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Sensitivity of entangled photon holes to loss and amplification
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Energy-time entangled photon holes are shown to be relatively insensitive to photon loss due to absorption
by atoms whose coherence times are longer than the time delays typically employed in nonlocal interferometry
(a fraction of a nanosecond). Roughly speaking, the excited atoms do not retain any significant “which-path”
information regarding the time at which a photon was absorbed. High-intensity entangled photon holes can also
be amplified under similar conditions. Decoherence does occur from losses at beam splitters, and these results
show that photon loss cannot always be adequately modeled using a sequence of beam splitters. These properties
of entangled photon holes may be useful in quantum communications systems where the range of the system is
limited by photon loss.
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I. INTRODUCTION

Entangled photon holes [1–4] are a form of entanglement
in which the absence of photons in two separated beams is
correlated in a nonclassical way. Photon holes can be entangled
in energy and time [1], which allows them to violate Bell’s
inequality in two distant interferometers [5–14]. Since the
photon holes correspond to the absence of photons, one might
naively suspect that they may be less sensitive to photon loss
than are pairs of entangled photons. It is shown here that
high-intensity entangled photon holes are relatively insensitive
to photon loss if an absorbing medium does not retain any
significant “which-path” information regarding the time at
which a photon was absorbed. Entangled photon holes can also
be amplified under similar conditions aside from the effects of
spontaneous emission noise.

The concept of entangled photon holes can best be under-
stood by analogy with the generation of entangled pairs of
photons, as illustrated in Fig. 1(a). Here a nonlinear crystal
has a small probability of annihilating a single photon from a
pump laser beam and creating a pair of photons. The photons
are created at essentially the same time, but there is a coherent
superposition of times at which they may have been created,
which corresponds to an energy-time entangled state. In this
case the two output beams are initially “empty” and the added
photons are entangled with each other.

Entangled photon holes [1] can be viewed as the negative
image of down-conversion, as illustrated in Fig. 1(b). Here
two laser beams pass through a medium that can absorb
two photons but not one. Pairs of photons are absorbed at
essentially the same time, creating a pair of holes in the output
beams which originally corresponded to uniform probability
amplitudes. There is a coherent superposition of the times at
which the pair of photons may have been removed to create
a pair of holes, which also corresponds to an energy-time
entangled state.

Our first experiments [2] on entangled photon holes used
weak laser beams that contained less than one photon on
average, while subsequent experiments have involved up to
five photons [4]. In this paper, we will consider coherent
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states that contain moderate numbers of photons (∼ 103,
for example) but are still relatively weak compared to most
classical experiments. It is well known that coherent states can
be attenuated by an absorptive medium or amplified in various
ways with only a relatively small loss of coherence, and this
forms the intuitive basis for the analysis described below. The
amount of decoherence depends on how much information
is left in the medium regarding the time at which an atomic
transition occurred.

Entangled photon hole states of this kind are described
in more detail in Sec. II. The effects of photon absorption
in an atomic medium are considered in Sec. III, where it
is shown that entangled photon holes do not undergo any
decoherence in the limit of long atomic lifetimes. Sec. IV
obtains similar results for the amplification of entangled
photon holes using an inverted atomic medium. Sec. V includes
the effects of decoherence of the excited atomic states and
provides estimates of the acceptable photon losses under those
conditions. Sec. VI provides a summary and conclusions.

II. ENTANGLED STATE OF INTEREST

There may be a variety of entangled photon hole states with
similar properties. Here we will consider what is probably the
most straightforward example in which the entangled photon
holes exist in a uniform background of coherent states. This
simplifies the analysis, while the properties of this state should
have much in common with other possible forms of entangled
photon holes.

Photon holes consist of the correlated absence of photons in
an otherwise constant background of probability amplitudes.
Although we are primarily interested in the holes, they can only
be described by first considering the background in which they
reside. In order to do that, we will consider an operator Â†(x1)
that creates a single photon in one of the two beams (beam 1) in
the form of a Gaussian packet centered at x = x1 as illustrated
in Fig. 2:

Â†(x1) ≡
∑

k

ck(x1)â†
k. (1)

Here x is the direction of propagation and the operator â
†
k

creates a plane-wave photon with wave vector k along the x
axis in beam 1.
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FIG. 1. (Color online) (a) Generation of entangled photon pairs
using parametric down-conversion. (b) Generation of entangled
photon holes using two-photon absorption.

The central frequency of the Gaussian packet is chosen
to be ω0 and it will be assumed that the Fourier coefficients
ck(x1) give

∑
k

ck(x1)eikx = c0e
ik0xe−(x−x1)2/2σ 2

p . (2)

Here k0 = ω0/c, σp is the width of the Gaussian, and c0 is a
suitable normalization constant [15]. Acting with this operator
on the vacuum state |0〉 gives the corresponding single-photon
state

|ψp(x1)〉 =
∑

ck(x1)â†
k |0〉 . (3)

We will also define a similar operator Â†(x2) that creates a
single photon in a Gaussian packet in beam 2.

