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Chaos crisis and bistability of self-pulsing dynamics in a laser diode with phase-conjugate feedback
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A laser diode subject to a phase-conjugate optical feedback can exhibit rich nonlinear dynamics and chaos.
We report here on two bifurcation mechanisms that appear when increasing the amount of light being fed back
to the laser. First, we report on a full suppression of chaos from a crisis induced by a saddle-node bifurcation
on self-pulsing, so-called external-cavity-mode solutions (ECMs). Second, the feedback-dependent torus and
saddle-node bifurcations on ECMs may be responsible for large regions of bistability between ECMs of different
and high (beyond gigahertz) frequencies.
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I. INTRODUCTION

Phase-conjugate optical feedback (PCF) has been exten-
sively used for applications where one needs to stabilize a laser
diode output through phase or mode locking [1,2] or to improve
laser performances such as single-mode emission [3], spectral
linewidth [4,5], and intensity noise [6]. However, experimental
and theoretical works have shown that, depending on the
feedback parameters, the laser diode also can exhibit complex
nonlinear dynamics, leading to chaos [7–17]. To summarize,
when increasing the feedback strength, the laser diode is desta-
bilized from its otherwise steady-state dynamic and exhibits
a sequence of bifurcations to chaos. Regions of chaos (also
called “bubbles”) are interspersed by self-pulsing dynamics
[12]. Because the oscillation frequency of these self-pulsations
is close to a multiple of the external-cavity frequency, these
solutions have been called external-cavity modes (ECM). An
in-depth bifurcation analysis of these ECMs is, however, avail-
able only for weak optical feedback [15,16], where one can
also benefit from approximations of the ECM solutions [8,11]
and appropriate asymptotic methods [17]. Yet the experiments
suggest that the laser spectral component at the external-
cavity frequency increases and broadens with the increase
of feedback strength, hence indicating that restabilization of
ECM and/or additional bifurcations on ECMs may be in
order for larger feedback rates (see, e.g., cases e to g of
Fig. 3 in Ref. [14]). This situation contrasts with the case
of conventional optical feedback, where a continuous increase
of feedback strength typically leads to an even more developed
chaos such as coherence collapse [18].

In this paper, we extend the previously reported bifurcation
analysis to larger values of the feedback strength. Using both
direct numerical integration and continuation tools for delay-
differential equations, we unveil two bifurcation scenarios.
First, when increasing the feedback strength, a full suppression
of chaos may be observed because of a crisis from a saddle-
node bifurcation on ECM. As a result, the laser diode is left in
a purely regular self-pulsing dynamic with a frequency that is
a multiple of the external-cavity frequency. Second, bistability
between ECMs can appear when increasing the feedback
strength and leads to coexisting self-pulsing dynamics of
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very high frequencies (for our parameters, several tens of
gigahertz). These results show a configuration where a laser
regular self-pulsing dynamic gets stabilized by the increase of
feedback rate other than the reported regular pulse package
in conventional optical feedback [19,20] or polarization self-
modulation and square waveforms in polarization rotated
feedback [21,22].

The plan of our paper is as follows. In Sec. II we
detail the theoretical model and parameters, and discuss the
bifurcation results explaining chaos crisis when increasing the
feedback strength. Section III illustrates bistability between
self-pulsating dynamics at a frequency being a multiple of the
external cavity frequency. Our conclusions are summarized in
Sec. IV.

II. CHAOS CRISIS

We model the laser system using the so-called Lang-
Kobayashi equations, i.e., time-delayed differential equations
for the slowly varying optical field Y and the carrier inversion
Z. The field dynamics accounts for a delayed and phase-
conjugated feedback field Y ∗. The model is written as follows,
where the time scale has been normalized by the photon
lifetime (as done in Ref. [17]):

dY

dt
= (1 + iα)ZY + γ Y ∗(t − θ ), (1)

T
dZ

dt
= P − Z − (1 + 2Z)|Y |2. (2)

In these equations γ is the normalized feedback rate, θ is
the normalized external delay, α stands for the linewidth
enhancement factor, P is the pump parameter above threshold,
and T is defined as the ratio of carrier to photon lifetime. To
simplify the comparison with previous works, we have taken
the same values of the parameters as in Refs. [9,12,15–17]:
P = 0.0417, T = 1428, α = 3, θ = 476. These are typical
values of a diode laser working close to threshold and subject
to feedback from a 10-cm-distant mirror. The normalized
feedback rate γ is our bifurcation parameter and will be
varied between 0 and 0.07, which correspond to external mirror
reflectivities from 0% to 3.35%. The model is simple in that
it does not account for the phase-conjugate mirror internal
dynamic (typically on nanosecond to second time scales [23])
and the multiple delayed round-trips in the extended cavity
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FIG. 1. (Color online) Bifurcation diagram for γ ∈ [0,0.07]. The
extrema of the time series of the optical power vs the normalized
feedback rate are shown.

