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Solitons supported by complex PT -symmetric Gaussian potentials

Sumei Hu,1,2 Xuekai Ma,1 Daquan Lu,1 Zhenjun Yang,1 Yizhou Zheng,1 and Wei Hu1,*

1Laboratory of Photonic Information Technology, South China Normal University, Guangzhou 510631, P.R. China
2Department of Physics, Guangdong University of Petrochemical Technology, Maoming 525000, P.R. China

(Received 5 July 2011; published 10 October 2011)

The existence and stability of fundamental, dipole, and tripole solitons in Kerr nonlinear media with parity-
time-symmetric Gaussian complex potentials are reported. Fundamental solitons are stable not only in deep
potentials but also in shallow potentials. Dipole and tripole solitons are stable only in deep potentials, and tripole
solitons are stable in deeper potentials than for dipole solitons. The stable regions of solitons increase with
increasing potential depth. The power of solitons increases with increasing propagation constant or decreasing
modulation depth of the potentials.
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I. INTRODUCTION

Quite recently much attention has been paid to light
propagation in parity-time-(PT -) symmetric optical media in
theory and experiment [1–6]. This interest was motivated by
various areas of physics, including quantum field theory and
mathematical physics [7–15]. Quantum mechanics requires
that the spectrum of every physical observable quantity is real,
thus it must be Hermitian. However, Bender et al. pointed
out that the non-Hermitian Hamiltonian with PT symmetry
can exhibit an entirely real spectrum [7]. Many authors have
discussed the definition of the PT -symmetric operator and
its properties. A Hamiltonian with a complex PT -symmetric
potential requires that the real part of the potential must be an
even function of position, whereas the imaginary part should
be odd. It was suggested that in optics the refractive index
modulation combined with gain and loss regions can play a
role in the complex PT -symmetric potential [16].

Spatial solitons have been studied since their first theo-
retical prediction [17]. Recently, researchers have focused on
composite multimode solitons. Many composite multimode
solitons are associated with dipole and tripole solitons.
In local Kerr-type media, fundamental solitons are stable,
whereas multimode solitons are unstable. Otherwise, multi-
mode solitons have been studied in nonlocal nonlinear media
theoretically and experimentally [18–20]. Many authors have
paid much attention to multimode solitons in optical lattices
too [21–23].

In this paper, we find that dipole and tripole solitons can ex-
ist and be stable in Kerr nonlinear media with PT -symmetric
Gaussian complex potentials. The stabilities of fundamental,
dipole, and tripole solitons are mainly determined by their
corresponding linear modes for low propagation constants or
deep potentials. Fundamental solitons are stable not only in
deep potentials but also in shallow potentials. But dipole and
tripole solitons are only stable in deep potentials, and tripole
solitons are stable in potentials deeper than that for dipole
solitons. The stable ranges of solitons increase with increasing
potential depth.

*huwei@scnu.edu.cn

II. MODEL

We consider the (1 + 1)-dimensional evolution equation of
beam propagation along the longitudinal direction z in Kerr-
nonlinear media with complex PT potentials,

i
∂U

∂z
+ ∂2U

∂x2
+ T [V (x) + iW (x)]U + σ |U |2U = 0. (1)

Here U is the complex envelop of slowly varying fields, x is
the transverse coordinate, and z is the propagation distance.
V (x) and W (x) are the real and imaginary parts of the
complex potentials, respectively, and T is the modulation
depth. σ = 1 represents the self-focusing propagation, and
σ = 0 represents the linear situation. ComplexPT -symmetric
Gaussian potentials are assumed as

V (x) = e−x2
, W (x) = W0xe−x2

, (2)

where W0 is the strength of the imaginary part. For complex
PT -symmetric Gaussian potentials, all eigenvalues are real
when the real part of the potentials is stronger than the
imaginary, i.e., W0 < 1.0. Otherwise the eigenvalues are mixed
for W0 � 1.0 [24].

We search for stationary linear modes and soliton solutions
to Eq. (1) in the form U = f (x) exp(iλz), where λ is the
propagation constant, and f (x) is the complex function
satisfying the equation

λf = ∂2f

∂x2
+ T [V (x) + iW (x)]f + σ |f |2f. (3)

We numerically solve Eq. (3) for different parameters by
the modified square-operator method [25]. To examine the
stability of solitons in PT Gaussian potentials, we search for
perturbed solutions to Eq. (1) in the form

U = eiλz{f (x) + [g(x) − h(x)]eδz + [g(x) + h(x)]∗eδ∗z}.
where g(x) � f (x) and h(x) � f (x) are the perturbations,
and ∗ means complex conjugation. Substituting perturbed
U (x,z) into Eq. (1) and linearizing for g(x) and h(x), the
eigenvalue equations about g(x) and h(x) can be derived:

δg = −i

[
d2h

dx2
− λh + T V h − iT Wg + 2|f |2h

− 1

2
(f 2 − f ∗2)g − 1

2
(f 2 + f ∗2)h

]
,
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FIG. 1. (Color online) Profiles of fundamental solitons with W0 =
0.1 at (a) T = 1, λ = 0.4; (b) T = 1, λ = 2.6; and (c) T = 4, λ = 2.6.
(d)–(f) The linear modes corresponding to (a)–(c), respectively. Solid
(blue) and dotted (red) lines represent the real and imaginary parts of
fields, and imaginary parts are multiplied by 10.

