
PHYSICAL REVIEW A 84, 043820 (2011)
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The radiation burst from a single γ -photon field interacting with a dense resonant absorber is studied
theoretically and experimentally. This effect was discovered for the fist time by P. Helisto et al. [Phys. Rev.
Lett. 66, 2037 (1991)] and it was named the “gamma echo.” The echo is generated by a 180◦ phase shift of the
incident radiation field, attained by an abrupt change of the position of the absorber with respect to the radiation
source during the coherence time of the photon wave packet. Three distinguishing cases of the gamma echo
are considered; i.e., the photon is in exact resonance with the absorber, close to resonance (on the slope of the
absorption line), and far from resonance (on the far wings of the resonance line). In resonance the amplitude of
the radiation burst is two times larger than the amplitude of the input radiation field just before its phase shift.
This burst was explained by Helisto et al. as a result of constructive interference of the coherently scattered field
with the phase-shifted input field, both having almost the same amplitude. We found that out of resonance the
scattered radiation field acquires an additional component with almost the same amplitude as the amplitude of
the incident radiation field. The phase of the additional field depends on the optical thickness of the absorber and
resonant detuning. Far from resonance this field interferes destructively with the phase-shifted incident radiation
field and radiation quenching is observed. Close to resonance the three fields interfere constructively and the
amplitude of the radiation burst is three times larger than the amplitude of the input radiation field.
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I. INTRODUCTION

Quantum information technology requires the development
of methods of the operation with single photons, i.e., storage
and retrieval, photon shaping, etc. Since single photons are
suggested to carry quantum information between nodes in a
quantum network, two kinds of nodes were proposed. One is
based on a quantum electrodynamics scheme using a strong
coupling of a single atom with a single cavity mode (see, for
example, Ref. [1]). The other is based on the interaction of a
single photon with an ensemble of atoms (see, for example,
Refs. [2–6]). The ensemble approach has the advantage of a
large number of particles interacting with the radiation field,
which results in a collective enhancement of the atom-field
interaction.

Collective scattering of a single photon by an ensemble
of N particles is a coherent process since all quantum paths of
the photon interfere. Therefore, the probability amplitude of
the scattered radiation field is nonlinearly dependent on N , see
Refs. [7,8], while the probability amplitude of the incoherent
scattering in a 4π angle is proportional only to N .

In the Feynman lectures [9] one can find an interesting
explanation of the phenomena of absorption and dispersion
of light by a linear medium. According to Feynman the light,
transmitted by any sample, can be considered as a result of
the interference of the input wave, as if it would propagate
in vacuum, with the secondary wave radiated by the linear
polarization induced in the medium. In an optically thick
sample these two waves are obviously of the same amplitude
and 180◦ out of phase, which leads to a fully destructive
interference.

In Refs. [10,11] it was proposed and experimentally
implemented to bringing the secondary wave in phase with
the incident radiation by abrupt change of its phase. A

single-photon radiation field is considered as a wave packet.
The source starts to emit this wave packet at a particular
time t0. If the photon source is moved abruptly at a time
t1 > t0, changing almost instantaneously its position with
respect to the absorber, the phase of the single-photon wave
packet, ϕs , also changes at t1. If ϕs = π , the incident radiation
becomes in phase with the scattered radiation and they interfere
constructively. This interference is seen as a radiation burst
whose amplitude is doubled (in some cases it is slightly more
than doubled) and its intensity is four times larger than the
intensity of the incoming radiation field.

The experiments, reported in Refs. [10,11], are performed
with the absorber, which is in exact resonance with the source.
In this paper we study nonresonant excitation and show that
for a particular detuning from resonance three fields interfere
constructively, i.e., the incoming field just after its phase shift,
a transient scattered field, induced at an earlier time by the
leading edge of the photon wave packet, and a field formed
in the absorber before the phase shift and propagating with a
slow group velocity. The phase of the third field depends on
the optical thickness of the absorber and resonant detuning.
The maximum amplitude of the radiation burst is nearly 3
times larger than the amplitude of the incident radiation just
before the phase shift and its intensity is 9 times larger (in
some cases 10 times larger). Such a revival of a single-photon
radiation field can be applied for photon storage and retrieval
or/and photon shaping, which are in the scope of quantum
computing and quantum information. A kind of photon storage
and photon shaping was studied using synchrotron radiation
(see, for example, Refs. [12–14]).

The paper is organized as follows. In Sec. II we represent
the general formalism of the description of multiple scattering
of a photon in an absorber with a single resonance. In Sec. III
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we consider an instantaneous phase shift of a single-photon
radiation field and transients induced in a thick absorber. In
Sec. IV we consider an instantaneous frequency shift of the
radiation field. In Secs. V and VI experimental results and their
discussion are presented.

II. PHOTON FILTERING THROUGH A
RESONANT ABSORBER

In this section we present generalities of the time-domain
Mössbauer spectroscopy using the time-delayed coincidence
measurements (TDCM) of two photons, emitted in a cascade
by an excited-state particle. In TDCM the detection of the
first photon in the cascade heralds the emission of the second
photon, which is applied for spectroscopy of an absorber,
containing resonant nuclei.

The most popular Mössbauer isotope, 57Fe, incorporated
into a solid, is usually used as an absorber. The appropriate
γ -photon source for 57Fe consists of a macroscopically large
number of 57Co nuclei, incorporated into another solid to have
an appreciable fraction of emitted radiation without recoil.
57Co decays by electron capture to 57mFe, which decays in
turn by emission of a 122 keV photon, followed by a 14.4 keV
photon (competing with internal conversion) to the ground
state. If the number of 57Co nuclei in the source is small
enough, i.e., the activity of the source is small, the long half-life
of 57Co (271.8 days) secures that during the lifetime of the
14.4 keV state (141 ns), almost no decay event of another
57Co in the absorber takes place.

Quantum mechanical calculation of the conditional proba-
bility amplitude a(t) of the second photon, if the detection of
the first photon in the cascade at time t0 took place, gives (see
Ref. [15])

a(t) = �(t − t0)e−(iωs+γ )(t−t0), (1)

where ωs is the frequency of the 14.4 keV photon, 2γ is the
decay rate of the 14.4 keV state (radiative and nonradiative if
present), and �(t) is the Heaviside step function. Equation (1)
is similar to the definition of the radiation field for the source
photon, introduced in Ref. [7] within a classical theory of
γ -photon propagation in a dense resonant medium. Here the
maximum of the probability amplitude a(t) is normalized to
unity and the distances from the source to the detector 1 (d1)
and to the detector 2 (d2) are neglected since d1/c and d2/c are
much smaller than the lifetime of the 14.4 keV state, where c

is the speed of light in vacuum.
The probability amplitude of the second photon wave

packet has a sharply rising leading edge at t = t0 and an
exponentially decaying tail. The former is defined by the time
t0 at which the source is formed in the 14.4 keV state and the
latter specifies the coherence time of the photon τph = 1/γ .
Such a time dependence of the single-photon field has been
detected, using radiation of a single nucleus in time-delayed
coincidence measurements of γ -photons emitted in a nuclear
cascade [7,16–20]. Usually 57Co nuclei are incorporated into
a solid, which does not produce quadrupole and Zeeman
magnetic splitting of nuclear spin states. In such a case the
source emits a single-frequency radiation field (14.4 keV).

In the TDCM technique a macroscopic absorber is placed
in between the source and the detector for the second photon.

For simplicity we limit our consideration to an absorber with
a single absorption line. We consider the case when nuclei are
randomly distributed in the host. Hence, no Bragg scattering is
present. Then, an incident photon, represented by a plane wave
at the input of the absorber, is scattered coherently only in the
forward direction by all nuclei, and propagates inside (see, for
example, Ref. [21]). There is no coherent scattering in other
directions because of random phase. Incoherent scattering in
other directions may take place but its probability is much
smaller than the probability of coherent scattering in the
forward direction.

