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Efficient all-optical switch using a � atom in a cavity QED system
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We propose an all-optical switch constructed from a two-mode optical resonator containing a strongly
coupled, three-state system. The coupling allows a weak, continuous wave laser drive to incoherently control the
transmission of a much stronger, continuous wave signal laser into (and through) the resonator. We demonstrate
that in this simple setup the presence of a control drive with 1/10th the power of the signal drive can induce near
complete reflection of the signal, while its absence allows for near complete transmission. The switch can also
be operated as a set-reset relay with two control inputs that efficiently drive the switch into either the reflecting
or the transmitting state.
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I. INTRODUCTION

While the possibility of harnessing quantum optical systems
for quantum information applications has gotten much atten-
tion in recent years, the feasibility of all-optical systems for
classical information processing has yet to be demonstrated,
despite decades of research [1]. In order for optical logic to be
competitive with silicon logic in the future, devices will have
to operate on ∼10 attojoule energy scales (that is, hundreds of
near-visible photons) [2], a regime in which quantum effects
will be significant if not dominant [3]. Practical optical devices
that leverage quantum dynamics will be essential, even for
completely classical information systems.

With this motivation, a device that couples a single atom
(or atom-like solid-state defect) to the modes of an optical
resonator has many intrinsic advantages. Discrete atomic
levels effectively “digitize” the available system states and
bestow the system with an inherent nonlinearity. Moreover,
strong coupling between atomic transitions and the optical
modes may effectively route low-power lasers: a two-sided
resonator that contains a single atom in an uncoupled state
will transmit an on-resonant laser drive, while a coupled
atom causes the laser to be reflected [4]. A recently proposed
all-optical set-reset relay [5] demonstrated that these insights
may in principle be leveraged for attojoule-scale logical
devices suited for solid-state nanophotonic applications in both
classical information systems and the classical information
processing components of quantum information systems [6].
For other recent work on all-optical switches see [7–10].

The optical switch proposed in [5] is challenging to
implement in practice because it requires a four level atom
simultaneously coupled strongly to three cavity modes, and
this raises the question whether similar behavior can be
achieved in a simpler setting. In the present paper we
investigate the switching performance of an analogous but
less complex device consisting of an only three level �

system coupled strongly to only two cavity modes. The two
ground-state levels of the � system correspond to the two
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possible states of the switch, and the excited state facilitates
coupling of the � system to the optical fields. The presence or
absence of a control field driving one cavity mode determines
whether a signal field driving the other cavity mode is reflected
or transmitted through the cavity. We find that a weak control
field can reduce the transmitted intensity of a much stronger
signal field significantly, for instance by a factor of 10 for a
moderately strong coupling and arbitrarily well for sufficiently
strong coupling. When operated with one control field, the
switch exhibits an asymmetry in the switching rates between
the reflecting and the transmitting state, and we demonstrate
that this asymmetry can be used to configure a dual-control
set-reset relay in the same device.

In the following, we first explain the working principle of
the switch and illustrate the dynamics for a particular choice of
the parameters in Sec. II. We then investigate the dependence
of the performance on the parameters in Sec. III and summarize
the conclusions in Sec. IV.

II. BASIC FUNCTIONING OF THE SWITCH

As illustrated in Fig. 1(a), the switch consists of a three
level � system coupled to two cavity modes with annihilation
operators a and b, respectively. The � system could be a single
atom, but it could also be a solid-state defect, for instance a
nitrogen vacancy center in diamond [11,12], and there are
likewise several possibilities for the choice of resonator. In
the following, we shall keep the discussion general rather than
specializing to a specific implementation.

