation between k and U0. Being interested in solutions with
large amplitudes, we assume here U 2

0 � 1, which yields

k ≈ −(V0/2)U−2
0 ln

(
U 2

0

)
, (9)

U 2
min ≈ U 2

0 / ln
(
U 2

0

)
, (10)

Umin being the coordinate of the minimum of potential Eq. (7).
Equation (10) implies U 2

min � U 2
0 , i.e., the minimum of the

potential is located much closer to U = 0 than the largest
value U0. This fact suggests a possibility to use the following
approximation for solving Eq. (8): at the first stage of the
approximation, we drop the logarithmic term in Eq. (8)
altogether, i.e., we replace the equation by its “primitive
version,”

(
dU

dy

)2

+ 2k
(
U 2

0 − U 2
) = 0, (11)
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(a) (b) (c)

(d) (e) (f)

FIG. 3. (Color online) The plots in panels (a1)–(c1) display the coordinate of the soliton’s center of mass, Xmc, as a function of P , for
V0 = 0.02,0.03, and 0.04, respectively. (a2)–(c2) display the critical kick that initiates the motion of the soliton, ηc, as a function of P for
V0 = 0.02,0.03, and 0.04. (d)–(f) The average width of the soliton as a function of P for V0 = 0.02,0.03, and 0.04.

whose obvious solution is

U (y) = U0 cos(
√−2ky) ≈ U0 cos

⎛
⎝

√
V0 ln

(
U 2

0

)
U0

y

⎞
⎠ ,

(12)

where Eq. (9) was used to replace k by the U0.
At the second stage of the approximation, we recall that

the particle does not perform periodic oscillations, as formally
follows from Eq. (12), but it starts the motion from U = 0 at
y = −∞, and returns to U = 0 at y → +∞, as the soliton
solution must do; see above. This means that approximation
Eq. (12) is usable in interval

|y| <
Ltot

2
≡ π

2
√−2k

= πU0

2
√

V0 ln
(
U 2

0

) , (13)

When the moving particle approaches edges of interval
Eq. (13), the logarithmic term in Eq. (8), which was neglected
in Eq. (11), “suddenly” becomes important, leading to the
stoppage of the particle. Thus, the full approximation in the
large-amplitude limit, U0 � 1, amounts to representing the
soliton as the QC:

U (y) ≈
{

U0 cos
[√

V0 ln(U 2
0 )

U0
y
]
, at |y| < Ltot/2,

0, at |y| > Ltot/2,
(14)

where Ltot, given by Eq. (13), plays the role of the total width
of the QC. Note that the large amplitude U0 of the soliton
implies that the width [Eq. (13)] is also large, i.e., the QC is
a sharply localized but wide localized pattern. In the present

approximation, the total power of the soliton can be calculated
as follows:

P ≡
∫ +∞

−∞
|U (y)|2 dy ≈ 1

2
LtotU

2
0 = πU 3

0

2
√

V0 ln
(
U 2

0

) . (15)

Further, using the fact that P and U 2
0 are large, Eq. (15) can

be approximately inverted, to give the peak power (squared
amplitude) of the QC as a function of its total power:

U 2
0 ≈

(
2P

π

√
2V0

3
(ln P )

)2/3

. (16)

Next, using Eq. (13), it is also possible to approximately
express the full width of the compacton in terms of the total
power:

Ltot ≈
(

3π2

V0

P

ln P

)1/3

. (17)

Equations (16) and (17) are plotted in Fig. 4 for different
values of P . In particular, Fig. 4(a) demonstrates that the
analytical prediction for the peak power is consistent with
the numerical results. On the other hand, the values of the
width given by Eq. (17) [see Fig. 4(b)] are larger than
their numerically found counterparts presented in Fig. 3(d).
However, one should take into regard that width [Eq. (17)] is
“all-inclusive” (total), while the width shown in Fig. 3(b) is
the average one (definitely far smaller than the total width).
Note also the similarity in the P -dependence of the width in
Figs. 3(d) and 4(b).

