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Momentum of light scattered from collections of particles
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The angular dependence of the momentum flow of a polychromatic plane wave scattered from deterministic
and random collections of particles is determined, within the occuracy of the first-order Born approximation, as
a function of individual and collective properties of particles. The results are of importance for optimization of
optical tweezers.
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I. INTRODUCTION

In applications involving optical trapping of particles, such
as optical tweezers which recently gained popularity [1,2],
it is crucial to determine and control the momentum flow of
the electromagnetic field. The momentum flow at any spatial
position and time instant can be found from the Maxwell
stress tensor. The basic theory on this subject relating to
monochromatic fields can be found in classic text [3], and
its extension to partially coherent fields belongs to Ref. [4]
in space-time domain and to Ref. [5] in space-frequency
domain, including the corresponding momentum conservation
laws.

In optical tweezers it is crucial not only to control the
momentum flow of the field incident on the particles but also to
predict its behavior upon scattering. The purpose of this work
is to evaluate the angular distribution of the momentum flow of
an electromagnetic field scattered by a deterministic or random
medium, which may be a single scatterer or a collection, and
to elucidate how the momentum flow of the scattered light
wave relates to the individual and collective properties of the
scatterers. To illustrate our theoretical analysis, we consider
a pair of numerical examples in which a polychromatic
electromagnetic plane wave is scattered from a collection of
identical particles having deterministic potentials and either
deterministic or random locations.

II. MOMENTUM FLOW OF AN ELECTROMAGNETIC
FIELD ON WEAK SCATTERING

We begin by considering a polychromatic electromagnetic
vector field E(i)(r,ω) = [E(i)

x (r,ω),E(i)
y (r,ω),E(i)

z (r,ω)] at a
point with position vector r, at angular frequency ω, which
is incident onto a medium with volume V where only
the polarization, P(r,ω), is induced, i.e., only the electric
properties of the medium modulate the field in a nontrivial
fashion. This is the case for most substances. Specialized
to polychromatic fields, the scattered electric and magnetic
fields outside the scattering volume V may be expressed,
respectively, as (Ref. [6], Sec. 13.6)

E(s)(r,ω) = ∇ × ∇ × �e(r,ω), (1)

B(s)(r,ω) = −ik∇ × �e(r,ω), (2)
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where �e is the electric Hertz potential defined by

�e(r,ω) =
∫

V

P(r′,ω)G(r − r′)d3r′, (3)

where r′ is a point within volume V and

G(R) = G(R) = eikR

R
(4)

is the free-space Green’s function for the Helmholtz equation.
Further, if the response of the medium is linear and the
scattering is sufficiently weak, the constitutive relation may
be expressed, within the accuracy of the first-order Born
approximation, as [7]

P(r′,ω) = η(r′,ω)E(i)(r′,ω)

= 1

k2
F (r′,ω)E(i)(r′,ω), (5)

where η is the dielectric susceptibility and F is the scattering
potential of the medium defined by expression

F (r′,ω) =
{

1
4π

k2[n2(r′,ω) − 1] r′ ∈ V

0 r′ /∈ V
. (6)

It is often of interest in scattering experiments to examine
the behavior of the scattered field in the far zone. By denoting
r = rs, s being the unit vector along direction r (see Fig. 1),
we can approximate the free-space Green’s function by the
form

eik|r−r′|
|r − r′| = eikr

r
e−iks·r′

. (7)

On substituting from Eqs. (3), (5), and (7) into Eq. (1) we
find that the scattered electric field in the far zone becomes
([8], see also [9])

E(s)(r,ω) = eikr

r

∫
V

F (r′,ω)E(i)(r′,ω) ◦ Ŝ1(s)e−iks·r′
d3r ′,

(8)

where the circle stands for matrix multiplication (not to be
confused with dot product and cross product) and tensor Ŝ1(s)
in the explicit form is

Ŝ1(s) =
⎛⎝ 1 − s2

x −sxsy −sxsz

−sysx 1 − s2
y −sysz

−szsx −szsy 1 − s2
z

⎞⎠ . (9)
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FIG. 1. Illustration of notations of spherical coordinate system.