In the classical theory [7], according to standard methods
in electrodynamics, the amplitude of the radiation field at the
output of the resonant absorber of physical thickness l is

a(l,t − t0) = 1

2π

∫ +∞

−∞
A0(ν)e−i(ωs+ν)(t−t0)−α(ν)ldν, (2)

where l/c is neglected, A0(ν) is the Fourier transform of the
amplitude a0(t) = a(t) exp[iωs(t − t0)] of the input radiation,
which is

A0(ν) = i

ν + iγ
, (3)

and α(ν) is the transmission function. Equation (2) is similar
to the expression for the spatial wave function of the single-
photon radiation field at the output of a thick absorber, which
is derived within a quantum mechanical theory by Harris in
Ref. [8] [see Eq. (40) in this reference].

Here we adopt the Fourier transform of the form

F (ν) =
∫ +∞

−∞
f (t)eiν(t−t0)dt. (4)

For the absorber with a single resonance line, α(ν) is

α(ν) = iγ αB/2

ν + 
 + iγ
, (5)

where 
 = ωs − ωa is the detuning of ωs from the resonant
frequency ωa of the absorber and αB is the Beer’s law
absorption coefficient applicable to a monochromatic radiation
tuned in resonance. With this coefficient the conventional
definition of the optical thickness of the absorber for a resonant
excitation is T = αBl. The quantum mechanical definition of
T is T = nlσ0fa , where n is the density of 57Fe nuclei in the
absorber, σ0 is the cross section of resonant absorption for
the 14.4 keV transition, and fa is the recoilless fraction of
the γ -ray absorption in the absorber.

For a single-photon radiation field (1), the integral in Eq. (2)
has been calculated in Ref. [7] with the help of the generating
function for the Bessel function. If the nuclei in the absorber
have a single absorption line tuned in exact resonance with
the source photon (
 = 0), then the amplitude of the output
radiation is

a(l,t) = �(t)e−iωs t−γ tJ0(2
√

bt), (6)

where J0(x) is the zero-order Bessel function, b = T γ/2, and
t0 = 0.

If b � γ the decay of the radiation field at the output of a
thick absorber is not more defined by the function exp[−γ (t −
t0)], but it is ruled by the Bessel function J0[2

√
b(t − t0)],

043820-2



RADIATION BURST FROM A SINGLE γ -PHOTON FIELD PHYSICAL REVIEW A 84, 043820 (2011)

whose decay rate is ∼ b at the initial stage (after t0 and before
the first zero of J0[2

√
b(t − t0)]).

As explained, for example, in Ref. [10], the accelerated
decay of the radiation field at the output of a thick absorber
is due to destructive interference of the incident radiation
with coherently forward-scattered radiation field; i.e., this is a
dynamical process, which is reversible in principle. Therefore,
just a π -phase shift of the input radiation field at a later time
changes destructive interference to constructive interference of
the input radiation field with the scattered field coming from
the absorber excited at an earlier time. This change results in
a revival of the radiation field seen as a radiation burst.

For the nonresonant case, when the frequency of the source
ωs is detuned from the center of the absorption line of nuclei
in the absorber, the result of the calculation of the integral in
Eq. (2) for the probability amplitude a(l,t) of the radiation
field at the output of the absorber becomes quite complicated.
It is described by the infinite sum of the Bessel functions of the
ascending integer order, multiplied by the complex coefficients
depending on b, 
, and t ; see Ref. [7]. Actually there are two
such expressions, one is for b > 
 and the other is for b < 
.
Both expressions converge very slowly and one has to take
into account many terms (between 50 and 100) of these sums
to obtain an accurate approximation of the integral in Eq. (2).

To simplify the analysis and obtain clear asymptotic
expressions we use the response function technique, applied
in Ref. [10]. Then Eq. (2) is reduced to

a(l,t) = e−iωs t

∫ +∞

−∞
a0(t − τ )R(τ )dτ, (7)

where we set t0 = 0 for simplicity and

R(t)e−iωs t = δ(t)e−iωs t + asc(t)e−iωat (8)

is the output field from the resonant absorber if the input field is
a short pulse, described by the delta function, δ(t). The second
term in Eq. (8), which is proportional to

asc(t) = −a0(t)

√
b

t
J1(2

√
bt), (9)

can be considered as a scattered field, produced by a short
delta-like pulse. The response function R(t)e−iωs t , Eq. (8),
for the absorber with a single resonance was calculated in
Refs. [22–24].

Direct integration of the integral in Eq. (7) gives

a(l,t) = a0(t)e−iωs t [1 + fsc(t)], (10)

where

fsc(t) = −
∫ t

0
ei
τ

√
b

τ
J1(2

√
bτ ) dτ. (11)

Integrating by parts the integral in Eq. (11), we obtain

fsc(t) = fsc1(t) + fsc2(t), (12)

where

fsc1(t) = J0(2
√

bt)ei
t − 1, (13)

fsc2(t) = −i


∫ t

0
J0(2

√
bτ )ei
τ dτ. (14)

With this result we express Eq. (10) for the output radiation as
follows:

a(l,t) = a(t) + af s(t) + asl(t), (15)

where a(t) is the radiation field, passed through the absorber
without scattering, af s(t) = a(t)fsc1(t) is a part of the scattered
radiation, which develops fast, and asl(t) = a(t)fsc2(t) is the
other part of the scattered radiation, which we name the slow
radiation, since it develops with slower rate than af s(t) and
propagates with a slow group velocity (see discussion below
and in the Appendix).

In a thick absorber (b � γ ) and for resonant detuning 


satisfying the condition b � |
| ∼ γ , the scattered radiation
af s(t) develops fast. Its effective amplitude fsc1(t), defined
without exponential factor exp(−γ t), is close to −1 for bt > 1
(i.e., t > 1/b). The fast-scattered radiation is in antiphase with
the incoming radiation and their sum is

a(t) + af s(t) = a0(t)J0(2
√

bt)e−iωat , (16)

which oscillates with the resonant frequency of the absorber
ωa and decays with the rate ∼ b.

In resonant case (ωs = ωa) the slow part of the scattered
radiation is zero [asl(t) = 0] and the amplitude of the output
radiation, a(l,t), coincides with a(t) + af s(t), see Eq. (6).
Thus, only the fast scattered field

af s(t) = a(t)[J0(
√

βt) − 1] (17)

is developed in the absorber. Its destructive interference with
the incident radiation is seen as absorption.

Out of resonance (ωs �= ωa) the fast scattered field is

af s(t) = a0(t)[J0(
√

βt)e−iωat − e−iωs t ], (18)

and the slow part of the scattered radiation field asl(t) is not
zero anymore. Its effective amplitude fsc2(t), defined without
exponential factor exp(−γ t), has the asymptote

lim
t→+∞ fsc2(t) = e−ib/
; (19)

see Ref. [25]. Thus, for large t , the amplitude of the fast scat-
tered field, af s(t), tends to the value −a(t), while the amplitude
of the slow scattered field, asl(t), tends to a(t) exp(−ib/
).
The total amplitude of the scattered field, a(t)fsc(t), has the
limit a(t)[exp(−ib/
) − 1]. If b/
 = 2πm, where m is a
natural number, the effective amplitude of the scattered field,
fsc(t), is zero. If b/
 = π (2m + 1) the effective amplitude of
the scattered field is −2. In both cases the absorber becomes
transparent for the radiation field since its interference with the
scattered field does not change the amplitude of the radiation
field, but its phase; i.e., a(t) + asc(t) = ±a(t). For arbitrary
value of b/
 we have a(t) + asc(t) = a(t) exp(−ib/
).

The transparency of the absorber is explained in the
Appendix, where the rate of the development of slow light
is also evaluated. Here we briefly outline two important points
of the formation of slow light. If |ωs − ωa| ∼ γ , the central
components of the photon spectrum, close to ωs , play a crucial
role. These components experience less absorption because
of the reduced value of Re[α(ν)] in the transmission integral,
Eq. (2). Moreover, due to the normal dispersion, defined by
Im[α(ν)], they propagate with a small group velocity (smaller
than c); see Refs. [26–31].
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III. INSTANTANEOUS PHASE SHIFT OF THE INCIDENT
RADIATION FIELD

In this section we consider the influence of an instantaneous
π shift of the phase of the incident field a(t) on the output
radiation field from a thick absorber. This phase shift can
be realized by the sudden change of the distance between
the source and the absorber, for example, by a shift of the
source toward the absorber on the distance λ/2, where λ is the
wavelength of the radiation field. If the phase shift takes place
at t1 > t0, the probability amplitude of the photon is described
by the equation, see Refs. [10,11],

aπ (t) = [�(t − t0) − 2�(t − t1)]e−(iωs+γ )(t−t0). (20)

The Fourier transform of its amplitude aπ0(t) =
aπ (t) exp[iωs(t − t0)] is

Aπ0(ν) = 1 − 2e−(γ−iν)(t1−t0)

γ − i(ν + 
)
. (21)

Obviously, such a phase shift changes the photon spectrum,
introducing oscillations with a period (t1 − t0)/2π .