Now consider a coherent state [16] |α(x1)〉 with a large
number of photons in the Gaussian mode described above:

|α(x1)〉 = e−α∗α/2eαÂ†(x1) |0〉 . (4)
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FIG. 2. Probability amplitude to detect a single photon generated
by the operator Â†(x1) as a function of position in beam 1 (arbitrary
units).

Here α is a complex number that determines the amplitude of
the coherent state. This can be rewritten in the form

|α(x1)〉 = e−α∗α/2eα
∑

ck(x1)â†
k |0〉 = e−α∗α/2 ∏

k

eαck (x1)â†
k |0〉

= ∏
k

|αck(x1)〉. (5)

Here |αck(x1)〉 is a single-mode coherent state in beam 1
with wave vector k and amplitude αk = αck(x1). We define
a coherent state |α(x2)〉 in beam 2 in a similar way.

The operators Â†(x1) and Â†(x2) can now be used to define
an entangled photon hole state given by

|ψF 〉 = χ

∫ ∫
dx1dx2f (x1,x2) |α(x1)〉 |α(x2)〉

= χ

∫∫
dx1dx2f (x1,x2)

∏
k

|αck(x1)〉
∏
p

|αcp(x2)〉.

(6)

Here p denotes the wave vector in beam 2, the subscript F

refers to the fact that this is the state of the field, and χ is a
normalizing constant. The function f (x1,x2) can be taken to
be any smooth function with the property that

f (x1,x2) = 0 iff |x1 − x2| < d. (7)

The parameter d in Eq. (7) is assumed to be much larger
than the width σp of the Gaussian packets. This ensures that
the probability amplitude to detect a photon in each beam
at the same relative location (x1 = x2) will be exponentially
small, which is responsible for creating the “holes” in the
field. For simplicity, it will be assumed that f (x1,x2) = 1 for
|x1 − x2| � d.

The properties of the entangled photon hole state of Eq. (6)
are illustrated in Fig. 3. The probability of detecting one or
more photons simultaneously in both beams is plotted as a
function of the difference �x in the distances from the source
in beams 1 and 2. The fact that f (x1,x2) = 0 for �x = 0
ensures that no photons will be detected at the same distance
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FIG. 3. A plot of the probability of simultaneously detecting one
or more photons in both beams 1 and 2 as a function of the difference
�x in the distance from the source. The joint detection probability
is zero for �x = 0, while there is a uniform probability amplitude
to detect one or more photons in each beam for �x � d . (Arbitrary
units.)
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from the source. This is similar to the properties of the weak
photon holes considered in Refs. [1] and [2], except that here
the uniform background in which the holes reside consists of
a constant probability amplitude for coherent states centered
at locations x1 or x2 in the two beams. Since the photons
propagate at the speed of light, we can also think of them in
the time domain as not being present at the same time if the
distances are equal.

The entangled state of Eq. (6) can be viewed as a
generalization of the energy-time entangled states used
in the two-photon interferometer that I previously proposed
[5]. The main differences are the form of the function f (x1,x2)
and the nature of the creation operators (single photons
or coherent states). Equation (6) is a form of entangled
Schrödinger cat state [17,18]. States similar to Eq. (6) can be
generated using the Kerr effect and displacement operations,
as will be discussed in a subsequent paper. Entangled photon
hole states with a periodic (pulsed) background analogous to
the experiments of Ref. [2] can also be generated.

III. ABSORPTION BY IDEAL ATOMS

In most quantum communications applications, the entan-
gled photon holes will have to propagate some distance through
an optical fiber or other medium, such as the atmosphere in
free-space quantum key distribution. It will be found that the
amount of decoherence that occurs due to photon loss will
be strongly dependent on the nature of the medium. In this
section, the effects of loss due to the absorption of photons
in an atomic medium will be considered. It will be found that
no decoherence occurs in the idealized case in which there is
no significant decay or dephasing of the excited atoms over
the time interval of interest, which is typically a fraction of
a nanosecond. As a result, the entangled photon holes can be
viewed as an example of a decoherence-free subspace [19–21]
under the appropriate conditions. The effects of atomic decay
and decoherence will be considered in Sec. V.

The entangled state of Eq. (6) will be taken to be the initial
state of the field before it is incident on the absorbing medium,
which is assumed to consist of a large number of two-level
atoms as illustrated in Fig. 4(a). The interaction with any
individual atom will be characterized by a matrix element
∼ε, where ε is assumed to be sufficiently small to allow the
use of perturbation theory, for example.