To explain the position switchings of the QC, one may
use the effective energy (potential) of the interaction of
the QC with the spatial modulation, corresponding to the
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(a) (b)

FIG. 4. (Color online) (a) The comparison of the numerical results for the peak power of the quasicompactons with the analytical prediction
given by Eq. (16). (b) The full width of the quasicompacton, as predicted by Eq. (17). In this figure, V0 = 0.02.

term ∼ cos (2πx/d) in Eq. (3). This energy can be defined as
follows, with regard to the definition of y ≡ x − ξ in Eq. (6):

Eint(ξ ) = −V0

∫ +∞

−∞
dx cos

(
2πx

d

)
ln[1 + U 2(x)]

≈ −V0

∫ ξ+Ltot/2

ξ−Ltot/2
dx cos

(
2πx

d

)
ln[1 + U 2(x)]. (18)

In this expression, it is taken into account that QC [Eq. (14)]
occupies, approximately, a finite region of x, ξ − Ltot/2 <

x < ξ + Ltot/2. After three integrations by parts, Eq. (18) can
be approximately calculated as follows:

Eint(ξ ) ≈ Kd ln
(
U 2

0

)
sin

⎡
⎣ π2U0

d

√
V0 ln

(
U 2

0

)
⎤
⎦ cos

(
2π

d
ξ

)
,

(19)

where Kd ≡ V 2
0 d3/π3. Equation (19) predicts that the mini-

mum of the interaction energy is located at points ξ = nd with
integer n (at minima of the modulation function) for values

of U0 such that sin{π2U0/[d
√

V0 ln(U 2
0 )]} < 0, and at points

ξ = (n + 1/2)d (at maxima of the modulation) in the opposite

case, sin{π2U0/[d
√

V0 ln(U 2
0 )]} > 0. Because U0 grows as the

function of P , as per Eq. (16), this means that, with the increase

of P , the position of the energy minimum must indeed switch
between adjacent extrema of the modulation function. The
fact that V0 appears in the denominator of the argument of
the sinusoidal factor explains why the period of the switching
increases with V0.

III. MOBILITY OF THE QUASICOMPACTONS

A. Driving the soliton by the phase tilt

Mobility of solitons under the combined action of LL and
NL is a problem that was considered in a number of different
settings [2,26–29]. To set the QC in motion, we follow the
standard approach, suddenly kicking a quiescent one, i.e.,
multiplying the respective solution, U (x), by the phase-tilt
factor: U (x,η) → exp(iηx)U (x), where η is the strength of
kick.

The simulated propagation of the QC, induced by kicking
the standing one, U (x,P = 2000), is displayed in Fig. 5, for
two different values of η. It is observed that η = 0.020(π/d)
causes only oscillations of the soliton, without any progressive
motion. However, a slightly higher kick, η = 0.025(π/d), is
sufficient to set the same soliton in persistent motion. These
results imply that there must be a threshold (critical) value of
the kick, ηc, such that the kick with η > ηc makes the given
QC a traveling soliton. For P = 2000, it is ηc = 0.021(π/d).

FIG. 5. (Color online) Direct simulations of the compacton with P = 2000, initiated by the application of the phase tilt with η = 0.020(π/d)
(a) and η = 0.025(π/d) (b). The lattice depth is V0 = 0.02.
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FIG. 6. The momentum of the soliton with P = 2000, measured
at z = 1000, as a function of initial kick η.

The critical kick for the QCs is shown as a function of the
total power in Figs. 3(a)–3(c), for V0 = 0.02,0.03, and 0.04.
The general trend to the decrease of ηc with the increase of P

is explained by the broadening of the soliton with the increase
of the total power in the case of the saturable nonlinearity and
ensuing enhancement of the solitons’ mobility [29]. A specific
feature of the INPC is that oscillations of ηc are superimposed
on top of the gradual decay of the critical kick, the period of
the oscillations coinciding with that of the switching of the
center-of-mass position. Figures 3(a)–3(c) also demonstrate

that ηc decreases with the decreases of modulation depth V0.
The latter trend is correlated with the fact that, as seen in
Figs. 3(d)–3(f), the width of the solitons increases, making
them more mobile, with the decrease of V0 (as well as with the
increase of P ).

Further, Fig. 6 shows that the momentum of the moving
soliton, which is defined as

〈p(z)〉 = −i

∫
dxU (x,z,η)∗Ux(x,z,η), (20)

is, naturally, a linear function of the initial kick, η. Further
simulations (not shown here) demonstrate that the QC are not
destroyed even by a very strong kick, far exceeding ηc.

It is relevant to compare the mobility of large-amplitude
solitons in the INPCs models with the saturable and cubic
self-focusing. In the latter case, Eq. (2) is replaced by [4]

iuz = − 1
2uxx + V (x)(1 − |u|2)u, (21)

where we chose the modulation function, V (x), in the
same form as in Eq. (3), with V0 = 0.02 and d = 20. A
typical example of simulations of the mobility of solitons
in this model is displayed in 7(a)–7(c), for three kicks,
η = 0.15π/d,0.25π/d , and 0.35π/d . In particular, Fig. 7(a)
shows that η = 0.15π/d give rise to oscillations of the soliton,
without depinning. Further, it is observed in Fig. 7(b) that the