(which may occur in very strong feedback situations [24]).
Still, it contains the main ingredients (ECMs and underlying
bifurcations) to explain qualitatively the dynamics observed in
experiments, and it allows for a mathematical treatment using
either numerical bifurcation tools or asymptotic mathematical
analysis.

Figure 1 shows a bifurcation diagram of the extrema of
laser output power (|Y |2) versus the feedback rate γ . One
recognizes the sequence of bifurcations at weak feedback
rate (γ < 0.015) as reported in Refs. [12,15,16]: the laser
steady state destabilizes with a Hopf bifurcation to a ECM
self-pulsing, which further undergoes a torus bifurcation to
chaos. As the feedback rate increases, the laser follows a
sequence of three bubbles of chaos interspersed by ECM self-
pulsing solutions. Interestingly, when increasing the feedback
rate further, the parameter range where chaos is seen (i.e., the
size of the bubbles of chaos) shrinks progressively until chaos
disappears for larger feedback rate values. For γ > 0.035 the
laser diode is left in a purely regular self-pulsing dynamic
corresponding to an ECM solution of the laser system. When
increasing the feedback rate, bifurcations between ECMs
lead to successive jumps between self- pulsing solutions of
different frequencies, all being multiples of the external-cavity
frequency (i.e., a property of ECM solutions), but ECMs do not
exhibit higher-order bifurcations to stable chaotic attractors.

To understand the mechanism leading to suppression of
chaos, it is of interest to analyze in more detail the transition
from chaos to ECM self-pulsing. The bifurcation diagram
suggests an abrupt destabilization of chaos that is indicative
of a crisis. This is confirmed in Fig. 2, where we plot time
traces of laser output power and projections of the trajectory
in the reduced phase space (real vs imaginary parts of the
field) for γ = 0.028795, which is just before the transition
from chaos to ECM self-pulsing indicated by the arrow in
Fig. 1. In several time intervals of the chaotic time series (1.a)
in Fig. 2, the laser diode exhibits a self-pulsing dynamic that
resembles very much the dynamic of the next appearing ECM
[see, e.g., a zoom in time series (2.a)]. This is also better
seen in the phase space [Fig. 2, (1.b) and (2.b)] where one
recognizes the limit cycle dynamic of the ECM as contained
in the larger chaotic attractor. When increasing the feedback
rate, the chaotic attractor born on an ECM grows in size until
it starts exhibiting large trajectories, forming the ghost of the
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FIG. 2. (Color online) Time series of output power (1.a) and
phase-space trajectory (1.b) for γ = 0.028795. Time series (2.a) is
an enlargement of the boxed part, with (2.b) being its trajectory. In
(1.b) and (2.b) the ellipse is the trajectory of the stable ECM about to
appear.

limit-cycle trajectory of the next ECM, which is the signature
of a so-called chaos crisis from a saddle-node bifurcation of
a limit cycle (in our case an ECM solution). Such a crisis
scenario, which happens for all bubbles of chaos starting from
weak optical feedback, has been suggested also in Ref. [12], the
originality being here to understand how the crisis combined
with the saddle-node bifurcation on ECM may be responsible
for a total disappearance of chaos for larger values of the
feedback rate.

To answer this question, one has to get a closer look into
the saddle-node bifurcation of the ECM and whether this
bifurcation occurs for feedback rates smaller or larger than
the torus bifurcation destabilizing the ECM and leading to
chaos. We have then complemented our numerical study by
mathematical continuation techniques using the DDE-BIFTOOL