To explain the working principle of the switch, we first
assume that the a mode of the cavity and the a drive are both
absent and that one external beam resonantly drives the b mode.
When the � system is in the |H 〉 state, the model assumes that
there is no interaction between the b mode and the � system,
see Fig. 1(a). The external signal mode hence sees an empty
cavity, and when driven on resonance by a continuous wave
coherent field with amplitude αb (normalized such that |αb|2 is
the average number of photons per unit time in the beam), the
steady state of the b mode is a coherent state with amplitude√

2κb,inαb/κb, where 2κb is the rate of decay of b photons out
of the cavity, and 2κb,in is the part of this decay rate coming
from the input mirror [i.e., the mirror to the right in Fig. 1(a)].
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FIG. 1. (Color online) (a) The switch consists of a three level �

system coupled to two cavity modes with frequencies ωca and ωcb,
respectively. The a mode (b mode) is coupled to the |H 〉 ↔ |E〉
(|G〉 ↔ |E〉) transition and spontaneous emission into radiation
modes accompanied by a transition from |E〉 to |H 〉 or from |E〉 to
|G〉 also occurs. When one control field is used, the state (“on” or
“off”) of the a drive ideally determines whether the signal field (b
drive), which is always on resonance with the bare cavity, is reflected
or transmitted through the cavity, and when two control fields are
used (one driving the a mode and the other driving the b mode at a
different frequency than the signal field), the switch is ideally driven
into the reflecting (transmitting) state if a few photons are present
in the control field driving the a mode (b mode). (b) The level
structure of the seven energy eigenstates of the switch with at most
one excitation in the � system or in one of the cavity modes when all
couplings to the environment (including driving) are neglected and
states with more excitations are ignored. (We use the parameters in
Table I and draw the level structure for ωca = ωcb.) The three levels
for which no quantum states are given are linear combinations of
|E,0,0〉, |H,1,0〉, and |G,0,1〉, where |A,n,m〉 ≡ |A〉 ⊗ |n〉a ⊗ |m〉b

and |n/m〉a/b is a photon number state of cavity mode a/b. (c) The
same as (b), but in the rotating frame defined in Sec. II A.

If, on the contrary, the � system is in |G〉, there is a strong
interaction between the field in the b mode and the � system.
In the weak driving 2κb,in|αb|2/g2

b � 1 and strong coupling
Cb ≡ g2

b/(2κbγb) � 1 regime, the cavity-resonant signal
drive cannot excite a large amplitude in the cavity because
of the “vacuum Rabi splitting” of the energy eigenstates that
arises from the strong coupling between the b mode and
the |G〉 ↔ |E〉 transition. (Here, gb is the coupling strength
for the interaction between the b mode and the |G〉 ↔ |E〉
transition, and 2γb is the decay rate from |E〉 to |G〉 due to
spontaneous emission.) As a result, the steady-state amplitude
of the b mode is reduced to

√
2κb,inαb/[κb(1 + 2Cb)] [13].

This mechanism was proposed as a tool to implement a gate
between two photonic qubits in [4].

Since the amplitude of the transmitted field is
√

2κb,out

times the amplitude of the cavity field, where 2κb,out is the
contribution to the cavity decay rate coming from the left
cavity mirror in Fig. 1(a), it follows that one can control

the transmission of the signal field by controlling the state
of the � system: when the � system is in the |H 〉 ground
state, the signal is transmitted; when the � system is in the
|G〉 ground state, very little light from the signal gets into the
cavity and the signal is reflected from the cavity. We also point
out that when the � system is in |H 〉, perfect transmission is
achieved for κb = 2κb,in = 2κb,out, whereas when the � system
is in |G〉, perfect reflection occurs in the limit Cb → ∞.

