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Dispersion of nonlinear group velocity determines shortest envelope solitons
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We demonstrate that a generalized nonlinear Schrödinger equation (NSE), which includes dispersion of the
intensity-dependent group velocity, allows for exact solitary solutions. In the limit of a long pulse duration, these
solutions naturally converge to a fundamental soliton of the standard NSE. In particular, the peak pulse intensity
times squared pulse duration is constant. For short durations, this scaling gets violated and a cusp of the envelope
may be formed. The limiting singular solution determines then the shortest possible pulse duration and the largest
possible peak power. We obtain these parameters explicitly in terms of the parameters of the generalized NSE.
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I. INTRODUCTION

Optical solitons are waves localized either in space or
time that are formed as a result of the interplay between
nonlinearity and dispersion [1,2]. A typical soliton, e.g., in
an optical fiber, is often described by its complex envelope
ψ which satisfies the slowly varying envelope approximation
(SVEA). The SVEA assumes that the pulse spectrum is
concentrated around a well-defined carrier frequency ω0.
Then, the dispersion is represented by the Taylor expansions
around ω0. The dispersion of the linear response given by the
frequency-dependent wave vector β(ω) is then encoded within
a discrete set, βm = β(m)(ω0), of expansion coefficients, where
at least three lowest-order terms with m = 0,1,2 are taken into
account. For unidirectional propagation, the complex pulse
envelope ψ(z,t) is normally described in a comoving frame,
ψ = ψ(ζ,τ ), with ζ = z and τ = t − β1z, where β1 is the
inverse group velocity and τ is referred to as retarded time. In
the case of an instantaneous cubic nonlinearity, the envelope
is governed by the nonlinear Schrödinger equation (NSE),

i∂ζ ψ + β2

2
(i∂τ )2ψ + γ |ψ |2ψ = 0, (1)

where β2 is the group velocity dispersion (GVD) and the
parameter γ is determined by the linear bulk dispersion, fiber
geometry (effective fiber area), and nonlinear susceptibility
of the third order [3]. The envelope is usually scaled so that
|ψ |2 represents the pulse power. For the focusing (γ > 0)
nonlinearity, bright solitary solutions appear in the domain of
negative dispersion (β2 < 0).

The model given by the NSE does not impose any
restrictions on soliton duration: a twofold decrease of the
duration simply means a fourfold increase of the peak
power. It is the SVEA that lacks precision for shorter pulse
durations and broader pulse spectra. That is why Eq. (1) is
commonly replaced by a more accurate, generalized NSE for
short pulses. In what follows, we are primarily interested in
solitary solutions of generalized pulse-propagation equations
and therefore we deliberately exclude linear losses and Raman
scattering.

The simplest generalization of Eq. (1) is to use a larger
number of purely real dispersion parameters βm. The term
1
2β2(i∂τ )2ψ then must be replaced by the so-called dispersion
operator,

D̂ψ =
Mmax∑
m=2

βm

m!
(i∂τ )mψ, (2)

which covers the behavior of β(ω) in a larger frequency
domain. Still, even an infinite number of parameters βm does
not guarantee the necessary convergence [4,5].

Another important generalization of the NSE is to introduce
dispersion into the nonlinear term in Eq. (1). Such effective
dispersion eliminates some of the deficiencies of the SVEA.
It naturally appears in the description of short pulses, even
in an ideal Kerr media with the nondispersive, instantaneous,
nonlinear response, and in the absence of Raman scattering.
For example, if the group velocity 1/β1 and the phase velocity
ω0/β0 are similar, one can derive the following generalized
NSE [6,7]:

i∂ζ ψ + D̂ψ + γ
(
1 + ω−1

0 i∂τ

)|ψ |2ψ = 0, (3)

where the derivative of the nonlinear term describes the
self-steepening effect and is a key factor in the extension of
the envelope-based, generalized NSE toward the single-cycle
regime.