In the limit of small ε, the same results would be obtained if
the atoms were replaced by harmonic oscillators as indicated
in Fig. 4(b). The probability amplitude that any oscillator
will be excited to its second excited state is ∼ε2 while the
corresponding probability is ∼ε4 and negligible. Alternatively,
we could have simply assumed that the “environment” that
decoheres the entangled photon holes actually consists of a set
of harmonic oscillators, as is commonly done. The harmonic
oscillators will be chosen to have the same frequency ω0 as
the central frequency of the Gaussian packets that describe the
field.

The harmonic oscillators will be labeled with indices i

in beam 1 and j in beam 2. All of the harmonic oscillators
will be assumed to be in their ground state initially, which
corresponds to coherent states |βi〉 and |βj 〉 with initial
amplitudes βi = βj = 0 for all i and j . Thus the initial state
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FIG. 4. (a) Two-level atoms that can absorb photons from entan-
gled photon hole states. (b) Harmonic oscillators used to represent
the atoms when the coupling is sufficiently small that the probability
P2 to occupy the second excited state is negligibly small.

|ψ0〉 of the entire system is a superposition of products of
coherent states given by

|ψ0〉 = χ

∫∫
dx1dx2f (x1,x2)

∏
k

|αck(x1)〉
∏
p

|αcp(x2)〉

×
∏

i

|βi〉
∏
j

|βj 〉. (8)

In the usual rotating wave approximation, an atom or
harmonic oscillator can absorb a photon and make a transition
from its ground state to its first excited state. The corresponding
Hamiltonian Ĥ in the dipole approximation has the form

Ĥ =
∑

k

h̄ωkâ
†
kâk +

∑
p

h̄ωpâ†
pâp +

∑
i

h̄ω0b̂
†
i b̂i

+
∑

j

h̄ω0b̂
†
j b̂j +

∑
k,i

(hkie
−ikxi â

†
kb̂i + h∗

kie
ikxi b̂

†
i âk)

+
∑
p,j

(hpje
−ipxj â†

pb̂j + h∗
pj e

ipxj b̂
†
j âp). (9)

The zero-point energies have no effect here and have been
omitted. The operators b̂

†
i and b̂i represent the usual raising and

lowering operators for the harmonic oscillators in beam 1 with
a similar definition for beam 2, while ωk = ck and ωp = cp

are the angular frequencies of the photons. The location of
atom i in beam 1 has been denoted by xi while the location
of atom j in beam 2 has been denoted by xj . The constants
hki and hpj are the matrix elements of the Hamiltonian for the
corresponding transitions. For simplicity, we will assume that
all the matrix elements have the same value over the range of
frequencies contained in the photon wave packets, which is
usually a good approximation.

We can now make use of a theorem by Glauber [22],
who showed that a product of coherent states evolving in
time in accordance with the Hamiltonian of Eq. (9) will
remain a product of coherent states at all subsequent times.
The amplitudes of the coherent states become time dependent
and they will be denoted as follows in order to simplify the
notation:

αck(x1) → αck(x1,t) ≡ α′
k(x1),

αcp(x2) → αcp(x2,t) ≡ α′
p(x2),

(10)
βi → βi(x1,t) ≡ β ′

i(x1),

βj → βj (x2,t) ≡ β ′
j (x2).
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Here we have combined the product of α and ck(x1,t) into a
single variable α′

k(x1). The notation β ′
i(x1) and β ′

j (x2) has been
used to indicate that these amplitudes may in general depend
on the value of x1 and x2. The time-dependent state of the
system is then given by

|ψ(t)〉 = χ

∫∫
dx1dx2f (x1,x2)

∏
k

|α′
k(x1)〉

∏
p

|α′
p(x2)〉

×
∏

i

|β ′
i(x1)〉

∏
j

|β ′
j (x2)〉, (11)

aside from an overall phase factor of no interest here [23].
The time dependence of the coherent-state amplitudes can

be obtained by using the fact that

âi |αi〉 = αi |αi〉 (12)

for a coherent state. The time dependence of the annihilation
operators in the Heisenberg picture can be obtained as usual
from their commutators with the Hamiltonian. For example,

dâk

dt
= 1

ih̄
[âk,Ĥ ] = −iωkâk + 1

ih̄

∑
i

hkie
−ikxi b̂i . (13)

Letting this act on the state of Eq. (11) and using Eq. (12) gives

dα′
k(x1)

dt
= −iωkα

′
k(x1) + 1

ih̄

∑
i

hkie
−ikxi β ′

i(x1). (14)

In a similar way, we also obtain

dα′
p(x2)

dt
= −iωpα′

p(x2) + 1

ih̄

∑
j

hpj e
−ipxj β ′

j (x2),

dβ ′
i(x1)

dt
= −iω0β

′
i(x1) + 1

ih̄

∑
k

h∗
kie

ikxi α′
k(x1), (15)

dβ ′
j (x2)

dt
= −iω0β

′
j (x2) + 1

ih̄

∑
p

h∗
pj e

ipxj α′
p(x2).