package [25]. It allows us to follow stable or unstable branches
of steady states or time-periodic solutions and to analyze their
linear stability. Figure 3 complements the previous bifurcation
diagram by showing the branches of ECMs (only the maximum
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FIG. 3. (Color online) Bifurcation diagram obtained by the
simulation and continuation method. The simulation result is in black,
and the continuation result is in orange (gray). The stable part of the
branch is a thick line, while the unstable part is a thin line. Squares
(circles) are saddle-node (torus) bifurcations.
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of |Y |2 is plotted) that successively appear when increasing
the feedback rate. The stable (unstable) part of each branch
is displayed by a thick (thin) line. Each ECM is born from
a saddle-node bifurcation (squares) where the high-intensity
solution only can be stable. Each ECM then destabilizes with
a torus bifurcation (circles) when increasing the feedback
rate. The interval of feedback-rate values that separate the
torus bifurcation of a previous ECM and the saddle-node
bifurcation of the next ECM decreases as the feedback rate
increases. Since the saddle-node bifurcation is responsible for
the disappearance of chaos, this also explains that regions
of chaos are observed for progressively smaller ranges of
feedback rates as the feedback rate is increased. Furthermore,
a sudden change of the bifurcation picture happens for
γ > 0.035: the saddle-node bifurcation that creates the next
stable ECM occurs for a feedback rate smaller than the torus
bifurcation that destabilizes the previous ECM. As a result the
mechanism inducing the chaos crisis is present as soon as the
ECM gets destabilized, and chaos is no longer observed. This
is a remarkable feature of the combination in our laser system
of a chaos crisis mechanism and a bifurcation mechanism that
makes the position of torus and saddle-node bifurcations on
limit cycles dependent on the feedback rate. Control of chaos
up to its full suppression is therefore rendered possible by
varying the feedback strength.

III. BISTABILITY OF SELF-PULSING DYNAMICS

The bifurcation mechanism explained in Fig. 3 has another
consequence: bistability can be observed between ECM solu-
tions when increasing the feedback rate. Another mechanism
leading to bistability of locked solutions in a laser diode with
phase-conjugate feedback has been reported in Ref. [15], but as
stated by the authors in a very small region of the parameters
and with solutions having a small basin of attraction with
respect to other stable attractors. As a result such a bistability
was hardly observable in direct numerical integration and
was seen only with the help of continuation methods where
the system could be started with initial conditions in close
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FIG. 4. (Color online) (a) Bifurcation diagram for increasing (top
line) and decreasing feedback (bottom line) plotted on the same
scale but shifted vertically for clarity. (b) The frequency of the
periodic solutions (stable part only) obtained by continuation vs the
normalized feedback rate. Dashed vertical lines bound the bistability
regions.

proximity to the coexisting solutions. In our case, not only
is the bifurcation leading to bistability different, but also
bistability is seen in a large interval of feedback rate values,
an interval that moreover increases with the increase of the
feedback rate. Bistability between ECMs is clearly seen
in Fig. 4(a), where we plot the bifurcation diagrams of
laser output power (only the maximum of |Y |2 is plotted)
for either increasing (top line) or decreasing (bottom line)
feedback rates. We determine the boundaries of each region
of bistability by looking at the feedback rate that corresponds
to each saddle-node bifurcation (torus bifurcation) creating
(destabilizing) an ECM. These boundaries are represented by
pairs of vertical dashed lines. As we can see, all the states
are easily accessible in the simulation, and the regions of
bistability are quite large. In Fig. 4(b) we show the frequencies
of the ECM solutions as they bifurcate when increasing the
feedback rate. The frequency separation between ECMs is
close to the external-cavity frequency. In our case the nor-
malized external frequency is fext = 1/θ = 2.1.10−3; hence
it is about 1.5 GHz if one accounts for a photon lifetime
of τp = 1.4 ps as in Refs. [9,12,15,16]. To illustrate the
coexistence of two ECM solutions with different and possibly
high frequencies, we show in Fig. 5 the time series of the
two regular self-pulsing dynamics observed for a normalized
feedback rate of γ = 0.0611 [Figs. 5(a) and 5(b)] together
with their corresponding optical spectra [Figs. 5(c) and 5(d)].
The zero frequency in Figs. 5(c) and 5(d) corresponds to
the free laser frequency, which is the frequency reference
frame of Eqs. (1) and (2). The optical spectrum in Fig. 5(c)
[Fig. 5(d)] shows two peaks at about 8 (8.75) GHz and −8
(−8.75) GHz. Since the complex field trajectory is symmetric
in the phase plane of the real vs imaginary parts and is centered
on the (0,0) point, the optical spectrum shows no component at
the zero frequency and symmetric peaks on negative and
positive frequencies. Because one complete cycle for the
complex field Y is equivalent to two cycles for |Y |2, the
time series of the optical power in Figs. 5(a) and 5(b) show
modulations at about 16 and 17.5 GHz, respectively. The
laser system will initially select one of the two coexisting
self-pulsations at high frequencies. However a sustained
perturbation or noise may induce random jumps between
these two ECMs, with the result being a time-averaged rf
spectral signature that is made of two peaks, slightly shifted in
frequency (the shift is related to the external-cavity frequency).
The observation of such robust self-pulsations at controllable
(with the feedback rate) and high frequencies and moreover the
possibility to observe bistability between these ECM solutions
are of interest for all-optical signal processing.