If the group and phase velocities differ, one faces a more
complex dispersion in the nonlinear term, i.e., it becomes
nonlocal in time. Equation (3) is then replaced with [5,8,9]

i∂ζ ψ + D̂ψ + γ
n(ω0)

ω0

ω0 + i∂τ

n(ω0 + i∂τ )
|ψ |2ψ = 0, (4)

where n(ω) = cβ(ω)/ω is the refractive index. If dispersion of
the nonlinear susceptibility and the effective fiber area cannot
be ignored, an even more complicated operator appears in the
nonlinear term in (4). Such a nonlocal, nonlinear term has
either (i) to be evaluated in the frequency domain or (ii) to be
approximated in the spirit of the Taylor expansion, analogous
to Eq. (2).

In what follows, we take the second point of view and
expand the nonlocal term in Eq. (4) up to the second order.
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FIG. 1. Dimensionless parameter μ/σ 2 calculated in accordance
with Eq. (6) vs carrier frequency ω0/(2π ) for exemplary material
dispersions. Refractive indexes are taken from the handbook [10]. The
dash-dotted line indicates the parameter value we used for solitary
solutions shown in Fig. 5.

After proper rescaling of the space, time, and field variables,
we obtain the following model equation:

i∂zψ + 1

2
∂2
t ψ +

(
1 + iσ∂t − μ

2
∂2
t

)
|ψ |2ψ = 0, (5)

where, from now on, z, t , and ψ refer to rescaled variables and
σ and μ are dimensionless parameters. The higher-order linear
dispersion is neglected. The self-steepening term σ (i∂t )|ψ |2ψ
may be understood as an intensity-dependent contribution to
the group velocity. In this venue, the next term 1

2μ(i∂t )2|ψ |2ψ
describes temporal dispersion of such a contribution.

Equation (5) is invariant with respect to the following
rescaling of variables:

z → �2t, t → �t, ψ → ψ/�,

σ → �σ, μ → �2μ,

such that the numerical values of μ and σ depend on
normalization. System properties are determined by a single
invariant parameter,

μ

σ 2
= f (ω0)f ′′(ω0)

[f ′(ω0)]2
, with f (ω) = ω

n(ω)
. (6)

Exemplary curves indicating how μ/σ 2 depends on the carrier
frequency ω0 are shown in Fig. 1.

In this work, we are primarily interested in the influence
of the μ term on the localized solitary solutions of Eq. (5).
For simplicity’s sake, such solutions will be first obtained for
σ = 0. Physically, this corresponds to a hypothetic medium in
which at some ω0 the phase velocity is two times larger than the
group velocity [8]. Then the solitary solutions will be obtained
for σ �= 0 and realistic values of μ/σ 2. Positive values of μ

are of special interest here because of the interval of carrier
frequencies in which μ > 0 appears to be close to the domain
of negative dispersion where solitons exist. For completeness,
the case μ < 0 (and β2 < 0) will be briefly mentioned at the
end of the paper.

Without loss of generality, we assume that |ψ |2 takes its
maximum value at t = 0, which is referred to as peak power P0.
Localized solutions must decay at large |t |. Solitons, in particu-
lar, are expected to decay exponentially, ψ ∼ exp(−|t |/t0) for
t → ±∞. The quantity t0 is the pulse duration. This parameter
and the peak power are mutually related, as it will be shown

below. In particular, we will parametrize solitons by t0 and
look for the corresponding pulse shape and P0.

The classical NSE (1) is recovered from Eq. (5) for σ =
μ = 0. The so-called fundamental soliton solution is given by

ψ = 1/t0

cosh t/t0
eiz/(2t2

0 ). (7)

For this solution,

P0t
2
0 = 1. (8)

When σ �= 0 but μ = 0, Eq. (5) corresponds to the
generalized NSE (3) in which all βm�3 are set to zero. Solitary
solutions of Eq. (3) were recently found by adopting a universal
Lax pair technique [11]. The shape of a direct generalization
of the fundamental soliton solution reads

|ψ |2 = 2/t2
0

1 +
√

1 + (σ/t0)2 cosh(2t/t0)
. (9)

It reduces to (7) for σ � t0. Furthermore,

P0t
2
0 = 2

1 +
√

1 + (σ/t0)2
< 1, (10)

such that for the same pulse duration t0, the resulting peak
power P0 appears to be smaller than that of the fundamental
soliton (8). Note that as long as Eq. (5) is valid, both (7) and
(9) formally allow for an arbitrarily short pulse duration and
an arbitrarily high peak power. We recall that the underlying
generalized NSE (3) goes beyond the SVEA and applies even
to few-cycle pulses [6]. Strictly speaking, ψ(z,t) should then
be replaced by an analytic signal for the electric field [12].