A similar procedure leads to the expression of the scattered
magnetic field in the far zone:

B(s)(r,ω) = eikr

r

∫
V

F (r′,ω)E(i)(r′,ω) ◦ Ŝ2(s)e−iks·r′
d3r ′,

(10)

with

Ŝ2(s) =
⎛⎝ 0 sz −sy

−sz 0 sx

sy −sx 0

⎞⎠ . (11)

We note that Eqs. (8) and (10) are the same transformation
laws in form, except they involve different transformation
matrices, (9) and (11), respectively. In particular, Ŝ1 is a
symmetric matrix while Ŝ2 is antisymmetric. Further, since
s · E(s) = 0, s · B(s) = 0, and B(s) = s × E(s), the scattered
electromagnetic field is the outgoing spherical wave which
propagates in the direction of the unit vector s, i.e., in the
outward radial direction from the scatterer. The incident field
and the transformation matrices are all expressed in the
Cartesian coordinate system, hence the resulting scattered
fields are also in the same system. Then the total field including
the incident field and the scattered field may be expressed as

E(r,ω) = E(i)(r,ω) + E(s)(r,ω), (12a)

B(r,ω) = B(i)(r,ω) + B(s)(r,ω). (12b)

The fields considered are out of the dielectric materials to
avoid the Abraham-Minkowski controversy [10]. The Maxwell
stress tensor T̂(r,ω) of a monochromatic field in the space-
frequency domain was shown to be given by the formula [5]

T̂(r,ω)= 1

4π

{
E†(r,ω) ◦ E(r,ω) − 1

2
Tr[E†(r,ω) ◦ E(r,ω)]Î

}
+ 1

4π

{
B†(r,ω) ◦ B(r,ω)

− 1

2
Tr[B†(r,ω) ◦ B(r,ω)]Î

}
, (13)

where Î is a unit 3 × 3 matrix and Tr stands for the trace
of a matrix. Then the momentum flow Q(rs) is defined, as a
function of normal direction s, as

Q(rs) = s · T̂(r,ω). (14)

The total change in momentum within the volume V

containing the scattering medium can be identified as the sum
of the change in mechanical momentum of the scattering media

and the change in the momentum of enclosed electromagnetic
fields. According to the momentum conservation law the total
change in momentum is equal to the net momentum flow
introduced by the total field, through the surface enclosing
volume V , which may be predicted by Eq. (14).

III. MOMENTUM FLOW OF A SCATTERED
POLYCHROMATIC PLANE WAVE

Let us now confine our analysis to the case of an incident
polychromatic plane wave propagating along the z axis, i.e.,
having wave vector s0 = [0,0,1] (see Fig. 1):

E
(i)
j (r′,ω) = aj (ω)eiks0·r′

(j = x,y), (15)

where aj (ω) is the amplitude of the electric field and only
the two transverse components, x and y, are nontrivial. The
magnetic counterpart of the incident field, B(i)(r′,ω) = s0 ×
E(i)(r′,ω), (Ref. [6], Sec. 1.4) may be expressed, for the planar
wave front, as

B(i)(r′,ω) = E(i)(r′,ω) ◦ Ŝ2(s0), (16)

where B(i)(r′,ω) = [B(i)
x (r′,ω),B(i)

y (r′,ω),B(i)
z (r′,ω)] and

Ŝ2(s0) =
⎛⎝ 0 1 0

−1 0 0
0 0 0

⎞⎠ , (17)

where the Ŝ2 matrix is introduced in Eq. (11). In a general
case when either the incident field is stochastic, wide-sense
statistically stationary and/or the scattering medium acts on
the incident field in a random but static manner, the resulting
scattered electromagnetic field is also wide-sense statistically
stationary [11]. To characterize the second-order correlation
properties of fluctuating fields we use the cross-spectral density
tensors at coinciding spatial arguments for their electric and
magnetic counterparts as follows [11]:

WE(r,r,ω) = 〈E†(r,ω) ◦ E(r,ω)〉, (18)

WB(r,r,ω) = 〈B†(r,ω) ◦ B(r,ω)〉, (19)

the dagger standing for Hermitian adjoint, and angular brackets
denoting the ensemble average in the sense of classic coher-
ence theory in the space-frequency domain.