While the b mode couples only to the |G〉 ↔ |E〉 transition,
the a mode couples only to the |H 〉 ↔ |E〉 transition. Thus,
if a second field (the “control”) drives only the a mode (this
can, e.g., be achieved through polarization selectivity) and the
� system is in the |H 〉 ground state, the control may (roughly
speaking) excite an a photon in the cavity if its frequency is
properly tuned. But because the |H,1,0〉 state is coherently
coupled to the |E,0,0〉 state, which in turn is coherently
coupled to the |G,0,1〉 state, both a � system excitation and
a single b photon are also coherently created when the a drive
excites the system. The |E,0,0〉 state may spontaneously
decay to |G,0,0〉, and |G,0,1〉 is transferred to |G,0,0〉 if
the b photon decays out of the cavity. When either of these
processes occurs, the � system decouples from the control
drive and stays in the |G〉 state. From the point of view of
the signal field, though, the state of the switch has thus been
transferred from “transmitting” (|H 〉) to “reflecting” (|G〉).
The response of the device to both the signal and control
drives when the � system is in |H 〉 is depicted in Fig. 2(a)
and demonstrated via simulation in Sec. II C.

Although the signal drive cannot efficiently excite the
device when the � system is in the |G〉 state (because of the
on-resonance signal frequency and the vacuum Rabi splitting),
for large but finite Cb it may occasionally excite the device
off-resonantly. When this occurs, the analogous, but opposite
pumping mechanisms may put the � system into the |H 〉 state.
This re-pumping mechanism is depicted in Fig. 2(b) and also
in simulation in Sec. II C. The trick to obtain a good switch,
especially when the control field is weaker than the signal
field, is to make the pumping from |H 〉 to |G〉 (driven by the
control drive) more efficient than the pumping in the opposite
direction (driven by the signal drive) such that the � system
spends most of its time in the |G〉 state when the control drive is
on. As suggested above and we shall see in more detail below,
this can be achieved if the a drive near-resonantly excites the
device [given its coupled energy spectrum, Figs. 1(b) and 1(c)],
pumping the � system into the |G〉 state, and if the opposite
pumping from |G〉 to |H 〉 induced by the signal occurs only
via an off-resonant excitation.

If the signal-induced pumping from |G〉 to |H 〉 occurs on
a time scale that is much longer than the time the switch is
typically required to stay in the “reflecting” state, there is
no need to keep the control drive on once it has turned the
switch to “reflecting.” To efficiently turn the switch back to
“transmitting,” though, one may employ a second control field
driving the b mode, but with a distinct optical frequency that
near-resonantly excites the device, causing the � system to be
quickly pumped to the |H 〉 state. The switch hence acts as a
set-reset relay, which relaxes to the “reflecting/transmitting”
state by weakly driving one or the other of two control fields,
while the state is fixed if both control fields are off. This method
is described in more detail in Sec. II E.
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FIG. 2. (Color online) The response of the switch to the signal
and control drives, depicted using the lowest-lying energy eigenstates
from Fig. 1(b). Red and blue solid arrows represent the energies of the
control (red) and signal (blue) optical drives. Horizontal red and blue
lines are the energy eigenstates containing one ∼ h̄ωcb quantum of
excitation that can be excited near-resonantly or off-resonantly by the
control and signal drives, respectively. Dashed arrows represent decay
processes that can change the state of the switch if the associated
excited states are populated by the drives (see text). (a) The response
of the system when the � system is in |H 〉: the signal resonantly
excites the cavity and is transmitted; when the control drive is present,
it near-resonantly excites two excited states that will efficiently
pump the switch into the |G〉 state. (b) The response of the system
when the � system is in |G〉: the signal drive cannot efficiently excite
the device and is thus reflected; however, occasional, off-resonant
excitations will cause the � system to be pumped into the |H 〉 state.
The set-reset relay configuration is not depicted.

A. Theoretical model

The dynamics of the system can be modeled by the master
equation [14]

dρ

dt
= − i

h̄
[H,ρ] + D[

√
2γaσH ]ρ + D[

√
2γbσG]ρ

+D[
√

2κaa]ρ + D[
√

2κbb]ρ, (1)

where ρ is the density operator of the cavity modes and the �

system, t is time,

D[c]ρ ≡ cρc† − (c†cρ + ρc†c)/2, (2)