Equations (14) and (15) form a set of coupled ordinary
differential equations that could be solved numerically, for
example. The key question is whether or not the amplitudes
β ′

i(x1) and β ′
j (x2) that describe the state of the absorbing

oscillators actually depend on the parameters x1 and x2. If
|β ′

i(x1)〉 and |β ′
j (x2)〉 are completely independent of x1 and x2,

then the states of the atoms can be factored out of the integral
of Eq. (11) to give a product state of the form

|ψ(t)〉 =
[ ∫∫

dx1dx2f (x1,x2)
∏
k

|α′
k(x1)〉

∏
p

|α′
p(x2)〉

]

×χ
∏

i

|β ′
i〉

∏
j

|β ′
j 〉. (16)

If Eq. (16) holds, then the amplitude of the entangled photon
holes will have been reduced but with no decoherence between
the various terms in the integrals.

In order to investigate this possibility, first consider the
field and atoms in beam 1 alone for a specific value of x1.
This corresponds to the response of the system when a single
Gaussian packet |α(x1)〉 interacts with the atomic medium.
We will initially consider the response of a specific harmonic

oscillator i and then sum their effects. The initial state of this
subsystem is given by

|ψ0〉 =
∏
k

|αck(x1)〉|βi(x1,t)〉, (17)

with the initial value of βi(x1,t) equal to zero as before.
As in time-dependent perturbation theory, the coupling of a

single atom to the field will be sufficiently small that the field
will not be significantly depleted. To a first approximation,
Eq. (14) reduces to

dα′
k(x1)

dt
= −iωkα

′(x1). (18)

This equation can be solved to give

α′
k(x1) = αck(x1)e−iωkt . (19)

Here the constant αck(x1) corresponds to the Fourier coeffi-
cients of the Gaussian pulse of Eq. (2) at the initial time t0 = 0.

Inserting Eq. (19) into the second line of Eq. (15) gives the
time dependence of βi(x1,t) to first order in ε:

dβi(x1,t)

dt
= −iω0βi(x1,t)

+ 1

ih̄

∑
k

h∗
kie

i(kxi−ωkt)αck(x1). (20)

Making use of Eq. (2) allows this to be rewritten as

dβi(x1,t)

dt
= −iω0βi(x1,t)

+εαc0

ih̄
eik0(xi−ct)e

−[xi−(x1+ct)]2/2σ 2
p . (21)

Here the matrix elements hki have all been assumed to be equal
over the bandwidth of the pulse with a value of ε.

The solution to Eq. (21) becomes apparent if we factor out
most of the time dependence of βi(x1,t) by introducing a new
variable ζ (t) defined in such a way that

βi(x1,t) = e−iω0t ζ (t). (22)

Inserting this into Eq. (21) gives

dζ (t)

dt
= εαc0

ih̄
eik0xi e

−[xi−(x1+ct)]2/2σ 2
p . (23)

Integrating Eq. (23) gives

ζ (t) = εαc0

ih̄
eik0xi

∫ t

−∞
e
−[xi−(x1+ct ′)]2/2σ 2

p dt ′. (24)

Making a change of variables to τ = t ′ − (xi − x1)/c allows
this to be rewritten as

ζ (t) = εαc0

ih̄
eik0xi

∫ t−(xi−x1)/c

−∞
e−τ 2/2σ 2

t dτ

= εαc0

ih̄

√
2πσte

ik0xi F [t − (xi − x1)/c]. (25)

Here F (t) is the cumulative probability function [24] for a
Gaussian distribution with standard deviation σt = σp/c.

The cumulative probability will rapidly approach the
value F (∞) = 1 after sufficient time has elapsed for the
wave packet to have passed the location of the atom. Inserting

043831-4



SENSITIVITY OF ENTANGLED PHOTON HOLES TO LOSS . . . PHYSICAL REVIEW A 84, 043831 (2011)

the corresponding value of ζ (t) into Eq. (22) gives the final
value of βi(x1,t) as

βi(x1,t) = εαc0

ih̄

√
2πσte

ik0xi e−iω0t . (26)

It can be seen from Eq. (26) that the final amplitude for the
coherent state of harmonic oscillator i is independent of the
initial location x1 of the Gaussian packet. Similar results can
be obtained for all of the other harmonic oscillators in both
beams. As a result, the final states of the harmonic oscillators
all factor out of the overall system as in Eq. (16). This shows
that the harmonic oscillators do not retain any which-path
information that could distinguish between the various terms
in the entangled state. As a result, there is no decoherence
associated with photon loss due to absorption by idealized
atoms of this kind, which is one of the main results of this paper.