On substituting from Eq. (15) into Eq. (18) we find that at
coinciding spatial arguments the electric cross-spectral density
matrix of the incident polychromatic plane wave has the form

W(ii),E(r,r,ω) = S(i)(ω)Ĉ, (20)

where 〈a∗
i (ω)aj (ω)〉 = AiAjBijS

(i)(ω), the star standing for
complex conjugate, and tensor

Ĉ =
⎛⎝ A2

x AxAyB 0
AyAxB A2

y 0
0 0 0

⎞⎠ (21)

characterizes the correlation properties between the mutually
orthogonal components of the field. In a similar way we find
that the correlation tensor of the incident magnetic fields has
the form

W(ii),B (r,r,ω) = −S(i)(ω)Ŝ2(s0) ◦ Ĉ ◦ Ŝ2(s0), (22)
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where the negative sign results from the antisymmetry of tensor
Ŝ2(s0).

The correlation tensors of the scattered electric and mag-
netic fields can also be determined on substituting from Eq. (8)
into Eq. (18) and from Eq. (10) into Eq. (19), using Eq. (20),
respectively:

W(ss),E(r,r,ω)

= 1

r2
C̃F (−K,K,ω)Ŝ1(s) ◦W(ii),E(r,r,ω) ◦Ŝ1(s)

= 1

r2
S(i)(ω)C̃F (−K,K,ω)Ŝ1(s) ◦ Ĉ ◦ Ŝ1(s), (23)

W(ss),B (r,r,ω)

= − 1

r2
C̃F (−K,K,ω)Ŝ2(s) ◦ W(ii),E(r,r,ω) ◦ Ŝ2(s)

= − 1

r2
S(i)(ω)C̃F (−K,K,ω)Ŝ2(s) ◦ Ĉ ◦ Ŝ2(s), (24)

where K = k(s − s0) resembles the momentum transfer vector
in quantum mechanics and

C̃F (−K,K,ω) =
∫

V

∫
V

〈F ∗(r′
1,ω)F (r′

2,ω)〉me−iK·(r′
2−r′′

1)

× d3r ′
1d

3r ′
2 (25)

is the six-dimensional Fourier transform of the correlation
function of the scattering potential of the medium, averaged
over the ensemble of its realizations which is accounted by
angular brackets with subscript m.

The total electric field produced on scattering is the sum
of the incident electric field and the scattered electric field
and, hence, the cross-spectral density tensor of the total
field includes a cross term appearing from their interference.
The same is true for the magnetic fields. Thus we have, by
substituting Eqs. (12a) and (12b) into Eqs. (18) and (19),
respectively,

WE(r,r,ω) = W(ii),E(r,r,ω) + W(ss),E(r,r,ω)

+ W(is),E(r,r,ω), (26)

WB(r,r,ω) = W(ii),B(r,r,ω) + W(ss),B (r,r,ω)

+ W(is),B (r,r,ω), (27)

where the mixed terms are given by the formulas

W(is),E(r,r,ω) = 〈E(s)+(r,ω) ◦ E(i)(r,ω)

+ E(i)+(r,ω) ◦ E(s)(r,ω)〉,
W(is),B (r,r,ω) = 〈B(s)+(r,ω) ◦ B(i)(r,ω)

+ B(i)+(r,ω) ◦ B(s)(r,ω)〉.
We will now turn our attention to calculation of the

momentum flow of the scattered field. For electromagnetic
stochastic fields the ensemble averaged version of the stress
tensor can then be generalized from Eq. (14) as [5]

〈T̂(r,ω)〉 = 1

4π

{
WE(r,r,ω) − 1

2
Tr[WE(r,r,ω)]Î

}
+ 1

4π

{
WB(r,r,ω) − 1

2
Tr[WB(r,r,ω)]Î

}
. (28)

On substituting from Eqs. (26) and (27) into Eq. (28) we
find that in the situation involving scattering the total stress
tensor has the following general form:

〈T̂(r,ω)〉 = 〈T̂(i)(r,ω)〉 + 〈T̂(s)(r,ω)〉 + 〈T̂(is)(r,ω)〉. (29)

Here the Maxwell stress tensors of the incident and
scattered fields as well as of the mixed term are, respectively,

〈T̂(i)〉 = 1

4π

[
0(W(ii),E + W(ii),B )

− 1

2
Tr(W(ii),E + W(ii),B)Î

]
, (30)