σA ≡ |A〉〈E|, and parameters with a subscript a are defined
analogously to the corresponding parameters with a subscript
b (see the previous section), but refer to the a mode and the
transition between |H 〉 and |E〉. The first term on the right-
hand side of (1) is the Hamiltonian evolution, which includes
the free evolution of the cavity modes and the � system, the
interaction between the � system and the cavity modes, and the
driving of the cavity, and the other terms describe spontaneous
emission from |E〉 to |H 〉, spontaneous emission from |E〉 to
|G〉, cavity decay for the a mode, and cavity decay for the b

mode, respectively.
In the following, we employ a standard Jaynes-Cummings

model for the system’s Hamiltonian and work in a rotating

frame defined by the frame-boosting Hamiltonian [14]

H0 = h̄ωaa
†a + h̄ωbb

†b + h̄ωcb|E〉〈E|
+ h̄(ωcb − ωb)|G〉〈G| + h̄(ωcb − ωa)|H 〉〈H |, (3)

where ωa (ωb) is the frequency of the a drive (b drive) and ωca

(ωcb) is the frequency of the a mode (b mode) of the cavity.
We likewise denote the frequency of the control field driving
the b mode in the set-reset relay configuration by ωc, and we
use the term c field to refer to this field. In this frame,

H = −h̄	aa
†a − h̄	bb

†b + h̄
|E〉〈E| + h̄	b|G〉〈G|
+ h̄(	a + δ)|H 〉〈H | + ih̄ga(a†σH − aσ

†
H )

+ ih̄gb(b†σG − bσ
†
G) + ih̄Ea(a† − a)

+ ih̄Eb(b† − b) + ih̄Ec(e−i�tb† − ei�tb), (4)

where 	i ≡ ωi − ωci , Ei ≡ αi

√
2κi,in, αc is the amplitude of

the c field, κc,in ≡ κb,in, � ≡ ωc − ωb,

h̄
 ≡ EE − EG − h̄ωcb, (5)

h̄δ ≡ EH − EG + h̄(ωca − ωcb), (6)

and EA is the energy of the state |A〉.

B. Resonance condition

We first investigate the dependence of the steady-state
expectation value of the number of photons in the cavity modes
on the frequency of the a drive. In this and the following two
sections, we consider the case where the state of the switch is
controlled by a single control field, and we use the parameters
listed in Table I. Note that the ratios of the cQED parameters in
Table I are similar to what is achievable in modern single atom
experiments [3]. Throughout the paper we use the quantum
optics toolbox [15] for computations.

The results given in Fig. 3 show that a maximal decrease
in the number of b photons in the cavity when the a drive
is on is achieved if the frequency of the a drive is chosen
such that 	a is close to −0.0915γb. This can be understood
by considering a simplified model, in which we neglect decay
processes and the driving fields and only consider states with at
most one excitation in either the � system or one of the cavity
modes. By diagonalizing the Hamiltonian, we obtain the states

TABLE I. The parameters used in Figs. 1 and 2 and in
Secs. II B–II D. We note that g2

a/(2κaγa) = 4.75 and g2
b/(2κbγb) =

50.

Parameter Value Parameter Value

Ea 0 or
√

0.01γb ga 1.3784γb

Eb

√
0.1γb gb 10γb

Ec 0 � 0
	a −0.0915γb κa 1γb

	b 0 κb 1γb

δ 11.5916γb γa 0.2γb


 2.8520γb γb 1γb
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FIG. 3. (Color online) The expectation value of the number of
photons in the cavity modes in steady state as a function of the
detuning between the a drive and the cavity resonance. The units
〈a†a〉0 and 〈b†b〉0 are the same expectation values for an empty cavity
driven on resonance (assuming the a drive is on). The labels “on” and
“off” refer to the a drive being on and off, respectively, and the
three vertical dotted lines are the energies of the states in Fig. 1(c)
that are linear combinations of |E,0,0〉, |H,1,0〉, and |G,0,1〉 minus
the energy δ + θa of |H,0,0〉 in the rotating frame. The maximum
distance D between the solid and the dashed lines quantifies the
ability of the switch to control the transmission of the signal field.