Substituting Aπ0(ν) into Eq. (2) instead of A0(ν) and
calculating the integral, we obtain the expression for the
amplitude of the output radiation field:

aπ (l,t) = a(l,t) − 2a(l,t − t1)e−γ t1−iωs t1 , (22)

where t0 = 0 and a(l,t) is defined by Eq. (2) where the photon
spectral function is A0(ν). Equation (22) coincides with that
found in Ref. [10] for the output radiation field if the input
field experiences the π -phase shift.

A. Resonant case

In the resonant case (
 = 0) Eq. (22) simplifies as follows:

aπ (l,t) = a(t)[J0(2
√

bt) − 2�(t − t1)J0(2
√

b(t − t1))].

(23)

At t = t1 it has a sharp peak whose amplitude aπ0(t,l) =
aπ (t,l)e+iωs t+γ t is

aπ0(l,t1) = J0(2
√

bt1) − 2. (24)

The corresponding probability pπ0(l,t) = |aπ0(l,t)|2 is

pπ0(l,t1) = [J0(2
√

bt1) − 2]2. (25)

The amplitude aπ0(t,l) and the probability pπ0(l,t) are defined
without the exponential factors exp(−γ t) and exp(−2γ t),
respectively, to visualize their comparison with the amplitude
and probability of the input radiation field, which are unity
without these factors for any t1.

Below, for simplicity of notations we introduce the param-
eter � = 2γ , which is the decay rate of the probability of the
incident photon. Neglecting the Bessel function in the Eq. (25)
we find that the total probability pπ (l,t) = |aπ (l,t)|2 increases
four times with respect to its value exp(−�t1) with no absorber
between the source and the detector.

Meanwhile, the Bessel function J0(2
√

bt) has a first mini-
mum with negative value −0.403 when bt1 	 3.67. Therefore,
at t1, satisfying this relation, pπ (l,t1) increases even more, i.e.,
5.77 times with respect to the probability of the incident photon
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FIG. 1. (a) Time evolution of the detection probability pπ (l,t)
(solid line) of the photon at the output of the absorber with
optical thickness T = 12, which corresponds to b = 3�. Time of
the instantaneous phase shift, t1, satisfies the relation bt1 	 3.67, i.e.,
�t1 = 1.22, where � = 2γ . Time evolution of the probability of the
input radiation is shown by dashed line. (b) Thickness dependence of
the time-integrated transmission of the phase-shifted photon (dashed
line) and a photon without the phase shift (solid line). Both are
normalized to n0.

p(t1); see Ref. [10]. The time dependence of the probability
pπ (l,t) if bt1 	 3.67 is shown in Fig. 1(a).

It is obvious that due to the π -phase shift the absorption
of the photon is decreased. To calculate the total value of the
transmitted radiation before and after phase shift we recall that
for a classical field, the total energy, transmitted through a unit
area of the absorber of thickness l, is proportional to

n(l,
) =
∫ +∞

−∞
a(l,t)a∗(l,t) dt. (26)

For a single photon, this value is proportional to the number of
counts of the second detector in a wide time window without
use of the first detector. Substituting a(l,t) from Eq. (2) into
Eq. (26) and calculating two integrals we obtain

n(l,
) =
∫ +∞

−∞
�0(ν)e−2 Re[α(ν)]ldν, (27)

where �0(ν) = A0(ν)A∗
0(ν)/2π is the energy spectral density

of the incident radiation field. In resonance for the phase-
shifted photon the time-integrated probability is

nπ (T ) =
∫ +∞

−∞
�π (ν)e−2 Re[α(ν)]ldν, (28)
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where �π (ν) = Aπ0(ν)A∗
π0(ν)/2π is the energy spectrum of

the radiation field, which is

2π�π (ν) = 1 + 4(e−2γ t1 − e−γ t1 cos νt1)

ν2 + γ 2
, (29)

and α(ν) is defined in Eq. (5), where 
 = 0. The time-
integrated probability of the photon without phase shift for

 = 0 is (see Refs. [23,27,32])

n(l,0) = e−αB l/2I0(αBl/2)n0, (30)

where n0 = n(0,0) = 1/� and I0(αBl/2) is the modified
Bessel function of zero order. For large optical thickness (T �
1) the transmitted intensity decreases as n(l,0) ≈ n0/

√
παBl;

see Refs. [23,27,33]. This dependence deviates strongly from
Beer’s law, exp(−αBl), for the monochromatic radiation
because of low absorption of the long wings of the input
radiation field spectrum �0(ν).

A comparison of the thickness dependence of the absorption
of the resonant photon without phase shift, n(l,0), see Eq. (30),
with that for the photon with the phase shift, nπ (T ), is shown in
Fig. 1(b). We selected t1, which satisfies the relation bt1 	 3.67
when the burst takes the maximum probability pπ0(l,t1) =
5.77. With this relation (bt1 	 3.67) time t1 	 14.67/T �

decreases with thickness increase. From Fig. 1(b) it is clear that
for T ≈ 20 almost 45%; of the radiation is not absorbed and
transmitted intensity increases ∼ 3.5 times due to the phase
shift.

B. Nonresonant case

If 
 �= 0 the functions a(l,t) and a(l,t − t1) in Eq. (22) for
the probability amplitude of the output radiation are described
by Eq. (10). As shown in Sec. II for the nonresonant excitation
the scattered field a(t)fsc(t) consists of two parts, i.e., the fast
a(t)fsc1(t) and the slow a(t)fsc2(t) radiation fields. If the phase
of the incoming field changes to π , the interference of the fast
radiation with the phase-shifted incoming field will produce
a spike whose amplitude increases approximately two times,
similar to the resonant case. Meanwhile, if by the time t1 the
slow field a(t)fsc2(t) is developed in the absorber, it will also
contribute to the total amplitude.

The phase of the slow field is defined by the value −b/
;
see Eq. (19). If b/
 = ±π , the slow field also interferes
constructively with the phase-shifted incoming field at t � t1.
In this case we have constructive interference of three fields,
i.e., the incoming field, the fast field a(t1)fsc1(t1), and the
slow field a(t1)fsc2(t1). Then, one can expect the spike whose
amplitude is three times larger than the amplitude of the
incoming radiation and its probability is nine times larger.
The explicit expression for the amplitude aπ0(l,t) of the spike
at t1 is

aπ0(l,t1) = ei
t1J0(2
√

bt1) + fsc2(t1) − 2. (31)

Definite conditions should be fulfilled in order that the field
a(t1)fsc2(t1) could develop until time t1 to give an appreciable
contribution to the total field. The thicker the absorber, the
shorter time t1 is. Also, with 
 increase the time of the slow
field development shortens. This point is illustrated in Fig. 2(a),
where the dependence of the maximum probability of the burst,
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FIG. 2. (a) Resonant detuning dependence of the maximum
probability of the radiation burst, pπ0(l,t1) at time t1, when the
phase of the input radiation changes to π . Plots are represented for
the absorber with T = 26 and for different values of t1: �t1 = 5
(solid line), �t1 = 2 (dotted line), and �t1 = 0.5 (dash-dotted line).
(b) Time evolution of the detection probability pπ (l,t) of the photon
at the output of the absorber with optical thickness T = 26 if �t1 = 2:
Solid line is for nonresonant case, 
 = 2.6�, and dotted line is for
resonant case, 
 = 0.

pπ0(l,t1), on the detuning 
 is shown for T = 26 and different
times t1.

For �t1 = 5 (shown by solid line on the plot) the slow
field has time to reach its maximum amplitude and hence the
maximum probability takes place if 
 = ±2.14�. For these
values of the detuning 
 the slow field has the phase b/
 =
±3.037, which is close to ±π . This is just the condition for the
constructive interference of the input field with the slow field.
For �t1 = 5 the contribution of the term exp(i
t1)J0(2

√
bt1) to

the amplitude of the fast field, a(t)fsc1(t), is almost negligible;
see Eq. (13).