(a) (b)

(c) (d)

FIG. 7. (Color online) (a) Direct simulations of the evolution of the soliton with total power P = 80 in the model with the cubic nonlinearity
[Eq. (21)], initiated by the kick with strengths η = 0.15(π/d) (a), 0.25(π/d) (b), and η = 0.35(π/d) (c). (d) The top plot: η1c is the border
between stable solitons and fuzzy beams; η2c is the border between the fuzzy beams and completely destroyed ones. The bottom plot shows
the average width of the quiescent soliton versus its total power P .
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FIG. 8. (Color online) Direct simulation of the collisions initiated by kicks η1 = 0, η2 = 0.1(π/d) (a); η1 = 0, η2 = 0.2(π/d) (b); η1 =
0.1(π/d), η2 = 0.1(π/d) (c); η1 = 0.2(π/d), η2 = 0.2(π/d) (d). Other parameters are P = 400, x0 = 120, and V0 = 0.02. As in the rest of
the paper, the scaling is fixed by d ≡ 20.

stronger kick, η = 0.25π/d , transforms the soliton into an
oscillatory beam with a fuzzy shape, but, still, it was not set
in motion. Finally, Fig. 7(c) demonstrates that the strongest
kick, η = 0.35π/d , completely destroys the soliton (recall the
destruction never happens in the model with the saturable
nonlinearity). Therefore, there must exist critical values of the
kick separating the stable solitons, fuzzy beams, and complete
destruction. These borders are plotted in the top panel of
Fig. 7(d), in the range of powers 50 < P < 100 (the average
width of the static soliton in the same region is plotted, versus
P , in the bottom panel). Thus, the large-amplitude solitons in
the INPC model with the cubic self-focusing are not mobile at
all. On the other hand, dynamics of small-amplitude solitons
in the models with the saturable and cubic nonlinearities are
similar, due to the obvious expansion, (1 + |u|2)−1 ≈ 1 − |u|2
(results for this case are not shown here in detail, as they are
less interesting).

B. Collisions between moving quasicompactons

Collisions are a natural way to test interactions between
solitons. Here we present some numerical results for collisions
between QCs in the INPC with the saturable nonlinearity. The
initial state at z = 0 is taken as a set of two far-separated kicked
solitons:

u(x) = U (x + x0,P )eiη1(x+x0) + U (x − x0,P )e−iη2(x−x0), (22)

where U (x ± x0,P ) are the QC pulses with power P , which
are centered at x = ∓x0, and η1,2 are the kicks applied to
them. Simulations of Eq. (2) with initial conditions Eq. (22)
are displayed in Fig. 8.

The simulations demonstrate the repulsive interaction
between the colliding QC. In Figs. 8(a) and 8(b), they bounce
back without overlapping, because the collision velocity is
small [nevertheless, one of the solitons suffers a conspicuous
perturbation in Fig. 8(a)]. In Figs. 8(c) and 8(d), the larger
velocities give rise to the overlap between the colliding QCs,
which results in the strong inelasticity of the collision in the
case displayed in Fig. 8(d).

IV. CONCLUSIONS

The objective of this work was to consider 1D solitons in
the INPC (inverted nonlinear photonic crystal) with competing
LL and NL (linear and nonlinear lattices). Unlike recently
studied models with the cubic nonlinearity, we here consider
the saturable self-focusing. The 1D crystal of this type was
recently fabricated, using the SU-8 polymer material peri-
odically doped with Rhodamine-B, which lends the medium
the saturable nonlinearity. Combining numerical methods and
analytical approximations, we have demonstrated that broad
solitons are sharply localized in this setting, thus taking the
shape of the QCs. With the increase of the total power, P ,
the QC remains a stable object, which switches its position
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between the linear and nonlinear layers, which form the
INPC. The width of the soliton increases with P , which is
a manifestation of the saturable nonlinearity. The large width
of the QC makes it a mobile object, unlike solitons in the
INPC with the cubic nonlinearity. The threshold value of
the transverse kick (phase tilt), which is necessary to set the
QC in motion, was found as a function of P . The threshold
value gradually decays with the increase of P . Collisions
between two moving QCs were also studied, by means of
direct simulations.

The results reported in this work may be applied to the
design of all-optical data-processing schemes. In particular, the
power-controlled switch of the spatial soliton between adjacent

layers, as well as the high mobility of these solitons, may be
quite relevant properties, in this context.

This work may be extended in other directions. It particular,
2D waveguide arrays, based on the RhB–SU-8 mixtures, can be
fabricated [21,22], which suggests considering spatial solitons
in two-dimensional INPC with the saturable nonlinearity.
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