These results can be intuitively understood by considering
an atom that is weakly driven on resonance by a continuous-
wave laser at a single frequency. The probability amplitude to
be in the excited state of the atom will accumulate coherently
as a function of time. If we were to modulate the amplitude
of the laser beam to create a Gaussian pulse (or any other
shape), then the contribution of the pulse to the excited-state
probability amplitude will have the same phase as that of the
original laser beam regardless of when the pulse was formed by
the modulator. As a result, the final state of the atom contains
no information regarding the time at which the modulator
created the pulse. The same conditions hold for the entangled
photon hole state of Eq. (6).

The solution for βi(x1,t) in Eq. (26) can be inserted back
into Eq. (14) to determine the time dependence of α′

k(x1) to
second order in ε:

dα′
k(x1)

dt
= −iωkα

′
k(x1) − α

ε2
√

2πc0σt

h̄2

×
∑

i

ei(k0−k)xi e−iω0tF [t − (xi − x1)/c]. (27)

This is an iterative approach that is somewhat similar to that
used in time-dependent perturbation theory. The last term in
Eq. (27) will reduce the mean number of photons left in the
field as required by energy conservation. It will also produce
a small change in the shape of the wave packet as a result of
dispersion. We are primarily interested in the coherent form of
Eq. (16) and we will not need to solve Eq. (27) for the change in
the amplitude of the field for reasons that will become apparent
in the next section on amplification.

Equation (16) was derived under the assumption that the
changes in the field amplitudes are relatively small. For large
values of α, this can still correspond to the loss of hundreds
or thousands of photons with no which-path information left
in the state of the absorbing atoms. This approach could be
extended to larger losses by iterating the process repeatedly,
which will maintain the form of Eq. (16). That is also unnec-
essary if amplification is used as described in the next section.

These results show that entangled photon holes correspond
to a form of decoherence-free subspace [19–21] with respect
to the absorption of photons by atoms with long coherence
times. All of the results in this section were based on the
tacit assumption that there is negligible decay or dephasing
of the excited states of the atoms or the harmonic oscillators

that represent them. The effects of decoherence of the excited
atomic states will be considered in Sec. V.

IV. AMPLIFICATION

It was shown in the previous section that atoms with
long coherence times can absorb relatively large numbers
of photons without gaining any which-path information that
would destroy the coherence of a large-amplitude entangled
photon hole state. One might intuitively expect that the same
result would hold for an amplifier aside from the noise from
spontaneous emission. Amplifiers have been discussed in
detail in many earlier papers [25–31] and that analysis need
not be repeated here. Instead, we will focus on the question of
whether or not the amplifying medium retains any which-path
information that would decohere the superposition of terms in
the entangled photon hole state of Eq. (6).

An amplifier can be implemented using the same two-level
atoms of Fig. 4, but now all of the atoms will initially be in their
excited states as illustrated in Fig. 5(a). In the limit of weak
interactions, the probability amplitude that a specific atom
will make a transition to its ground state will be on the order
of ε2 � 1. This allows us to consider the “inverted” harmonic
oscillator model illustrated in Fig. 5(b) as previously suggested
by Glauber [27]. We label the oscillator states with an index
n that is 0 for the highest energy state |0〉 and increases as we
go to progressively lower-energy states. Here the operator b̂†

takes the system from state |n〉 to |n + 1〉 as usual, and the
only difference from an ordinary oscillator is that the energy
of state |n〉 is now −nh̄ω0 compared to that of the ground state.

Energy conservation now requires that the emission of a
photon be accompanied by an increase in the value of n for
one of the atoms. In the rotating wave approximation, the
Hamiltonian of Eq. (9) becomes

Ĥ =
∑

k

h̄ωkâ
†
kâk +

∑
p

h̄ωpâ†
pâp −

∑
i

h̄ω0b̂
†
i b̂i

−
∑

j

h̄ω0b̂
†
j b̂j +

∑
k,i

(hkie
−ikxi â

†
kb̂

†
i + h∗

kie
ikxi b̂i âk)

+
∑
p,j

(hpje
−ipxj â†

pb̂
†
j + h∗

pj e
ipxj b̂j âp). (28)
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FIG. 5. (a) Inverted population of atoms used to amplify an
entangled photon hole state. (b) Inverted harmonic oscillator model
for the atoms in which the oscillator states are labeled in order of
decreasing energy.
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This Hamiltonian is often encountered in parametric down-
conversion, squeezing, and other areas of quantum optics,
where b̂

†
i creates a photon in a second beam of light in that case.