For the shorter time, �t1 = 2 [shown by dotted line in
Fig. 2(a)], the amplitude of the slow field does not reach its
maximum value; however, for 
 = ±2.6� the slow field has
a proper phase (close to ±π ) to interfere constructively with
the input radiation at t = t1. With further increase of |
| the
amplitude of the slow field also increases but the absolute value
of its phase, |b/
|, decreases to zero. Therefore, for large
|
| the real part of the amplitude of the slow field interferes
destructively with the input radiation, while its imaginary part
gives some contribution to the probability pπ0(l,t1). As a result,
the maximum value of the probability of the burst becomes
smaller than 4. Besides, the part, exp(i
t1)J0(2

√
bt1), of

the fast field, a(t)fsc1(t), contributes to the signal at t1. Its
phase depends on the value of bt1 due to the oscillations
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of the Bessel function and on the value of 
t1 due to the
exponent. The time evolution of the photon probability pπ (l,t1)
for �t1 = 2 and T = 26 is shown in Fig. 2(b), where solid
line represents the time dependence of the probability when
the detuning is 
 = 2.6� and dotted line is for 
 = 0.
Appreciable increase of the amplitude of the spike for 
 =
2.6� with respect to the resonant case, 
 = 0, is clearly
seen.

For even shorter time, �t1 = 0.5 [shown by dash-dotted
line in Fig. 2(a)], the slow field has no time to develop for the
detunings |
| � 6�. For large detunings, |
| � 6�, the slow
field is developed to a certain extent, but the absolute value
of its phase becomes appreciably smaller than π and hence
the slow field interferes destructively with the phase-shifted
incoming field. The part, exp(i
t1)J0(2

√
bt1), of the fast field

also changes its phase due to the exponential factor to the value

t1, which is close to ±π for 
 = ±6�, while J0(2

√
bt1) is

negative and its value is close to the first minimum of the Bessel
function. Thus, the value of product exp(i
t1)J0(2

√
bt1) is

positive. Therefore, the interference of the slow field, the part
of the fast field, and the phase-shifted incoming field becomes
destructive, which results in the decrease of the probability
pπ0(l,t1) with |
| increase.

For the absorber with a moderate thickness the interference
of the three fields produces the radiation burst whose proba-
bility does not reach its maximum value of 10. However, its
probability can be larger than that for the resonant excitation
when the slow field is not developed at all. For example, in
the absorber with optical thickness T = 12 the probability
of the radiation burst for the nonresonant excitation is still
larger than that one can observe for the resonant excitation
if the condition of the maximum amplitude of the burst,
bt1 	 3.67, is satisfied; see Fig. 3(a). Comparison of the time
dependence of pπ (l,t) for resonant excitation (dotted line) and
nonresonant excitation (solid line), when the phase shift takes
place in both cases at the same time t1 = 2.5/�, is shown in
Fig. 3(b).

Another interesting feature of the interference of the three
fields is the possibility of their destructive interference, which
is seen as a radiation quenching. It takes place for large
resonant detuning 
 when the phase of the slow field is close
to zero while the phase-shifted incoming field has phase π .
This case is illustrated in Fig. 4, where the time dependence of
the detection probability pπ (l,t) of the radiation with resonant
detuning 
 = 4� at the output of the absorber with optical
thickness T = 12 is shown if at time t1 = 2/� input radiation
changes its phase to π .

Just after the phase shift the radiation burst is almost
negligible since the slow field, asl(t), and the input field are in
antiphase, and they nearly compensate each other. Mostly,
the fast radiation, af s(t), which is not compensated at t1,
contributes to the output field. However, after some short time
after t1 a new fast field is generated, which compensates the
previously generated fast field af s(t). Due to their destructive
interference the dip in the time dependence of pπ (l,t) is
developed.

Destructive echo signals in the nuclear resonant scattering
of synchrotron radiation on two absorbers, the position of one
of which is modulated with respect to the other, were also found
in Ref. [14]. The dip in the time dependence of the probability

10 8 6 4 2 0 2 4 6 8 10 
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p (l,t1) 
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p (l,t) 
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(b) 

t 

FIG. 3. (a) Dependence of the probability of the radiation burst,
pπ0(l,t1), on the resonant detuning 
 for �t1 = 2.5 (solid line) and
for �t1 = 1.22 (dashed line). (b) Time dependence of the probability
pπ (l,t) for 
 = 1.46� (solid line) and for 
 = 0 (dotted line). Optical
thickness of the absorber is T = 12 for (a) and (b).

of scattered radiation is observed if the second absorber was
5–7 times thicker than the first absorber.

IV. INSTANTANEOUS FREQUENCY SHIFT OF THE
INCIDENT RADIATION FIELD

Instantaneous phase shift of the radiation field is practically
impossible. If, for example, the radiation source suddenly
changes its position with respect to the absorber, physically this
change takes a finite time to be performed. For simplicity we
assume that at time t1 the source starts to move with constant
velocity v and it stops at time t2. This is also idealization,

0 0.5 1 1.5 2 2.5 3 3.5 4 0

0.2

0.4

0.6

0.8

1
p (l,t) 

t 

FIG. 4. Time evolution of the detection probability pπ (l,t) of the
radiation at the output of the absorber with optical thickness T = 12
(solid line). Input radiation changes its phase to π at time t1 = 2/�.
The resonant detuning is 
 = 4�. Time evolution of the probability
of the input radiation is shown by dots.
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since the source cannot acquire finite velocity v instantly, and
it cannot stop instantly. However, this idealization helps to
understand physical processes in the experiment with suddenly
moving source or absorber.

Radiative decoupling and coupling of nuclei by stepwise
Doppler-energy shift was studied for two absorbers, excited
by synchrotron radiation, in Refs. [14,34].

According to the model with constant velocity the phase
factor exp(ikr) of the radiation field changes in a time interval
between t1 and t2 as exp[ikr0 + iϕ(t)], where k is the wave
number, r0 is position of the source with respect to the absorber
at time t1, and ϕ(t) = kvt , which we express as follows:

ϕ(t) = δω[(t − t1)�(t − t1) − (t − t2)�(t − t2)]. (32)

Here δω has a meaning of the instantaneous frequency shift
of the input radiation to the constant value lasting from time
t1 to t2. It can be expressed as δω = δϕ/τv , where δϕ is a
total phase shift, which takes place in a time interval τv =
t2 − t1. The parameters δω, δϕ, and τv play a crucial role in
the effectiveness of the phase shift.

Generally, if ϕ(t) has an arbitrary time dependence, the
probability amplitude of the input radiation field can be ex-
pressed as aϕ(t) = a(t) exp[iϕ(t)]. To calculate the probability
amplitude of the radiation field at the output of the absorber
we use Eq. (7) in a form

aϕ(l,t) = e−iωs t

∫ +∞

−∞
a0(t − τ )eiϕ(t−τ )R(τ )dτ, (33)

which is valid due to the convolution theorem. Taking into
account the definition of the response function R(τ ) of the
absorber, Eq. (8), and calculating the integral in Eq. (33) we
obtain

aϕ(l,t) = a(t)[J0(2
√

bt)ei
t+iϕ(0) + fϕ(t)], (34)

fϕ(t) = i

∫ t

0
[ϕ′

t (t − τ ) − 
]J0(2
√

bτ )eiϕ(t−τ )+i
τ dτ,

(35)

where ϕ′
t (t − τ ) is a time derivative of the function ϕ(t − τ ).

Below we consider the model with constant velocity of the
source in a time interval τv . We study the case if δω � b.
If the frequency shift δω is comparable to or smaller than b,
the phase shift δϕ is not rapid with respect to the dynamical
beats originating from the interference of the fields produced
in a multiple scattering of the incoming radiation. Thus, such a
slow phase shift cannot strongly compete with this interference
and produce a sharp burst of the radiation field.

If δϕ = π and bτv  1, with the help of Eqs. (34) and (35)
one can show that the model with constant velocity gives the
same result as the model with the instantaneous phase shift
where τv = 0. If the product bτv is comparable with unity
or larger than unity, the phase shift of the field can produce
an essential burst of the radiation if δϕ � π . To prove this
we consider the resonant (
 = 0) and nonresonant (
 �= 0)
excitation separately.