〈T̂(s)〉 = 1

4π

[
(W(ss),E + W(ss),B )

− 1

2
Tr(W(ss),E + W(ss),B )Î

]
, (31)

〈T̂(is)〉 = 1

4π

[
(W(is),E + W(is),B )

− 1

2
Tr(W(is),E + W(is),B )Î

]
, (32)

where the arguments of the tensors are suppressed for brevity.
In the present work we assume that the interference between
the incident and the scattered fields is weak and can be
neglected, i.e., 〈T̂(is)〉 ≈ 0, which is usually the case. We make
such an assumption since a random scattering medium may
change the incident field, making the statistical properties of
the scattered field completely uncorrelated with the original
incident field. Therefore in a majority of recently published
papers about scattering, the researchers only consider the
correlation properties between the scattered fields themselves
(see, for example, Ref. [7], Chap. 6; Ref. [8]; Ref. [9]). Then the
explicit expression for 〈T̂(i)〉 may be obtained by substituting
from Eqs. (20) and (22) into Eq. (30):

〈T̂(i)(r,ω)〉 = − 1

4π
S(i)(ω)

⎛⎝ 0 0 0
0 0 0
0 0 A2

x + A2
y

⎞⎠ . (33)

We note that for the momentum flow of the incident
plane wave propagating into a plane perpendicular to radial
unit vector s, only the z component is nontrivial since [see
Eq. (14)]

Q(i)(rs) = s · 〈T̂(i)(r,ω)〉 = − 1

4π
S(i)(ω)

(
0 0

(
A2

x+A2
y

)
sz

)
.

(34)

On the other hand, for the scattered field the Maxwell stress
tensor is a function of radial direction s, which can be readily
asserted on substituting from Eqs. (23) and (24) into Eq. (31),
to obtain the expression for the momentum flow Q(s)(s) of the
scattered field as:

Q(s)(rs) ≡ s · 〈T̂(s)(r,ω)〉
= − 1

4πr2
S(i)(ω)C̃F (−K,K,ω)

×(Tr Ĉ − s ◦ Ĉ ◦ sT )s, (35)

where s = (sx,sy,sz). Equation (35) is the main result of the
paper. It can be used to determine the angular distribution
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of the momentum flow of the scattered field in the far zone
as it propagates into a plane perpendicular to radial unit
vector s. We note that only the field component along the
radial direction is nontrivial and is independent of the incident
direction. Equation (35) implies that the momentum flow
Q(s)(rs) of the scattered field depends on the correlation
function of the potential of the scattering medium and on
the correlation properties of the incident field. Thus, there is
no net momentum flow for an incident electromagnetic plane
wave, even though the angular distribution of the stress tensor
is nontrivial. However, as for the momentum flow introduced
by the scattered field, its angular distribution does not only
depend on the degree of polarization of the incident plane
waves, but also upon the distribution and correlation properties
of the scatterers. Therefore, the net scattered momentum
flow is nontrivial, being influenced by physical and statistical
properties of the scattering medium.

IV. NUMERICAL EXAMPLES

We will now employ the theoretical development of Secs. II
and III for solving an important class of problems relating
to angular momentum distribution of light scattered from
deterministic and random particulate media. For simplicity we
will confine ourselves only to collections of identical particles.
The scattering potential of the collection can be expressed as
the sum

F (r′,ω) =
N∑

m=1

f (r′ − rm,ω), (36)

where rm is the center of a particle m. Further, the Fourier
transform of the correlation function of the medium then takes
form [7]

C̃F (−K,K,ω) = |f̃ (K,ω)|2M(K,ω), (37)

where f̃ (K,ω) is the Fourier transform of the scatter-
ing potential of a single particlef (r′,ω), and M(K,ω) =
〈|∑N

m=1 e−iK·rm |2〉 is the structure factor containing the cor-
relation information of the entire particle system. We as-
sume the scattering potential of the particle has Gaussian
distribution, i.e., f (r′,ω) = exp[− r′2

2σ 2 ]. With sx = sin θ cos ϕ,
sy = sin θ sin ϕ, and sz = cos θ (see Fig. 1), we calculate the
distribution of the momentum flow of the scattered fields at
the scattering plane ϕ = 0. The parameters of the incident
plane wave are chosen to be λ = 0.6328 μm, Ax = Ay = 1,
B = 0.2.