Glauber’s theorem [22] for coupled harmonic oscillators is
no longer valid for the Hamiltonian of Eq. (28). Instead, we
will use the fact that â

†
i |αi〉 ∼= α∗

i |αi〉 for large values of α.
Even for small values of α, we can define an operator N̂ in
such a way that

â
†
i |αi〉 = α∗

i |αi〉 + N̂ |αi〉 (29)

holds exactly. (That is, we define N̂ to be the difference
between â

†
i and α∗

i .) The operator N̂ can be viewed as a noise
operator that reflects the effects of spontaneous emission. For
example, acting on the vacuum state with αi = 0 gives

â
†
i |0〉 = N̂ |0〉 = |1〉 . (30)

The expectation value of an operator Ô(t) in the Heisenberg
picture is given by

〈Ô(t)〉 = 〈ψ0| Ô(t) |ψ0〉 , (31)

where |ψ0〉 is the initial state of the system. As a result, we will
only be interested in the value of â

†
i (t) when it acts on |ψ0〉.

The fact that |ψ0〉 is a superposition of coherent states of the
field will allow the use of Eq. (29).

We begin once again by considering the situation in beam
1 for a Gaussian packet initially located at x1. The time
dependence of the probability amplitude to find oscillator i

in state |1〉 can be found from the commutator of b̂i(x1) with
the Hamiltonian in analogy with Eq. (15), which gives

db̂′
i(x1)

dt
= iω0b̂

′
i(x1) + 1

ih̄

∑
k

hkie
−ikxi â

†′
k (x1). (32)

Inserting Eq. (29) into Eq. (32) gives

db̂′
i(x1)

dt
= iω0b̂

′
i(x1)

+ 1

ih̄

∑
k

hkie
−ikxi [α∗′

k (x1) + N̂ ]. (33)

Schrödinger’s equation is linear, which allows us to cal-
culate the contributions to b̂′(x1) from the α∗′

k (x1) terms in
Eq. (3) separately from the contribution from N̂ and then
combine them later. Using the same method that was used to
derive Eq. (26), we can insert the form of the wave packet
from Eq. (2) into Eq. (33) to show that the contribution from
the α∗′

i (x1) terms gives

b̂i(x1,t) = εαc0

ih̄

√
2πσpe−ik0xi eiω0t (34)

after the wave packet has passed the atom.
Eq. (34) shows that the probability amplitude for an atom

in the amplifier to have made a transition to its ground state is
independent of the initial location of a Gaussian packet. The
state of the atoms can once again be factored out to produce
a product state with a form similar to that of Eq. (16). This
shows that an inverted population of ideal atoms with infinite
coherence times in an amplifier does not retain any which-path
information that could distinguish between the superposition
of terms in the entangled photon hole state.

The state of the field can be calculated using

dâ′
k(x1)

dt
= 1

ih̄
[â′

k(x1),Ĥ ]

= −iωkâ
′
k(x1) + 1

ih̄

∑
i

hkie
−ikxi b̂

†′
i (x1). (35)

This requires that we first calculate the time dependence of
b̂
†′
i (x1) using

db̂
†′
i (x1)

dt
= −iω0b̂

†′
i (x1) − 1

ih̄

∑
k

h∗
kie

ikxi â′
k(x1). (36)

It is important to note the minus sign in front of the last term,
which comes from the commutator [b̂†

′
i ,b̂′

i] = −1. The solution
to this equation is

b̂
†
i (x1,t) = −εαc0

ih̄

√
2πσte

ik0xi e−iω0tF [t − (xi − x1)/c],
(37)

in analogy with Eq. (25). Inserting Eq. (37) into Eq. (35) and
acting on |ψ0〉 gives

dα′
k(x1)

dt
= −iωkα

′(x1) + α
ε2

√
2πc0σt

h̄2

×
∑

i

ei(k0−k)xi e−iω0tF [t − (xi − x1)/c]. (38)

Equation (38) differs from Eq. (27) by the plus sign in front of
the last term. As a result, the mean number of photons increases
and the field is amplified instead of attenuated. It should also
be noted that the sign of the dispersion is reversed as well,
which may be of practical use as will be discussed below.

These results do not include the effects of the noise
operator N̂ . It is well known [25–31] that a linear (phase-
insensitive) amplifier will produce spontaneous emission noise
that is independent of the input state. This additive noise can
reduce the signal-to-noise ratio of the system and it increases
exponentially with the gain g of the amplifier. Since the noise
is independent of the input, its properties are the same as in
earlier papers on optical amplifiers [25–31].