A. Resonant excitation

To calculate the integral in Eq. (35) we consider a plane
(t,τ ), where lines t = τ , t − t1 = τ , and t − t2 = τ divide this

t-t1  t  

I

II 

 

t 

t2

t1

III 

t-t2  

FIG. 5. Integration paths of the integral in Eq. (35). See the text
for details.

plane in three domains important for the integration, i.e., I, II,
and III; see Fig. 5. In the domain I we have t − t1 < τ or t −
τ < t1 and hence ϕ(t − τ ) = 0. In the domain II the inequality
t1 < t − τ < t2 holds and hence ϕ(t − τ ) = δω(t − t1 − τ ). In
the domain III we have t2 < t − τ and hence the function ϕ(t −
τ ) has again zero value. Thus, the integral in Eq. (35) is zero
in the domains I and III and it gives nonzero contribution only
in the domain II. According to these arguments the integral is
zero for t < t1 and it has nonzero value for t � t1.

The domain II, in its turn, can be divided in two subdomains.
One subdomain (b) is located below the dashed arrow, shown
in Fig. 5, and it corresponds to time t1 � t � t2. The other
subdomain (a) is above this dashed arrow and it corresponds
to time t > t2. For the subdomain (b), where t1 � t � t2, the
integral in Eq. (35) is reduced to

fb(t) = iδω

∫ t−t1

0
eiδω(t−t1−τ )J0(2

√
bτ )dτ. (36)

If δω � b, this integral can be calculated by parts iteratively.
Retaining only terms not smaller than b/δω, we obtain

fb(t) ≈ eiδω(t−t1) − J0[2
√

b(t − t1)]

+ i
b

δω

{
eiδω(t−t1) − J1[2

√
b(t − t1)]√

b(t − t1)

}
. (37)

If bt1 � 1 we can neglect in aϕ(l,t), Eq. (35), the term
proportional to the Bessel function J0(2

√
bt). Then, neglecting

corrections proportional to b/δω in Eq. (37) we obtain the
following approximation for the probability of the radia-
tion field, pϕ(l,t) = |aϕ(l,t)|2, i.e., its phase dependent part
pϕ0(l,t) = pϕ(l,t)/|a(t)|2,

pϕ0(l,t) ≈ 1 + J 2
0 [2

√
b(t − t1)] − 2 cos[δω(t − t1)]

× J0[2
√

b(t − t1)], (38)

which is valid for t1 � t � t2. This probability has a first
maximum at δω(t − t1) = π . If δϕ = δω(t2 − t1) = π and
b(t2 − t1)  1, such an instantaneous frequency shift gives
the same burst whose maximum is 4 as in the case of the
instantaneous phase shift [compare with Eq. (25)]. If δω(t2 −
t1) � π , the maxima take place at δω(t − t1) = (2m + 1)π
where m is a natural number. Their values are

pϕ0(l,t) ≈ {
1 + J 2

0 [2
√

(2m + 1)πb/δω]
}2

. (39)
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The minima of pϕ0(l,t),

pϕ0(l,t) ≈ {
1 − J 2

0 [2
√

2mπb/δω]
}2

, (40)

take place at δω(t − t1) = 2mπ . Their values are close to zero
if 2mπb/δω  1.

For the subdomain (a), were t > t2, the integral in Eq. (35)
is reduced to

fa(t) = iδω

∫ t−t1

t−t2

eiδω(t−t1−τ )J0(2
√

bτ )dτ. (41)

If δω � b, this integral can be also be calculated by parts
iteratively. Retaining only terms not smaller than b/δω, we
obtain

fa(t) ≈ eiδϕf (t − t2) − f (t − t1), (42)

where

f (t) = J0(2
√

bt) + i
b

δω

J1(2
√

bt)√
bt

. (43)

With the definition (43) the function fb(t) in Eq. (37) can be
expressed as

fb(t) ≈ eiδω(t−t1)f (0) − f (t − t1). (44)

The first term in this expression can be interpreted as the
frequency-shifted incoming field and the second term as
the scattered radiation field. Depending on the value of the
phase factor δω(t − t1) these fields interfere destructively or
constructively.

Combining the results of the calculation of the integral
in the domains I–III, we obtain the final expression for the
probability amplitude of the output radiation:

aϕ(l,t) = a(t){J0(2
√

bt) + �(t − t1)fb(t)

+�(t − t2)[fa(t) − fb(t)]}. (45)

Comparison of the time evolution of the spike after the
instantaneous phase shift to π (bold solid line) and during
the instantaneous frequency shift (thin solid line) is shown
in Fig. 6. It is clearly seen from the plot that the burst in
the second case consists of two maxima. The positions of the
maxima and minimum are well described by simple relations,
i.e., δω(t − t1) = π and δω(t − t1) = 3π for the maxima, and
δω(t − t1) = 2π for the minimum. The spike in the second
case has reduced intensity and is broadened with respect to
the spike in the case of the instantaneous phase shift. The
probability pϕ(l,t), calculated with the help of the approximate
expressions for fa(t), Eq. (42), and fb(t), Eq. (44), is shown
by dots. For δϕ = 10 radians, �τv = 0.3, δω = 33.3�, and
b = 3�, the results of the numerical calculation of the integral
and analytical approximations are indistinguishable. It should
be noted that in this example the product bτv = 0.9 is close to
unity.

B. Nonresonant excitation

For the nonresonant excitation the integral in Eq. (35) is not
zero in all three domains, I, II, and III; see Fig. 5.

1.5 2 2.5 3 3.5 4 
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0.2 

0.4 
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 p (l,t) 
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 p (l,t) 

FIG. 6. Evolution of the output probability pπ (l,t) after the phase
shift of the input radiation field to π (bold solid line) and pϕ(l,t)
during the frequency shift lasting between t1 = 2/� and t2 = 2.3/�

(thin solid line). Dotted line shows the analytical approximation of
the second case (see the text). The parameters are b = 3� and δϕ =
10 radians.

In a time interval between t = 0 and t = t1 this integral is
fϕ(t) = fIb(t), where

fIb(t) = −i

∫ t

0

J0(2

√
bτ )ei
τ dτ, (46)

and index Ib denotes that the integral is taken in the domain I,
subdomain b, which is located below the dash-dotted line in
Fig. 5. This integral coincides with fsc2(t) in Eq. (14).

In a time interval t1 � t � t2 this integral is fϕ(t) =
eiδω(t−t1)fIIb(t − t1) + fIa(t), where

fIIb(t − t1) = −i

∫ t−t1

0
(
 − δω)J0(2

√
bτ )ei(
−δω)τ dτ, (47)

fIa(t) = −i

∫ t

t−t1


J0(2
√

bτ )ei
τ dτ. (48)

Here index IIb in fIIb(t) denotes that the integral is taken in the
domain II, subdomain b, which is located below the dashed
line in Fig. 5, and index Ia in fIa(t) denotes that the integral
is taken in the domain I, subdomain a, which is located above
the dash-dotted line.

For t > t2 this integral is fϕ(t) = fIII(t) + eiδω(t−t1)fIIa(t) +
fIa(t), where

fIII(t) = −i

∫ t−t2

0

J0(2

√
bτ )ei(
τ+δϕ)dτ, (49)

fIIa(t) = fIIb(t − t1) − fIIb(t − t2). (50)

Here index III in fIII(t) denotes that the integral is taken in
the domain III in Fig. 5, and index IIa in fIIa(t) denotes that
the integral is taken in the domain II, subdomain a, which is
located above the dashed line.

With these definitions the integral in Eq. (35) can be
written as

fϕ(t) = F1(t) + F2(t), (51)

F1(t) = fsc2(t) − �(t − t1)fsc2(t − t1)

+�(t − t2)eiδϕfsc2(t − t2), (52)

F2(t) = eiδω(t−t1)[�(t − t1)fIIb(t − t1)

−�(t − t2)fIIb(t − t2)]. (53)
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If bτv  1 and τv  t1, the main contribution to the function
F1(t) in the time interval, when the frequency shift takes
place, is given by the slow field fsc2(t), developed before the
frequency shift.