In Fig. 2 we consider the models of particle collections
distributed along the x axis that we use for numerical
calculations. In particular, in Fig. 2(a) we show the simplest
case of a pair of symmetrically located particles, with centers at
(d/2,0,0) and (−d/2,0,0), respectively [Fig. 2(a)]. In Figs. 3
and 4 we present the momentum flow of the field scattered
from the collection of Fig. 2(a). It becomes clear from these two
figures that the separation between the two particles influences
the number and position of the peaks of the momentum flow,
while the size of the particles changes the peak value and
retains the position of each peak. To understand the peak
positions which are determined by the interference between
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FIG. 2. The coordinates of particles (a) (d/2,0,0), (–d/2,0,0);
(b) (d/2,0,0), (–d/2,0,0), (d ,0,0), (–d ,0,0); (c) (d/2,0,0), (–d/2,0,0),
(d ,0,0), (–d ,0,0), (3d/2,0,0), (–3d/2,0,0); (d) (d/2,0,0), (–d/2,0,0),
(d ,0,0), (–d ,0,0), (3d/2,0,0), (–3d/2,0,0), (2d ,0,0), (–2d ,0,0); (e)
(d/2,0,0), (–d/2,0,0), (d ,0,0), (–d ,0,0), (3d/2,0,0), (–3d/2,0,0),
(2d ,0,0), (–2d ,0,0), (5d/2,0,0), (–5d/2,0,0).

particles, we first derive, from Eq. (35), the condition for the
valley points (i.e., where |Q(s)(s)| = 0):

dsp sin θ =
(

n + 1

2

)
λ, (n = 0,1,2, . . .). (38)

where dsp is the spacing distance between two particles. This
equation matches the positions of valley points in Figs. 3 and
4 accurately. Therefore for the case where the peak points
are about the center of the two neighboring valley points (for
example, kd = 8π and kd = 16π ), the peak points’ positions
may be approximately estimated by the equation

dsp sin θ = nλ, (n = 0,1,2, . . .). (39)
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FIG. 3. (Normalized) distribution of the momentum flow of the
far field scattered from a pair of symmetrically distributed particles
[Fig. 2(a)] for various separation d as a function of angle θ , with
σ = 0.3λ.
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FIG. 4. (Normalized) distribution of the momentum flow of the
far field scattered from a pair of symmetrically distributed particles
[Fig. 2(a)] for various particle size σ as a function of angle θ , with
kd = 16π .

The fact that Eq. (38) is accurate for valley points while
Eq. (39) is only approximately correct for the peak points
may be explained as follows. In our case we consider the
correlation between two scattered fields and, more importantly,
we calculate the momentum flow (not just the spectral density).
So the quantity [Eq. (35) with Eq. (37)] is not only affected
by the interference between the two waves as included in

M(K,ω), but also the properties of the scattering medium,
included in |f̃ (K,ω)|2, and the properties of the incident
field, included in (Tr Ĉ − s ◦ Ĉ ◦ sT ). The peak points for the
interference pattern are moved due to this reason, while the
valley points where the spectral density is zero are unchanged
since they retain the value zero despite of the product of other
terms.

For particles distributed according to Figs. 2(b)–2(e), the
scattered angular distribution of momentum flow is given in
Fig. 5. It is interesting to note that there is one maximum
peak value around 14◦ indepenent of the number of particles
symmetrically distributed along the x axis, with the second
peak appearing around 30◦. This case with more than two
particles is a more interesting problem since the interference
of the scattered wave would not only come from the two
adjacent particles but also from other particles. In our case the
interference from multiple particles may be suitably divided
into separate interference between two particles. Then for the
arrangements in Fig. 2, the possible spacing distance between
any two particles would be d/2, d, 3d/2, 2d, 5d/2, 3d, 7d/2,
4d, 9d/2, 5d. For spacing values dsp = l

2d (l = 1,2, . . . ,10)
in Eq. (39), the possible peak positions would be (with
kd = 16π )

sin θ = n

4l
, (n = 0,1,2, . . .). (40)

Therefore for all the possible spacing choices, they share the
common peak position at sin θmm = 1/4 with θmm = 14.4775
degree (mm means major maximum), which explains the
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FIG. 5. (Normalized) distribution of the momentum flow of the far field scattered from collections of particles shown in Fig. 2(a) (dotted
curve) and (a) in Fig. 2(b) (solid curve); (b) in Fig. 2(c) (solid curve); (c) in Fig. 2(d) (solid curve); (d) in Fig. 2(e) (solid curve) with kd = 16π

and σ = 0.5λ.
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TABLE I. All the possible spacing distances with counting numbers and peak positions for the setup in Fig. 2(e).