depicted in Fig. 1(c), where the three levels not labeled with
an explicit state are eigenstates of the matrix

h̄

⎡
⎢⎣

0 0 igb

0 δ iga

−igb −iga 


⎤
⎥⎦ , (7)

written in the basis {|G,0,1〉,|H,1,0〉,|E,0,0〉} (and the
eigenenergies are the corresponding eigenvalues). As already
described in Sec. II, if the system has been transferred to
|H,0,0〉 as a result of a decay event, the a drive can excite
these three states (dependent on the frequency of the light)
because the field drives the transition from |H,0,0〉 to |H,1,0〉.
The state |E,0,0〉 can decay to |G,0,0〉 through spontaneous
emission, and |G,0,1〉 can decay to |G,0,0〉 though cavity
decay. Driving one of these transitions on resonance hence
provides a way to drive the � system incoherently back to
|G〉, which can be faster than the signal-driven of-resonant
transfers from |G〉 to |H 〉, and indeed we observe in Fig. 3
that the resonances in the a mode coincide with the dips in
the average number of b photons in the cavity when the a

drive is on. In the following, we shall use the maximum value
D of (〈b†b〉off − 〈b†b〉on)/〈b†b〉0 as a figure of merit for the
switch performance, where 〈b†b〉on/off is the value of 〈b†b〉 in
a steady state when the a drive is on/off. Note that this is also
the relevant parameter to consider for the case of two control
fields because the c field is off except during switching from
the reflecting to the transmitting state. For the parameters in
Table I, the a drive has 1/10th the power of the signal drive
and D = 0.908.

C. Monte Carlo simulations

More insight into the dynamics of the switch can be
achieved through Monte Carlo simulations [16]. Examples of
trajectories are shown in Fig. 4, where the jump operators are
chosen as

√
2γaσH ,

√
2γbσG,

√
2κa,ina,

√
2κb,inb,

√
2κa,outa,

and
√

2κb,outb and we assume a symmetric and lossless
cavity (i.e., κa = 2κa,in = 2κa,out and κb = 2κb,in = 2κb,out).
In the case, where the a drive is on, it is seen that there
are two metastable states. In one of them, 〈|H 〉〈H |〉 and
〈b†b〉/〈b†b〉0 are both close to unity, while 〈a†a〉/〈a†a〉0 is
reduced somewhat below unity. The high value of the number
of b photons in the cavity leads to frequent cavity decay events
for the b mode. In the other state, 〈|G〉〈G|〉 and 〈a†a〉/〈a†a〉0

are close to unity, while 〈b†b〉/〈b†b〉0 is very close to zero.
Cavity decay events occur for the a mode, but at a smaller rate
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FIG. 4. (Color online) Particularly illustrative examples of Monte
Carlo simulations of the switch dynamics for the a drive being (a)
on and (b) off, respectively. The initial state is |H,0,0〉 in (a) and
|G,0,0〉 in (b). The crosses, circles, and triangles show the time at
which the various types of jumps occur as specified in the legend in
part (a) of the figure (for the cavity decays, we show only the jumps
corresponding to photons transmitted through the cavity).
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than for the b mode in the first state because the control field
is weaker than the signal field.

The specific trajectory shown in the figure pro-
vides an example of a transition from the state with
large 〈|H 〉〈H |〉 to the state with large 〈|G〉〈G|〉 via spontaneous
emission and also an example where the transition occurs
via absorption of an a photon followed by emission of a b

photon into the cavity mode and out one of the mirrors. The
trajectory furthermore illustrates the fact that transfers from
the state with large 〈|G〉〈G|〉 to the state with large 〈|H 〉〈H |〉
occasionally take place. On average, the switch does, however,
spend more time in the desired state with large 〈|G〉〈G|〉 than
in the undesired state with large 〈|H 〉〈H |〉, and the signal field
is hence mostly reflected from the cavity.