If δω � |
|,b, the function fIIb(t − t1) can be calculated
by parts iteratively. Retaining only terms not smaller than
b/(δω − 
), we obtain

fIIb(t − t1) ≈ f
(0) − ei(
−δω)(t−t1)f
(t − t1), (54)

where

f
(t) = J0(2
√

bt) + i
b

δω − 


J1(2
√

bt)√
bt

. (55)

In a time interval 0 < t < t2 the function fϕ(t), Eq. (35), is
approximated as follows:

fϕ(t) ≈ F1(t)+�(t − t1)[eiδω(t−t1)f
(0)−ei
(t−t1)f
(t−t1)].

(56)

If during the frequency shift (t1 < t < t2) all three components
of this function are in phase they interfere constructively, which
is seen as a burst of the radiation field. For example, the first
spike takes place if the first term F1(t) ≈ fsc2(t), describing
the slow field, is negative and it has maximum absolute value,
the second term is negative if δω(t − t1) = π , and the third
term is negative if 
(t − t1)  1.

For t > t2 with the same approximations the function
fϕ(t) is

fϕ(t) ≈ F1(t)+ei
(t−t2)+iδϕf
(t − t2)−ei
(t−t1)f
(t−t1).

(57)

The time dependence of the detection probability of the
radiation field, pϕ(l,t), calculated with the help of Eq. (34),
where fϕ(t) is approximated by Eqs. (56) and (57), is shown
in Fig. 7 by the solid line. For the parameters δϕ = 10 radians,
b = 3�, t1 = 2.4/�, and τv = 0.3/�, this approximation is
indistinguishable from the exact result, Eq. (34), where the
function fϕ(t), Eq. (35), is calculated numerically. Two plots
are represented in Fig. 7. One (solid line) is for 
 = 1.5�
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FIG. 7. Time evolution of the detection probability pϕ(l,t) of
the photon at the output of the absorber with optical thickness T =
12 for resonant (dots) and nonresonant (solid line) excitations. The
frequency shift of the radiation field δω = 33.3� starts at time t1 =
2.4/� and terminates at t2 = 2.7/�. The total phase shift of the
radiation field is δϕ = 10 radians.

and the other (dotted line) is for the resonant excitation
(
 = 0). It is clearly seen that two spikes for the nonresonant
excitation are larger than for resonant excitation. As was
shown in the previous subsection, for the resonant excitation
the first maximum of the burst takes place at t = t1 + π/δω.
For the nonresonant case it takes place slightly later, i.e., at
t = t1 + π/(δω − 
) if 
 > 0, or earlier if 
 < 0.

V. EXPERIMENT

Our experimental setup is based on an ordinary delayed-
coincidence scheme usually used in measurements of the
lifetimes of nuclear states. The schematic arrangement of
the source, absorber, detectors, and electronics is shown in
Fig. 8. The source, 57Co:Rh, is mounted on the holder of the
Mössbauer drive, which is used to Doppler-shift the frequency
of the radiation of the source. The details of this setup are
described in Ref. [30]. The only difference is in the holder for
the absorber and some additional electronics.

The absorber was made of enriched K4Fe(CN)6 · 3H2O
powder with effective thickness of 13.2. It was glued on
a polyvinylidene fluoride (PVDF) piezo polymer transducer
(thickness 28 μm, model LDT0-28K, Measurement Special-
ties, Inc.). Several piezoelectric transducer constructions were
tested to achieve controlled phase change of the radiation field.
The best of them was a piece of 28 μm thick, 3 × 5 mm polar
PVDF film coupled to a plexiglas backing of ∼ 2 mm thickness
with epoxy glue. The PVDF film was driven with a square
wave pulse from the Ortec Gate&Delay Generator (Model
416A) or the Mini-Circuits Model ZPUL-21 Pulse Amplifier.
They were triggered by the positive or negative output of the
122 keV channel constant fraction discriminator. The rise time
of the driving pulse was about 18 nsec and 10 nsec for the
Gate&Delay Generator and Pulse Amplifier, respectively.

To calibrate a time resolution of our setup we measured
a time spectrum of the decay of 14.4 keV state with no
absorber. The time resolution of 9.1(5) nsec was obtained by
least-squares-fitting the experimental lifetime spectra with the
convolution of the theoretical decay curve and a Gaussian

FIG. 8. Scematic layout of the experimental setup. TAC is a
time to amplitude converter. PHA is a pulse-height analyzer. TA
is a timing amplifier. SA is a spectroscopy amplifier. SCA is a
single-channel analyzer. DFG-MD is the Mössbauer driving unit
and function generator. HV is a high-voltage supply. This setup
differs from that described in Ref. [30], by the square-voltage-pulse
generator, synchronized via delay line with the pulse coming from
the 122 keV detector. The square voltage pulse feeds the PVDF
transducer where the absorber is mounted.
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FIG. 9. (Color online) The delayed-coincidence spectra (dots) for

the absorber with the effective thickness T = 13.2 and for different
resonant detunings 
 = ωs − ωa . Time t1, when a step voltage is
applied to the PVDF transducer, is 280 nsec for (a)–(e) and 140 nsec
for (f). The voltage step is +10 V except for (e), where it is −4 V. The
thin solid line (in blue) shows the lifetime curve, measured without
absorber. The thick solid line (in red) shows the theoretical fit.

distribution originating from the time resolution function of
the experimental setup (see, for example, Ref. [35] for the
procedure). The curve measured for a single line source 57Co
shows the single exponential decay with a mean lifetime
τlt = 1/� of 140(9) nsec, in good agreement with the mean
lifetime and the natural linewidth data for the 14.4 keV state
of 57Fe.

Our experimental results of measurements of time depen-
dence of the transmission through the absorber with effective
thickness of 13.2 are shown in Fig. 9. Different detunings

 are obtained by Doppler-shifting the radiation frequency
of the source with respect to the resonant frequency of the
absorber. In Figs. 9(a)–9(d) and Fig. 9(e) voltage steps +10 V
and −4 V, respectively, were applied across the transducer at
time t1 − t0 	 280 nsec. In Fig. 9(f) a voltage step +10 V was
applied at time t1 − t0 	 140 nsec.

In Fig. 9 the background due to accidental coincidences
and the fraction of radiation with recoil, which is nonresonant
for the absorber, are subtracted from data. The background
is defined from the counting rate at times preceding the fast
front of the incident radiation pulses. A contribution from the
radiation field with recoil is estimated as follows. Theoretical
prediction of its contribution to the radiation probability
is pnr (t) = (1 − fs)p(t). Then, the total probability of the
radiation at the output of the resonant absorber is ptot(t) =
pnr (t) + fsp(l,t), where p(l,t) = |a(l,t)|2 is the contribution
from resonant photons without recoil. The convolution of the
function ptot(t) with the Gaussian distribution, responsible
for the time resolution of our setup, is proportional to the
time dependence of the number of counts N (t), measured
in the experiment. Fitting the experimental time spectra to
the theoretical time dependence of N (t) with and without
absorber, in resonance, and far from resonance, we obtained
fs = 0.75(9), which is consistent with the value fs reported
in previous publications (see, for example, Ref. [36]). These
measurements were done without voltage steps. Photons,
emitted with recoil, pass through the absorber with no change
since they are not resonant for 57Fe nuclei. Therefore these
photons carry no information about the absorber and their
contribution to the detector counts can be safely removed from
the data.

VI. DISCUSSION

The experimental results were fitted with a full theoretical
expression based on Eqs. (34) and (35). The shape of the
phase function ϕ(t) was obtained by computer fitting the
experimental data. Actually we derived a function describing
the charge collection on each conducting plate of the PVDF
transducer, which form a capacitor. We calculated a voltage,
which is created across the plates of the capacitor by the voltage
step applied from the external source to the transducer. We
assumed that the mechanical displacement of the transducer
faces with respect to each other due to the piezo effect is
proportional to the voltage across the capacitor. However, such
a simplified picture does not take into account the mechanical
properties of the transducer. Each mechanical stress of the
transducer creates a current producing a voltage; i.e., the
so-called charge generator is to be present in the model of
the piezo transducer on the top of the capacitor, formed
by the conducting plates. Therefore, in our imperfect model of
the phase function the fitting parameters were not relevant to
the duration of the voltage step of the source, to the capacitance
of the transducer, and to the internal resistance of the voltage
source. The shape of the fitting function ϕ(t) is shown in
Fig. 10. Its maximum value δϕ varies between 14 and 10
radians for the experimental plots in Figs. 9(a)–9(d) and 9(f),
where the voltage step was +10 V, and it equals −4.5 radians
for Fig. 9(e), where the voltage step was −4 V. While it
describes quite well the main part of the transient pulse, it
fails to describe oscillations obviously seen in the tail of these
transients.