Finally, we have checked the robustness of the reported
bifurcation mechanism when varying the laser and feedback
parameters. First, the increase of the linewidth enhancement
factor does not modify the reported bifurcation scenario but
increases the number and the size of the bubbles of chaos
for weak optical feedback. Second, the reported findings
are not specific to a so-called short external cavity. We still
observe the feedback-induced suppression of chaos and ECM
bistability when increasing the delay or the pump parameter
such that the delay becomes larger than the free-running
laser relaxation-oscillation frequency. The increase of the
time-delay value, however, leads to additional bifurcations
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FIG. 5. (Color online) (a) and (b) Two time series of the light
output power available for a normalized feedback rate of γ = 0.0611
and (c) and (d) the corresponding optical spectra.

on ECMs, which deserve further investigations. This con-
clusion contrasts strongly with the Conventional Optical
Feedback (COF) case, where similar self-pulsing dynamics
at the external-cavity (EC) frequency is typically limited to
a so-called short external cavity [26]. This can be justified
by the very different bifurcation mechanism leading to EC
self-pulsing dynamics in both cases. In COF, the bifurcation
mechanism is a Hopf bifurcation on an ECM, that is, a
steady-state solution of the compound cavity system. The
self-pulsing dynamics corresponds mathematically to a bridge
of the time-periodic solution connecting two Hopf bifurcations
on two frequency-detuned ECMs or, equivalently, to an
ECM beating [27,28]. Moreover, as one of the connecting
ECMs is typically an unstable solution (called antimode),
the self-pulsing dynamics gets easily destabilized to, e.g.,
quasiperiodicity and chaos as one increases even slightly the
feedback rate [29]. This makes the observation of such an
ECM beating and Hopf bridge quite difficult. In the PCF case,
the laser has only one stable steady-state solution, which gets
destabilized through a Hopf bifurcation to a stable self-pulsing
solution. As mentioned earlier, since the frequency of that
solution is close to the external-cavity frequency, that solution
has been called an ECM, but in contrast to COF, an ECM of the
PCF system is a rotating solution with time-periodic intensity
and is not a time-constant intensity. The laser creates such
ECM solutions as the feedback increases, but all originate from
the same single steady-state branch and not, as for the COF,

from a possible beating or Hopf bridge on (ECM) steady-state
solutions. The stability of the EC self-pulsing dynamics in
PCF (i.e., of the ECM solution) is determined by the interplay
between a saddle-node bifurcation on the limit cycle and a
torus bifurcation, hence making it possible to observe a robust
and fully stable self-pulsing also when increasing the feedback
rate or the external-cavity length.

IV. CONCLUSION

In summary, we have reported on a bifurcation scenario
in a laser diode with phase-conjugate optical feedback. When
increasing the feedback rate, the saddle-node bifurcation that
creates a self-pulsating ECM solution (limit cycle) may occur
for a feedback rate value smaller than the one corresponding
to the torus bifurcation of another ECM. This results first in a
full suppression of chaos for larger values of the feedback rate,
where the underlying bifurcation mechanism is a crisis from
a saddle-node bifurcation on the limit cycle. The laser then
exhibits robust self-pulsating dynamics at frequencies being
multiples of the external-cavity frequency, hence adjustable.
Secondly, this leads to bistability between self-pulsating ECM
solutions of different and high frequencies. The reported
bifurcation scenarios are observed in a large range of param-
eters. These conclusions have been obtained through direct
numerical integration of an appropriate set of rate equations
and also from the use of advanced continuation tools for delay-
differential equations. The reported dynamics are of interest
for the all-optical generation of high-frequency microwave
signals, and also the bistability is of interest for all-optical
signal processing. Many of the reported bifurcation features,
particularly the existence of a robust self-pulsing dynamics
at large feedback rates, contrast with what is typically seen
in a conventional optical feedback. They motivate further
investigations in experiments where, although not detailed,
reports show the existence of more regular attractors coexisting
at large feedback rates.
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