In what follows, we demonstrate that Eq. (5) allows for
exact solitary solutions, even for μ �= 0. With an increase of
the pulse duration, these solutions receive 1/ cosh shape and
are indistinguishable from the fundamental NSE soliton (7).
A principal new feature is observed for short durations:
the value of P0t

2
0 increases above unity and a cusp of the

envelope |ψ | may develop for μ > 0. This limiting singular
solution determines the shortest-possible pulse duration and
the highest-possible peak power. We explicitly obtain these
pulse characteristics in terms of μ and σ .

II. DERIVATION

To derive solitary solutions, we apply the following ansatz:

ψ(z,t) = A(t)eiz/(2t2
0 ), (11)

as suggested by the fundamental soliton solution (7). By
inserting (11) into (5), we obtain an equation for the complex
soliton amplitude A(t),

A′′ − A

t2
0

+ 2|A|2A + 2iσ (|A|2A)′ − μ(|A|2A)′′ = 0, (12)

where derivatives with respect to t are denoted by a prime. Far
from the soliton center, Eq. (12) can be linearized. Then we
immediately see that A ∼ exp(−|t |/t0), in accordance with the
definition of t0. All solitary solutions of Eq. (12) asymptotically
behave like the fundamental soliton (7). However, the peak
power is generally different from 1/t2

0 .
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In contrast to the simplest NSE case, Eq. (12) does not allow
for real valued solutions for σ �= 0. Therefore, we introduce
both the amplitude and the phase,

A(t) = a(t)ei�(t),

where, in accordance with our notations,

a(0) =
√

P0, a′(0) = 0.

We now rewrite Eq. (12) in the form

[(a − μa3)ei�]′′e−i� − a

t2
0

+ 2a3 + 2iσ (a3ei�)′e−i� = 0.

(13)

The imaginary part of this equation is

(a − μa3)�′′ + 2(a − μa3)′�′ + 6σa2a′ = 0.

It can be integrated once

�′ = −σ

2

3 − 2μa2

(1 − μa2)2
a2, (14)

where we apply a natural restriction: �′ → 0 as a → 0.
Without loss of generality, one can assume that the phase
�(t → −∞) = 0, then, in general, �(t → +∞) �= 0. The
latter value can be found from Eq. (14) after the shape function
a(t) is determined.

By using Eq. (14), the real part of Eq. (13) can be
transformed to the form

(a − μa3)′′ − a

t2
0

+ 2a3 + σ 2

4

4(1 − μa2)2 − 1

(1 − μa2)3
a5 = 0.

We multiply the latter equation by (1 − 3μa2)a′, integrate it
once, and obtain

(1 − 3μa2)2a′2 −
(

1 − 3

2
μa2

)
a2

t2
0

+ (1 − 2μa2)a4

+ σ 2

4

(1 − 2μa2)2

(1 − μa2)2
a6 = C, (15)

where C is an integration constant. For a solitary solution with
finite energy, both a(t),a′(t) → 0 at t → ±∞, and therefore,
C = 0. Formally, all solutions of Eq. (15) can now be found
in quadratures.

A noticeable peculiarity of Eq. (15) is that the factor ahead
of a′2 vanishes if μ > 0 and a = 1/

√
3μ. This is why the

singular soliton may appear and impose restrictions on the
duration and power of the physically meaningful, nonsingular
solutions. We will now see how it happens in the limit P0 →
1/(3μ).

III. SOLITARY SOLUTIONS

We now consider Eq. (15) for C = 0 in more detail and
describe localized solutions for a(t), which is our main goal
here.

A. The case μ = 0

The fundamental soliton is recovered from Eq. (15) when
μ = 0. Then Eq. (15) is simplified to the form

a′2 − a2

t2
0

+ a4 + σ 2

4
a6 = 0, (16)

and is solved by introducing b = 1/a2 − t2
0 /2. Then one de-

fines �(t) from Eq. (14), inserts A = a exp(i�) into Eq. (11),
and finally obtains the solitary solutions (7) and (9). The soliton
peak power is determined from the relation

σ 2

4
P 2

0 + P0 − 1

t2
0

= 0,

which leads directly to Eq. (10).