In the case, where the a drive is off, there are again two
states with large 〈|H 〉〈H |〉 and large 〈|G〉〈G|〉, respectively. If
the � system starts in |G〉, it will stay there for a while until a
decay event occurs that brings the � system to |H 〉. After the
transition, the system will stay in the state with 〈|H 〉〈H |〉 = 1
as long as the control field is off because the transfer from |H 〉
to |G〉 is impossible when there are no a photons present.

D. Switching times

Apart from a value of D close to unity, it is also important
that the state of the switch changes quickly when the state of
the a drive changes (i.e., the presence or absence of only a few
photons in the control beam should ideally suffice to cause the
switch to change state). In Fig. 5, we plot the time evolution of
〈b†b〉/〈b†b〉0 after suddenly turning the a drive on or off at time
t = 0. For the case, where the a drive is turned on, we define
the switching time Ton as the time at which 〈b†b〉 = (〈b†b〉off −
〈b†b〉on)e−1 + 〈b†b〉on, and for the case, where the a drive
is turned off, we define the switching time Toff as the time
at which 〈b†b〉 = (〈b†b〉on − 〈b†b〉off)e−1 + 〈b†b〉off . For the
considered parameters, γbTon = 220 and γbToff = 2.39 × 103.
Assuming κa = 2κa,in, a photons arrive at the cavity at the
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FIG. 5. (Color online) Time evolution of 〈b†b〉/〈b†b〉0 when the
a drive is suddenly turned on after being off for a long time (solid
line) and when the a drive is suddenly turned off after being on for a
long time (dashed line). (Note the different scales.)

rate |αa|2 = 0.01γb if the a drive is on, and the switch hence
changes from the transmitting state to the reflecting state after
incidence of only a few a photons and a few tens of b photons.
The opposite transition is slower and requires the absence of
a few tens of a photons, and the presence of a few hundred b

photons for these parameters. The energy required to change
the state of the switch is thus in the <100 aJ range for both
cases for near infrared photons.

E. Set-reset relay

As we shall see in the next section, higher values of D and
Toff are achieved by increasing gb. For sufficiently large Toff ,
we do not need continuous optical pumping to keep the switch
in the reflecting state, and the switch can be operated as a
set-reset relay: the a beam drives the system into the reflecting
state as before, but an additional c beam, driving the b-cavity
mode, can resonantly drive the system into the transmitting
state. The dynamics in this case is exemplified in Fig. 6,
where we show the results of integrating (1) for the parameters
	a = −0.0565γb, 	b = 0, 
 = 0.208γb, δ = 40.1γb, Ea = 0
or

√
0.01κaγb, Eb = √

0.1κbγb, Ec = 0 or
√

0.01κbγb, ga =
1.57γb, gb = 40γb, � = 40γb, κa = κb = γb, and γa = 0.2γb.
As explained in the caption, the figure shows a fast transfer
to the transmitting state when the c field is turned on, a fast
transfer to the reflecting state when the a drive is turned on, and
a slow decay toward the transmitting state when both control
fields are turned off. The decay occurs on the time scale Toff

and can be further suppressed by choosing a higher value of
gb. Thus, resonantly driving the system with the c beam can
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FIG. 6. (Color online) Dynamics of the set-reset relay. The system
is initiated to |H,0,0〉 at time γbt = 0, and the a drive is turned on
from γbt = 0 to γbt = 2000 to drive the relay to the reflecting state
(not shown). From γbt = 2000 to γbt = 4000, the c field is on and
the a drive is off, and this affects a transition to the transmitting state.
The relay stays in this state when both control fields are subsequently
turned off. Turning on the a drive from γbt = 6000 to γbt = 8000
leads to a transition to the reflecting state. When the system is in the
reflecting state and both control fields are off, there is a decay toward
the transmitting state at the rate 1/Toff , which is much slower than the
transition rate seen for γbt ∈ [2000,4000]. Note that a time interval
of 2000γ −1

b corresponds to the arrival of 20 control photons (a or c)
on average if κa,in = κa/2 = γb/2 and κb,in = κb/2 = γb/2.
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greatly decrease the time and energy necessary to drive the
system back into the transmitting state, so that systems with
large D and Toff may still be switched quickly and efficiently.