Spacing distance dsp Counting numbers Peak positions sin θ (up to first major maximum)

d/2 8 1/4
d 7 1/8,1/4
3d/2 6 1/12,1/6,1/4
2d 4 1/16,1/8,3/16,1/4
5d/2 4 1/20,1/10,3/20,1/5,1/4
3d 5 1/24,1/12,1/8,1/6,5/24,1/4
7d/2 4 1/28,1/14,3/28,1/7,5/28,3/14,1/4
4d 3 1/32,1/16,3/32,1/8,5/32,3/16,7/32,1/4
9d/2 2 1/36,1/18,1/12,1/9,5/36,3/18,7/36,2/9,1/4
5d 1 1/40,1/20,3/40,1/10,1/8,3/20,7/40,1/5,9/40,1/4

first major maximum. For other major maxima, a similar
explanation applies. The governing equation for the nth major
maximum is (d/2) sin θ = nλ.

From Fig. 5, the fact that the number of minor peaks is
equal to half of the number of particles can also be explained
by the interference between waves scattered from the particles.
It can be assumed the minor peaks are associated with different
orders of maxima between two particles with distance equal
to (M + 1)d/2. Indeed, let us consider the most complicated
case in Fig. 2(e), where M = 5. We may obtain all the
possible spacing distances between any two particles and
count the number of times that the spacing distance appears.
One may see from Table I that the peak positions for the
spacing distances d/2, d, 3d/2 are overlapped by the peak
positions for the spacing 3d. Also, the counting number for
spacing 3d is greater than other spacing possibilities except
d/2, d, and 3d/2, whose peak positions have been over-
lapped. Therefore the minor peak positions may be dominated
by the different orders of maximum of distance 3d, although
the exact minor peak positions may be slightly different due
to the existence of interference of other choices of spacing
distances. Furthermore, 3d = (M + 1)d/2, where M = 5 is
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FIG. 6. (Normalized) distribution of the momentum flow of the
far field scattered from collections of particles randomly distributed
with σ = 0.1λ.

the number of particles on one side of the origin. Other
cases with different numbers of particles may be similarly
analyzed.

In Fig. 6 we consider a special case of a gaslike disorder
[12] where identical particles with Gaussian potentials are
randomly positioned along the x axis. In this case the particles
are considered as statistically independent. Then the structure
factor becomes M(K,ω) = N = 1

N
M(0,ω) for all K except

K = 0. Figure 6 shows the angular distribution of momentum
flow of the scattered far field from N = 5 and N = 10
particles, respectively. The range of x axis within which all
the particles are randomly distributed is 40λ, i.e., –20 λ–20 λ.
Therefore, the average spacing between neighboring particles
for ten particles is 4λ and for five particles is 8λ, respectively.
In each case the momentum flow is the statistical average
over 30 realizations. The absolute value of the momentum
flow |Q(s)(rs)| decreases abruptly to a value on the order of
1/N over the several degrees from the forward scattering
direction and then levels off with a small negative slope
due to the additional terms in Eq. (35). The fluctuations in
the tail of |Q(s)(rs)| are caused by the limited number of
particles in the ensemble: For sufficiently large values of
N the momentum flow drops to zero over the first several
degrees.

In summary, we have derived the expression for the angular
distribution of the momentum flow of the field produced on
scattering of a plane wave from random media, which can be
a single particle or collection as well as can have deterministic
or random nature. We have found that both polarization
properties of the incident electromagnetic plane wave and the
scattering potentials of the scattering material influence the
distribution of the momentum flow of the scattered field. From
the examples considered, the size of particles, the separation
between them, and the nature of the collection (deterministic or
random centers’ locations) significantly influence the angular
distribution of the momentum flow throughout the far zone of
the scatterer.
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