B. The case μ > 0 and σ = 0

We start with the case μ > 0 and put σ = 0 first. Equa-
tion (15) is then reduced to the following equation:

a′2 − 1 − 3
2μa2

(1 − 3μa2)2

a2

t2
0

+ 1 − 2μa2

(1 − 3μa2)2
a4

︸ ︷︷ ︸
Ueff (a)

= 0. (17)

The last two terms in this equation can be considered as an
effective potential Ueff (a). Then the trajectory a = a(t) defined
by this dynamical system belongs to the region Ueff(a) � 0.
The peak power is determined from the condition Ueff(

√
P0) =

0, that is, from the equation

P0t
2
0 = 1 − 3

2μP0

1 − 2μP0
. (18)

We now consider the latter equation for a fixed μ > 0 and
various pulse durations t0. For a temporally wide pulse
with t2

0 	 μ, we obtain P0 = 1/t2
0 , as it should be for the

fundamental soliton. With decreasing t0, the peak power
exceeds 1/t2

0 . Equation (18) yields physically meaningful
values for P0 as long as

t0 � tmin
0 = 3

√
μ

2
. (19)

This provides the shortest pulse duration, and the largest peak
power reads

P max
0 = 1

3μ
,

(
P0t

2
0

)
cusp = 3

2
. (20)

The scaling law holds for the shortest soliton, but with a
different constant; cf. Eqs. (8) and (10). In particular, the peak
power is 50% larger than that for the fundamental soliton with
the same duration.

These results can also be explained analyzing the effective
potential in Eq. (17). For t2

0 	 μ > 0, one can neglect all
terms ∼μa2 and obtain a standard double-well effective
potential with the fundamental soliton solution (7). When t2

0
decreases and approaches 9μ/2, the maximum value of a2

approaches 1/(3μ), such that the singular behavior of the
effective potential can no longer be ignored. Representative
plots of Ueff(a) for t0 slightly above and slightly below the
critical value (19) are shown in Fig. 2. Clearly, nonsingular
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FIG. 2. (Color online) The effective potential in Eq. (17) for μ =
2/9 such that tmin

0 = 1 and for t0 slightly above and slightly below
tmin
0 . Left: t0 = 1.01. Right: t0 = 0.99.

localized solutions of Eq. (17) do exist only in the first
case. The smallest possible value of t0 can also be derived
by expanding the effective potential at the singularity point
a2 = 1/(3μ), namely,

Ueff(a)|a2→1/(3μ) → t2
0 − 9μ/2

27μ2t2
0 (1 − 3μa2)2

+ O(1), (21)

which exhibits the sign change in the singularity shown in
Fig. 2 in accordance with Eq. (19).

A more accurate analysis of Eq. (17) shows that

a(t)|t0→tmin
0

→ 1√
3μ

exp

(
−

√
2

3
√

μ
|t |

)
, (22)

where the latter expression is the limiting soliton shape. It has a
cusp at t = 0, which actually prevents the existence of solitons
with exactly this or shorter time durations.

Numerical solutions of Eq. (17) for a fixed μ and several
values of t0 → tmin

0 are shown in Fig. 3. When decreasing t0, the
soliton shape approaches the uppermost limiting a(t) given by
the singular solution (22). The spectrum of the pulse spreads
out in the vicinity of the singular solution. One may then
wish to replace the envelope equation with a nonenvelope one,
e.g., with the so-called short-pulse equation for the negative
dispersion domain [13,14] (see also the earlier paper [15]).
Remarkably, the cusp solutions reappear and still determine
the shortest pulse duration [16,17].
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FIG. 3. (Color online) Illustrative solitary solutions of Eq. (17)
for μ = 2/9 such that tmin

0 = 1 and different values of t0 � tmin
0 . From

bottom to top, t0 = 3.0, 1.8, 1.3, 1.1, 1.03. The uppermost line is given
by the limiting singular solution (22).
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FIG. 4. (Color online) The effective potential in Eq. (23) for μ =
1, σ = 4 such that tmin

0 = 1.5 and for t0 slightly above and slightly
below tmin

0 . Left: t0 = 1.52. Right: t0 = 1.48.