III. PARAMETER DEPENDENCE

The model contains several parameters, and to make an
investigation of the parameter dependence feasible, we fix
some of them and optimize others. We shall always choose
the signal field to be on resonance with the cavity mode (i.e.,
	b = 0) to ensure maximal transmission of the signal when the
switch is in the transmitting state. We would like to optimize
the switch performance for given amplitudes of the signal and
control fields, and we hence let Ea (Eb,Ec) scale with

√
κa,in

(
√

κb,in,
√

κb,in) and assume κa,in (κb,in) to scale with κa (κb).
Specifically, we chooseEa = 0 or

√
0.01κaγb,Eb = √

0.1κbγb,
Ec = 0 or

√
0.01κbγb, and κa = κb such that the intensity of

the signal field is ten times larger than the intensity of the
control fields for 2κa,in/κa = 2κb,in/κb. Since it is important
to hit the resonances of the system, we shall optimize 	a , δ,
and 
 numerically for each choice of parameters. We shall also
optimize ga numerically because it turns out that the optimum
is at an intermediate value of ga rather than at zero or infinity.
Using γb as the unit, we are then left with the parameters γa ,
κa = κb, and gb for the case where Ec = 0.

In Fig. 7, we provide examples of optimized values of D

for various choices of the parameters. For fixed gb, we observe
that D decreases when κa = κb or γa is increased, whereas D

increases with gb. This suggests that strong coupling generally
leads to higher values of D, but the coupling for the a mode
should be adjusted appropriately depending on the coupling for
the b mode. We also observe that D can be very close to unity.

Figure 8 shows an example of the optimal values of the
optimized parameters. Except for the very left part of the figure,
we have δ ≈ gb, while ga , 	a , and 
 are significantly smaller.
We note that the eigenvalues of (7) are approximately ±h̄gb
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FIG. 7. (Color online) Signaling contrast D (see Fig. 3) as a
function of gb for γa = 0.2γb (solid lines) and γa = γb (dashed lines)
and various values of κa = κb as indicated. Ea = √

0.01κaγb, Eb =√
0.1κbγb, 	b = 0, and 	a , ga , δ, and 
 are optimized numerically

to maximize D.
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FIG. 8. (Color online) The optimal choice of 	a , ga , δ, and 
 for
the curve in Fig. 7 with γa = 0.2γb and κa = κb = γb. The inset shows
D as a function of ga for γa = 0.2γb, κa = κb = γb, and gb = 10γb

when only 
, δ, and θa are optimized.

and h̄δ in this regime, and hence two of the resonances in the
simplified model approximately coincide. The inset shows that
the precise value of ga is not critical for the performance, which
is a significant experimental advantage. In general, we find that
intermediate values of the parameters are typically preferred
compared to hard limits, and this makes it more difficult to
derive approximate analytical expressions for the quantities of
interest. Finally, we note that it is important to avoid 	a + δ =
0. If 	a + δ = 0, the Raman transition between |G〉 and |H 〉
is on resonance, and the � system quickly evolves into a dark
state, which does not interact with the cavity modes regardless
of the amplitude driving them. Specifically, the steady state of
the system takes the form

|ψDS〉 = (cH |H 〉 + cG|G〉) ⊗ |ξa〉 ⊗ |ξb〉, (8)

where |ξa〉 (|ξb〉) is a coherent state with amplitude ξa =
Ea/(κa − i	a) (ξb = Eb/κb) and cH /cG = −gbξb/(gaξa).