The time dependence of ϕ(t), shown in Fig. 10, explains
why the transient pulses are quite extended in our experiments.
We assume that mechanical displacement of the transducer
slows down due to the fact that a heavy weight of the absorber
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FIG. 10. Time dependence of phase ϕ(t) obtained from the fitting
of the theoretical model with experimental data. Maximum value of
ϕ(t) at t → ∞ is taken to be 10 radians for visualization.

affects strongly the mechanical properties of the light PVDF
transducer whose density is nearly 3–4 times smaller.

The plots (a)–(d) in Fig. 9 obviously show that the amplitude
of the pulse of the photon revival is larger for the nonresonant
excitation (
 = +1.3� and 
 = −1.4�) compared with that
for nearly resonant excitation (
 = −0.05�). With further
increase of the resonant detuning (
 = −1.93�) this ampli-
tude decreases. For large detuning (
 = −2.6�) destructive
interference is observed [see Fig. 9(e)].

The delayed-coincidence spectrum in Fig. 9(f) is measured
when the step voltage is applied almost two times earlier than
in Figs. 9(a)–9(e).

Thus, plots (a)–(e) qualitatively confirm our theoretical
analysis of the interference of three fields. In resonance
(
 = 0) the first maximum of the pulse takes place when
ϕ(t) = π , while the first minimum, if observed, takes place
when ϕ(t) = 2π . This allows us to control the position of the
absorber with an accuracy of the half wavelength of γ rays,
which is λ/2 = 43 pm.

VII. CONCLUSION

We studied theoretically and experimentally the influence of
the phase shift of a single-photon wave packet after its leading
edge on the transmission through an optically dense absorptive
medium. In exact resonance a photon revival is observed if
the phase shift is equal π . This revival appears due to the
constructive interference of the phase-shifted part of the field
with the coherently scattered radiation field coming from the
absorber excited at an earlier time. The source of the coherently
scattered field is a coherent ringing of resonant particles in
response to the incident radiation field. With no phase shift
the interference of the coherently scattered field with the input
radiation field is destructive, which is seen as acceleration of
the radiation damping at the output of a thick absorber. The
time-integrated probability of the photon at the output of the
absorber decreases due to this destructive interference and
incoherent scattering as well. If the absorption spectrum of
an individual resonant particle in the absorber and the energy
spectrum of the photon are both Lorenzian with the same
width, then the phase shift of the photon wave packet allows
retrieval of almost 50%; of the radiation at the output of a thick
absorber.

If the central frequency of the photon spectrum is detuned
from resonance with the absorber, the spectral components
close to the central frequency are less absorbed. They interact
adiabatically with the absorber forming a wave packet, which
propagates with appreciably reduced group velocity. The phase
of this adiabatic wave packet ϕa = αBlγ /2
 depends on the
product of the half of the optical thickness of the absorber
(T/2) and the ratio of the half-width of the absorption line
γ and resonant detuning 
. The scattered radiation does not
change instantly after the phase shift of the input radiation
field. If ϕa = ±π , then just after the phase shift three fields
interfere constructively producing a radiation burst. They are
the phase-shifted incident radiation field, the fast coherently
scattered radiation field, coming from the absorber excited at
an earlier time, and the slow component, developed before the
phase shift.

We expect that the control of a single-photon radiation field
with the help of a thick resonant absorber, moving abruptly at
a particular moment of time, could be promising for quantum
information and quantum computing. In the gamma domain
this method helps to detect extremely small displacements of
the absorber with an accuracy of 0.5 Å. Therefore we expect
that this technique could open new opportunities for calibration
of displacements of the tip of scanning tunneling microscopes.
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APPENDIX

A. Adiabatic approximation

An example of how the integral in Eq. (2) may be evaluated
in the adiabatic following approximation, Refs. [27–31], will
be presented here. This approximation describes that part of
the output radiation field, which propagates in the absorber
with slow group velocity. Below it will be shown that the
adiabatic method gives a nice approximation of the slow part
of the scattered field and provides analytical estimates of the
development rate of this field.

If the decay rate γ of the coherence of the nuclear excited
and ground states in the absorber coincides with the decay
rate of the probability amplitude of the source photon, we
can introduce a new variable ν1 = ν + iγ in the integral (2),
which corresponds to a shift of the integration axis in a complex
plane. This substitution results in an exponentially decaying
factor �(t) exp(−γ t) for a(l,t) in Eq. (2), which transforms to
the integral

a(l,t) = a(t)

2π

∫ +∞+iγ

−∞+iγ

i

ν1
exp

(
−iν1t − ib

ν1 + 


)
dν1. (A1)

In the adiabatic following approach the transmission function
α(ν) in Eq. (2) is approximated by its expansion in a power
series near ν = 0. It was shown in Ref. [29] that to describe
the propagation of the adiabatic part of the pulse for the
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off-resonance excitation one can take only three terms of
the expansion. For the transmission function in Eq. (A1) this
expansion is

ib

ν1 + 

≈ ib




(
1 − ν1



+ ν2

1


2
+ · · ·

)
, (A2)

whose terms have the following physical meaning. The first
term, ib/
, describes the total phase shift of the field at the
output of the absorber. The second term, −ibν1/


2, gives a
time delay of the pulse, td = b/
2, at the output caused by the
reduction of its group velocity to the value

Vg = c

1 + αBγ c

2
2

. (A3)

The third term of the expansion (A2) describes the group
velocity (delay) dispersion, Ref. [29].

To calculate the integral in Eq. (A1) with the approximated
transmission function (A2) we calculate first the integral

Rs(t) = 1

2π

∫ +∞+iγ

−∞+iγ

exp

[
−iν1(t − td )−i

b



−i

b


3
ν2

1

]
dν1,

(A4)

which is

Rs(t) =
√


3

4πb
exp

[
i

3

4b
(t − td )2 − i

b



− i

π

4

]
. (A5)

Then, with the help of the convolution theorem we find

aapr (l,t) = a(t)
∫ +∞

−∞
Rs(t − τ + td )�(τ − td )dτ. (A6)

Integration gives

aapr (l,t) = a(t)

2
e−ib/
{1 + (1 − i)[C(
br (t − td ))

+ iS(
br (t − td ))]}, (A7)

where C(x) and S(x) are Fresnel integrals, Ref. [33], and

br =

√

3/2πb is a parameter, which describes the pulse

broadening in time due to the group velocity dispersion.
The probability p(l,t), calculated with the help of the

approximation, Eq. (A7), is compared in Figs. 11 and 12
with that which is calculated with the help of the exact
expression (10), for different values of the detuning 
 and
b. The adiabatic approximation describes quite well the time
evolution of the photon probability for large t . An initial fast
oscillatory decay of the photon probability is not described by
this approximation. We conclude that this approximation can
be used for the estimation of the development rate of the slow
part of the radiation field developed in the absorber.

According to the adiabatic approximation the front of the
photon wave packet experiences the time delay td = b/
2

due to the reduced group velocity. The delay time td rises with
increase of the absorber thickness, which is proportional to
b. With increase of the absolute value of the detuning 
 the
delay time td shortens. The front of the photon wave packet
also experiences a time broadening due to the group velocity
(delay) dispersion. The time broadening tbr is quantified
by a parameter 1/
br =

√
2πb/
3. Thus, a time when the

probability of the output photon reaches its input value, i.e.,
when the slow part of the photon wave packet is formed, can
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FIG. 11. Time dependence of the detection probability of the
output photon, which is calculated with the help of exact value for the
probability amplitude, given in Eq. (10) (thick solid line). Dotted line
shows the result of the adiabatic approximation, given in Eq. (A7).
Thin solid line shows exponential decay of the probability of the input
photon for comparison. The value of the resonant detuning 
 is given
in each plot and b = 3�. The vertical scale is logarithmic.

be estimated as td + tbr . For the numerical examples, given in
Figs. 11 and 12, this estimate coincides quite well with time
when |aapr (l,t)|2 reaches the value of |a(t)|2, shown by a thin
solid line. In Fig. 11 this time is 24.3 (a), 7.3 (b), and 2.3 (c) in
units 1/�. In Fig. 12 this time is 41.4 (a), 12.1 (b), and 3.7 (c)
in units 1/�.