C. The case μ > 0 and σ �= 0

We now consider a(t) for σ �= 0. Again C = 0 in Eq. (15),
which still has the form a′2 + Ueff(a) = 0 but with a more
complicated effective potential,

Ueff(a) = − 1 − 3
2μa2

(1 − 3μa2)2

a2

t2
0

+ 1 − 2μa2

(1 − 3μa2)2
a4

+ σ 2

4

(1 − 2μa2)2

(1 − 3μa2)2(1 − μa2)2
a6. (23)

Analysis of the soliton behavior is now more cumbersome, but
the basic features are similar to those described in the previous
section. For given μ and σ , the solitary solutions exist as long
as t0 � tmin

0 . Two exemplary plots of Ueff(a) for t0 slightly
above and slightly below the critical value are shown in Fig. 4.
Evidently, a nonsingular soliton exists only in the first case.
This critical value of t0 can be found from the equation for the
peak power [cf. Eq. (18)],

P0t
2
0

[
1 + σ 2

4

1 − 2μP0

(1 − μP0)2
P0

]
= 1 − 3

2μP0

1 − 2μP0
. (24)

As in the previous section, the fundamental soliton corresponds
to the limiting case, P0 → 1/t2

0 for t2
0 	 μ. This gives us

the possibility to trace the behavior of the peak power with
decreasing t0 for fixed μ and σ . Solitary solutions exist as
long as P0 � P max

0 and t0 � tmin
0 with

P max
0 = 1

3μ
, tmin

0 = 3

√
μ/2

1 + σ 2/(16μ)
; (25)

cf. Eqs. (19) and (20). In particular, Eq. (20) is replaced with(
P0t

2
0

)
cusp = 3/2

1 + σ 2/(16μ)
. (26)

Typical shapes of solitary solutions when t0 is decreasing
and approaching tmin

0 are shown in Fig. 5. They look very
similar to those shown in Fig. 3 and also evolve from the
standard 1/ cosh shape toward the limiting cusp solution.
The only difference is that for the same t0 and μ, the
resulting peak power is smaller and decreases with the increase
of σ .

D. The case μ < 0

This case is of less interest, as conditions β2 < 0 and μ < 0
are compatible in a small domain of frequencies (if at all). Here,
the behavior of solitary solutions of the generalized NSE (15)
is qualitatively similar to that of the standard NSE (1). Namely,
the effective potential in Eq. (15) is a regular function for all
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FIG. 5. (Color online) Illustrative solitary solutions of Eq. (15)
for C = 0, μ = 1, σ = 4 such that tmin

0 = 3/2 and different val-
ues of t0 � tmin

0 . From bottom to top, t0 = 4.0, 2.5, 1.9, 1.6,
1.501. The uppermost line is close to the limiting singular
solution.

possible soliton shapes and the pulse duration parameter t0 can
be arbitrarily small. For extremely short solitons with t0 → 0,
the peak power is determined by the relation

P0t
2
0 = 3|μ|

2σ 2 + 4|μ| < 1.

In particular, the peak intensity is smaller than that of the
fundamental soliton.

IV. CONCLUSIONS

We investigated how dispersion of the nonlinear term in
the generalized NSE (5) affects fundamental solitons. The
first-order dispersion (σ �= 0 but μ = 0) causes a reduction of
the peak intensity of a soliton. A similar decrease of the peak
intensity is observed if μ < 0 is present. In both cases, the
pulse duration parameter t0 can take arbitrarily small values
as long as the envelope equation is valid. New effects are
expected for μ > 0. This regime appears to be typical in
the negative dispersion domain, where optical solitons are
observed. In this case, the peak intensity is larger than that
of the fundamental soliton. Soliton duration is bounded from
below t0 > tmin

0 , with the limiting value tmin
0 being given by

Eq. (26). The limiting soliton has a characteristic cusp profile.
Such singular profiles have recently been found also for the
nonenvelope pulse-propagation equations [16–18]. Our results
suggest that cusp formation may be a universal mechanism
responsible for the appearance of the limiting solitons. This
cusp formation prevents the existence of solitons with exactly
limiting or shorter durations.
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