The effects of the amplifier noise can be reduced to
a considerable extent if an amplifying medium alternates
frequently with a lossy channel, as illustrated in Fig. 6. If we
let the loss accumulate to the end of the channel as in Fig 6(a),
a relatively large gain g would be required to restore the signal
to its original value and the spontaneous emission noise will
increase exponentially with distance. This can be mitigated
by frequently amplifying the signal with a much smaller gain
g/nA, where nA is the number of amplifiers distributed along
the channel as illustrated in Fig. 6(b). In that case there is no
net gain. Any noise photons from spontaneous emission will
in essence not be amplified by subsequent amplifiers, since the
gain is compensated by an equal amount of loss. As a result,
the amplifier noise will only be proportional to the channel
length rather than increasing exponentially with distance.

Another benefit of using a chain of nA amplifiers is that the
dispersion introduced in each section of a lossy medium can
be canceled by dispersion of the opposite sign in the adjacent
amplifying medium, as can be seen by comparing Eqs. (27)
and (38). This avoids distortions in the entangled photon hole
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loss gain

(a)

(b)

loss gain

(a)

(b)

FIG. 6. (a) Propagation of a beam of light through a medium with
loss followed by an amplifying medium with gain g that restores the
field to its original amplitude. (b) Propagation through a series of
media with alternating loss and individual gains of g/nA, where nA

is the number of amplifiers. This gives no net loss or gain, which
minimizes the effects of spontaneous emission noise and dispersion.

state due to dispersive effects. Using alternating loss and gain
also validates the theoretical approach used above in which
it was assumed that the changes in the field amplitudes were
small; alternating loss and gain will keep the state of the field
close to its original value.

The amplifying atoms could be included as dopants such as
erbium throughout the length of an optical fiber. That would
result in a continuous balance between loss and gain with
essentially no change in the amplitudes of the coherent states
that form the basis for the entangled photon holes. The atomic
coherence times must still be sufficiently long to avoid any
which-path information even in that case.

Spontaneous emission noise can be avoided by using a
phase-sensitive amplifier [31] and that may be a possibility
for entangled photon holes. Noiseless amplification can also
be achieved using postselection [32,33], but that appears to be
limited to relatively small photon numbers.

To summarize, an amplifier consisting of an inverted popu-
lation of ideal atoms (with negligible decay and dephasing)
does not retain any which-path information regarding the
time at which the field passed through the amplifier. As a
result, such an amplifier can increase the mean number of
photons by a relatively large amount without producing any
significant decoherence of an entangled photon hole state,
other than the usual spontaneous emission noise. Entangled
photon holes can be viewed as existing in a decoherence-free
subspace [19–21] with regard to amplification of this kind.
The effects of spontaneous emission noise can be minimized
by alternating regions of loss and amplification, and by using
large values of α to produce a large signal-to-noise ratio even
in the presence of spontaneous emission noise.

V. ATOMIC DECOHERENCE AND BEAM SPLITTERS

The results of the two previous sections were based on the
assumption that there is negligible decoherence of the atomic
states over the time intervals of interest. Atomic decoherence
can result from a number of sources depending on the nature
of the system, including radiative decay of the excited atomic
state, collisions with other atoms in a vapor, or interactions

with phonons in solid-state systems. In this section, we will
provide an estimate of the effects of atomic decoherence on
the fidelity of the entangled photon hole states.

Nonlocal interferometry applications will typically involve
two distant interferometers with unbalanced path lengths with
a difference �t in their propagation times [1,5–14]. The output
of the interferometers will depend on interference between the
field amplitudes at times t and t + �t . All of the interference
terms will also depend on the inner product I of the atomic
states that are entangled with the field amplitudes at those
times, where

I =
∏

i

〈ψi(t + �t)|.ψi(t)〉. (39)

Here |ψi(t)〉 is the state of atom i. Atomic decay or other
decoherence mechanisms will have no effect over longer
time intervals since those changes in the atomic state will
be common to both of the interfering amplitudes.

It will be assumed that the initial density matrix ρi(t0)
that describes atom i in its excited state |Ei〉 will decay
exponentially in the usual way, so that the density matrix at
subsequent times has the form

ρi(t) = e−t/τD |Ei〉 〈Ei | + ρ⊥(t). (40)

Here ρ⊥(t) corresponds to a mixture of states that are
orthogonal to |Ei〉 and therefore do not contribute to the inner
product I . The amplitude AI of the interference terms will be
reduced to

AI = cI e
−nL�t/τD . (41)

Here cI is a constant that depends on the details of the
interferometer and nL is the number of atoms that were initially
left in the excited state; this is also the number of photons that
were lost due to absorption in the medium.