Concluding this subsection we compare the time develop-
ment of the absolute values of the effective amplitude of the
full scattered field fsc(t), of the fast component fsc1(t), and
of the slow component fsc2(t). Their time dependencies are
shown in Fig. 13 for b = 3� and 
 = � when these fields are
almost in phase for large t since b/
 ≈ π . It is clearly seen
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FIG. 12. The same plots as in Fig. 11 for b = 6�.

that the fast component develops very fast compared with the
slow component, which reaches its maximum value with an
appreciable delay.

B. Frequency domain arguments

To explain the difference in the development rates of the
fast af s(t) and slow asl(t) components of the scattered field
we address the arguments of the concept that considers the
absorber as a frequency filter, Refs. [27,30]. First, we express
the field as a sum of resonant ar (t) and nonresonant anr (t)
components, i.e.,

a(t) = ar (t) + anr (t), (A8)

where ar (t) = �(t) exp(−γ t − iωat) and ar (t) =
�(t) exp(−γ t)[exp(−iωst) − exp(−iωat)]. The amplitude
ar0(t) = �(t) exp(−γ t + i
t) of the field ar (t) has
a sharply rising leading edge, while the amplitude
anr0(t) = �(t) exp(−γ t)[1 − exp(i
t)] of the field anr (t)
rises smoothly with the rate 
. Therefore, the former acquires

0 5 10 15 20 
0 

0.5 
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| fsc(t)| 

| fsc2(t)| 

Γt 

| fsc1(t)| 

FIG. 13. Time dependence of the absolute value of the effective
amplitude of the full scattered field fsc(t) (dotted line), of the fast
component fsc1(t) (solid line), and of the slow component fsc2(t)
(dash-dotted line). The parameters are b = 3� and 
 = 1�.

large-amplitude transients at the output of a thick absorber,
and the latter develops smoothly if b > |
|.

To show this, we calculate the Fourier transform of the
components ar0(t) and anr0(t), which are

Ar0(ν) = i

ν + 
 + iγ
, (A9)

Anr0(ν) = i


(ν + iγ )(ν + 
 + iγ )
, (A10)

respectively. The integral in Eq. (2) for the component Ar0(ν),
describing the transmission of the resonant component through
the absorber, is easily calculated. It is

ar0(l,t) = �(t)e−γ t+i
tJ0(2
√

bt), (A11)

which coincides with [1 + fsc1(t)]a0(t).
For the nonresonant component Anr0(ν) this integral can

be calculated as follows. Since Anr0(ν) is a product of Ar0(ν)
and 
/(ν + iγ ), then according to the convolution theorem
we have

anr0(l,t) = −i
�(t)
∫ t

0
e−γ (t−τ )ar0(l,τ )dτ. (A12)

Here we take into account that the original function of 
/(ν +
iγ ) is −i
�(t) exp(−γ t). Thus, the nonresonant component,
transmitted through the absorber, anr0(l,t), coincides with the
slow component of the scattered field, asl(t).

To explain the difference in the transmission of the
resonant and nonresonant components of the radiation field
we compare their spectra. The resonant component Ar0(ν)
has long wings decreasing as i/ν for large absolute values of
ν. The spectral wings of the nonresonant component Anr0(ν)
decrease much faster as i
/ν2. Therefore these components
are very differently filtered by the resonant absorber. By our
opinion this is the main feature making a crucial difference
in properties of the slow and fast components of the scattered
field.

As a proof of this statement we consider another decom-
position of the single-photon spectrum in two components,
proposed in Refs. [27,30]. We formally represent the Fourier

043820-13



R. N. SHAKHMURATOV, F. VAGIZOV, AND O. KOCHAROVSKAYA PHYSICAL REVIEW A 84, 043820 (2011)

−6 −4 −2 0 2 4 60

0.2

0.4

0.6

0.8

1

|a0s(t)| 

|a0s(l,t)| 

Γt 

(a) 

−6 −4 −2 0 2 4 60

0.2

0.4

0.6

0.8

1

|a0a(l,t)| 

Γt 

|a0a(t)| 

(b) 

FIG. 14. Time dependence of the absolute values of the am-
plitudes of the symmetric (a) and asymmetric (b) components of
the incident radiation field (dotted line). Their time dependence at
the output of the resonant absorber is shown by solid lines. The
parameters are b = 3� and 
 = 1�.

transform of the single-photon field Eq. (3) as A0(ν) =
A0s(ν) + A0a(ν), where

A0s(ν) = γ

ν2 + γ 2
, (A13)

A0a(ν) = iν

ν2 + γ 2
(A14)

are the symmetric and antisymmetric parts, respectively. The
first part is an even function whose wings decrease as γ /ν2.
The second part is an odd function whose wings drop as i/ν.
The time domain counterparts of these functions are

a0s(t) = 1
2 exp(−γ |t |), (A15)

a0a(t) =

⎧⎪⎨
⎪⎩

1
2 exp(−γ t) if t > 0,

0 if t = 0,

− 1
2 exp(γ t) if t < 0.

(A16)

The function a0s(t) has no discontinuity, except a discontinuity
in its slope. The function a0a(t) is a discontinuous function.
Therefore, the former should not acquire large-amplitude
transients at the output of a thick absorber, and the latter should
have them.

Calculating the integral in Eq. (7) for the components a0s(t)
and a0a(t) we obtain

a0s(l,t) =
{

1
2 [a0(l,t) − atr (l,t)] if t � 0,

1
2 exp

(
γ t − b

�−i


)
if t � 0,

(A17)
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FIG. 15. Comparison of time dependence of the absolute value
of the total amplitude of the output radiation field (dotted line) with
that of the asymmetric part (solid line). The parameters are the same
as in Fig. 14.

a0a(l,t) =
{

1
2 [a0(l,t) + atr (l,t)] if t > 0,

− 1
2 exp

(
γ t − b

�−i


)
if t < 0,

(A18)

where a0(l,t) = a(l,t) exp(iωst), a(l,t) is defined in Eq. (15),
and

atr (l,t) = �(t)

{
e−γ t+i
tJ0(2

√
bt) − eγ t

[
e−b/(�−i
)

− (� − i
)
∫ t

0
e(i
−�)τ J0(2

√
bτ )dτ

]}
. (A19)

The time dependence of the absolute values of the amplitudes
a0s(l,t) and a0a(l,t) for b = 3� and 
 = � is shown in Fig. 14.
These amplitudes are compared with the absolute values of
input amplitudes a0s(t) and a0a(t). It should be noted that since
input amplitudes differ only in sign for t < 0, their absolute
values are identical.

The plots in Fig. 14 clearly demonstrate that the symmetric
component is strongly absorbed. It delays in time and its shape
is smoothened and not too much corrupted. This component
does not show fast and strong transients. In contrast, the
asymmetric part shows strong transients. In Fig. 15 these
transients are compared with that of the absolute value of
the total field amplitude a0(l,t). The initial sharp rise of the
total field amplitude and its first stage of fast decay coincide
well with the transients of the absolute value of the amplitude
of the asymmetric part.

We assume that such a time dependence is defined by the far
wings of the spectrum of the asymmetric component. These
wings pass through the absorber, which acts as a stop-band
spectral filter rejecting the frequencies close to the resonance
but transmitting the far sidebands. Just the far wings define the
sharply rising leading edge of the field amplitude with no delay.

To give another argument of the role of the spectral
wings of the photon spectrum in the initial sharp rise of
the time dependence of the single-photon radiation field
amplitude, we remind the reader that if in the photon spectrum
A0 = i/(ν + iγ ) one sets γ → 0, then its time domain
counterpart a0(t) = �(t) exp(−γ t) will transform simply into
the step function �(t).
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