The switching times without the c field present are shown
in Fig. 9, and it is seen that switching from the transmitting
state to the reflecting state generally requires only a few
incident control photons. The switching times in the opposite
direction tend to increase when D approaches unity. In fact,
there is a close connection between the switching times and
D for the considered parameters when D is close to unity.
This can be understood from the dynamics in Fig. 4. Since
〈b†b〉off is equal to 〈b†b〉0 for 	b = 0, D is determined
by the value of 〈b†b〉on/〈b†b〉0, and since the switch jumps
between two states with 〈b†b〉/〈b†b〉0 ≈ 1 and 〈b†b〉/〈b†b〉0 ≈
0 when the control field is on, the value of 〈b†b〉on/〈b†b〉0 is
approximately the relative amount of time the system spends in
the state with 〈|H 〉〈H |〉 ≈ 〈b†b〉/〈b†b〉0 ≈ 1. The average
time the switch stays in the transmitting state before
jumping to the reflecting state is Ton, and a first
estimate for the average time the system stays in the reflecting
state before jumping back to the transmitting state is Toff

(this amounts to the approximation that the presence of
the control field does not significantly alter the transition
time for jumps from the reflecting to the transmitting state).
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FIG. 9. (Color online) Switching times Ton (a) and Toff (b) for
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FIG. 10. (Color online) Enlarged view of Fig. 7. The dotted lines
show Toff/(Ton + Toff ).

We thus expect 〈b†b〉on/〈b†b〉0 ≈ Ton/(Ton + Toff) and hence
D ≈ Toff/(Ton + Toff). This relation is checked in Fig. 10, and
we find good agreement when D is close to unity.

The validity of the relation suggests that high D is always
accompanied by high Toff . In the set-reset configuration, an
efficient pathway from |G〉 to |H 〉 is created by using a second
control field to resonantly drive a transition between |G,0,0〉
and an excited state that can decay to |H,0,0〉 (Fig. 6), and it
is only desirable that Toff is very large to eliminate the need to
continuously pump the � system to |G〉 when the switch is in
the reflecting state. In this way, high D and low switching times
in both directions are possible in the set-reset configuration if
gb is sufficiently large.

IV. CONCLUSION

In conclusion, we have proposed and analyzed an attojoule-
scale all-optical digital switch comprised of a two-mode
resonator coupling to a three level � system. Utilizing the rich
structure of the system’s lowest levels of excitation [Fig. 1(b)],
the device may be operated in an on/off-mode (using a single
control field) or as a set-reset relay (using two control fields),
and requires a significantly simpler system than a similar,
recently proposed set-reset device [5]. We have highlighted
a set of configurations in which the control field(s) may route
a signal beam that is ten times more powerful, even when
the device couples to both drive modes equally (κa,in = κb,in),
and have found that efficient transmission or reflection is
achievable as the � system’s coupling to the signal mode
increases. Moreover, the device requirements for excellent
controllability do not seem excessive. For instance, projected
cQED parameters (g,κ,γ )/2π = (2.25,0.16,0.013) GHz us-
ing GaP nanophotonic resonators and diamond nitrogen-
vacancy centers [11] (which have a natural � multilevel
structure) are in principle sufficient for essentially perfect
reflection and transmission control [the (gb,κ) = (175,10)γb

point in Fig. 7].
Various parameters may be adjusted to optimize aspects of

the dynamics such as the visibility of the switching states (D),
the switching times and on/off switching time asymmetry. In
all configurations considered here, only a handful of photons
in the control field(s) are scattered during switching events.
In the near-infrared regime, this corresponds to �10 aJ-scale
optical logic. We emphasize that although these devices are
manifestly quantum-mechanical systems that rely on both the
discreteness of the internal Hilbert spaces and the coherent
mixing of low-lying energy eigenstates (in the “natural” basis
of an uncoupled system), and involve countable numbers
of energy quanta, the switching processes are principally
dissipative, the field states remain essentially coherent at all
times, and the devices are robustly suited for classical logic
applications. As complex systems engineering looks toward
an emerging ultra-low energy standard [2], “quasi-classical”
devices like these are likely to be a critical aspect of future
optical engineering.
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