It is apparent from Eq. (41) that the visibility of the nonlocal
interference will depend on the ratio R = �t/τD . Atomic
vapors typically have coherence times ranging from 10 to
300 ns. It should be feasible to use interferometers where �t

is a small fraction of a nanosecond. Under those conditions,
the number of photons that can be lost to absorption while
maintaining a high visibility is given by

nL � 1

R
∼ 103. (42)

Thus a relatively large number of photons can be lost due to
absorption provided that R is sufficiently small. Similar results
apply to the case of amplification.

The actual value of the atomic coherence time will depend
strongly on the nature of the medium. Transmission of
quantum information over large distances in optical fibers
is of particular interest. Impurities and other imperfections
in optical fibers may eventually be reduced to the point that
the residual loss is primarily due to coherent effects such as
Brillouin or Raman scattering. The corresponding coherence
time τD would be that of the scattered photons and phonons
in the case of Brillouin scattering. This is a coherent process
that involves phase matching and energy conservation, and it
may be that τD would be very long if the fiber were cooled to
low temperatures to reduce the effects of thermal phonons, for
example. Those issues are beyond the intended scope of this
paper and further research in that area would be desirable.
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Decoherence of entangled photon holes can also occur if a
beam splitter is placed in the transmission channel. Consider
the effect that this would have on two terms in the entangled
state of Eq. (6) that correspond to probability amplitudes for
Gaussian packets initially located at x1 and x1 + c�t . They
will produce weak fields in the output port of the beam splitter
that are distinguishable at least in principle. There will now be
an inner product analogous to Eq. (39) but involving the fields
in the output port instead. If the width of the packets is much
smaller than c�t , then their inner product will be limited to the
vacuum state components of each. This gives a visibility for
the interference pattern that is proportional to exp[−α∗

SαS] =
exp[−n̄S], where αS is the amplitude for the coherent state
in the output port and n̄S is the corresponding mean number
of photons. This shows that the visibility of the interference
pattern would be substantially reduced if even a single photon
were removed from the beams using a beam splitter.

The strong loss of visibility due to the presence of a
beam splitter can be beneficial in the sense that it shows
that an eavesdropper cannot simply split off a “copy” of the
information in a quantum key distribution system based on
entangled photon holes. On the other hand, it precludes the
use of preexisting optical fiber networks that typically contain
relatively poor connectors, switches, etc. Dedicated optical
fibers or free-space links would be required instead, and they
could have relatively small beam splitter losses. Even then,
the overall amplitude α would have to be limited to moderate
values. This may result in a tradeoff between using small values
of α to limit the effects of beam splitter losses versus larger
values of α to improve the signal-to-noise ratio.

VI. SUMMARY AND CONCLUSIONS

It has been shown that relatively large numbers of photons
can be absorbed from an entangled photon hole state with no
adverse effects if the atoms in the medium have no significant
decay or dephasing over the time interval �t that is charac-
teristic of nonlocal interferometers [5–14]. Roughly speaking,
the atoms that are excited as a result of absorbing a photon
do not retain any which-path information that can be used to
determine when a photon hole passed through the medium. The
same is true for the amplification of entangled photon holes
using an inverted population of atoms. As a result, entangled
photon holes can be viewed as occupying a decoherence-free
subspace [19–21] with respect to interactions with ideal atoms.

Entangled photon holes continue to show a reduced
sensitivity to loss and amplification in the more realistic
situation in which the excited atomic states decohere with
a time constant τD . In that case the number of photons that can
be absorbed without appreciable degradation is nL ∼ τD/�t .
This ratio depends a great deal on the nature of the lossy
medium, and it can have relatively large values for an atomic
vapor, for example. Further research on possible ways to
achieve large values of τD in optical fibers for use in quantum
communication systems would be desirable.

Entangled photon holes are very sensitive to loss due to
the insertion of a beam splitter, and dedicated optical fibers
or free-space links would be required as a result. The fact
that entangled photon holes have low sensitivity to photon
loss by atomic absorption but high sensitivity to beam splitter
losses suggests that the effects of photon loss cannot always
be adequately represented by a series of beam splitters, as
is often done in practice [34,35]. This also implies that
there are limitations on the use of density matrix techniques
in combination with the Markov approximation [36], in
which it is assumed that the environment rapidly decoheres.
If the absorbing atoms were considered to be part of the
“environment,” then the use of the Markov approximation
would give totally different results.

It is probably apparent that the reduced sensitivity to loss
and amplification is not specific to this particular form of
entangled state. Methods for generating entangled photon
holes with large values of α and for implementing nonlocal
interferometry will be discussed in a subsequent paper, along
with the possibility of reduced sensitivity to beam splitter
losses. Those topics are beyond the intended scope of this
paper, which is already lengthy.

These results are of fundamental scientific interest. Whether
or not they are of practical use in quantum communications or
quantum key distribution will require further theoretical and
experimental work, including an investigation of the properties
of coherent loss mechanisms in optical fibers.
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