δh = −i

[
d2g

dx2
− λg + T Vg − iT Wh + 2|f |2g

+ 1

2
(f 2 − f ∗2)h + 1

2
(f 2 + f ∗2)g

]
. (4)

The growth rate Re(δ) can be obtained numerically by the
original-operator iteration method [26]. If Re(δ) > 0, solitons
are unstable. Otherwise, they are stable.

III. FUNDAMENTAL SOLITONS

We first investigate fundamental solitons in PT -symmetric
Gaussian potentials with W0 = 0.1. Figures 1(a)–1(c) show
fields of fundamental solitons with different propagation
constants and potential depths, which correspond to the cases
represented by circles in Fig. 2(a). We can see that all the
real parts of fields are even symmetric, whereas the imaginary
parts are odd symmetric. With increasing propagation constant
λ, the beam width narrows and the beam intensity increases.
With increasing potential depth, the beam intensity decreases
but the beam width changes little.

Figures 1(d)–1(f) are the field distributions of linear
modes corresponding to Figs. 1(a)–1(c), respectively. The
field distributions of linear modes and fundamental solitons
are homologous for low propagation constants [see Figs. 1(a)
and 1(d)] or for deep potentials [Figs. 1(c) and 1(f)] but

FIG. 2. (a) Power P versus propagation constant λ with different
modulated depths T for fundamental solitons. Solid lines represent
stable range and dashed lines represent unstable range. (b) Power P

versus modulated depth T with different propagation constants λ for
fundamental solitons. (c) Perturbation growth rate versus propagation
constant λ with different T values. (d) Critical propagation constant
λc versus modulated depth T .

significantly different for large propagation constants and
shallow potentials [Figs. 1(b) and 1(e)]. This phenomenon can
be explained qualitatively by Eq. (1). The nonlinear waveguide
produced by the term |U |2U , along with the real part of thePT
potential [V (x)], confines the expansion of the beam induced

FIG. 3. (Color online) (a)–(c) Evolution of fundamental solitons
corresponding to Figs. 1(a)–1(c), respectively. (d)–(f) Evolution
of fundamental linear modes corresponding to Figs. 1(d)–1(f),
respectively.
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FIG. 4. (Color online) Profiles of fundamental solitons with W0 =
0.8 at (a) T = 1, λ = 0.4; (b) T = 1, λ = 2.6; and (c) T = 4, λ = 2.6.
(d)–(f) Linear modes corresponding to (a)-(-c), respectively. Solid
(blue) and dotted (red) lines represent real and imaginary parts of
fields.

by diffraction and, also, suppresses the transverse energy flow
induced by the imaginary part of the PT potential [W (x)].
Stationary linear modes or solitons are obtained when all these
effects are in balance. When the propagation constant is small,
the intensity of fundamental solitons and the term |U |2U
are small too [see Fig. 2(a)]. The influence of nonlinearity
in Eq. (1) is weak, so the field distributions of fundamental
solitons are similar to those of corresponding linear modes. The
field distributions of linear modes and fundamental solitons are
different when the nonlinear term is comparable with the term
V , i.e., for large propagation constants and shallow potentials
[Figs. 1(b) and 1(e)].

The power of solitons is defined as P = ∫ +∞
−∞ |f (x)|2dx.

Figure 2(a) shows the power of solitons versus the propagation
constant λ with different T values, and Fig. 2(b) shows the
power of solitons versus the potential depth T with different
λ values. We can see that the power of solitons increases
with increasing λ or decreasing T . Figure 2(c) shows the
perturbation growth rate versus the propagation constant λ

with different T values. One can see that the stable range of
fundamental solitons is λ < λc for a fixed T , where λc is a
critical propagation constant for soliton stability. Figure 2(d)
shows that λc is approximately proportional to the modulated
depth T . As T approaches 0, λc approaches 0 too, but the value
of the growth rate Re(δ) decreases entirely [see the curve of

FIG. 5. (Color online) (a)–(c) Evolution of fundamental solitons
corresponding to Figs. 4(a)–4(c), respectively. (d)–(f) Evolution
of fundamental linear modes corresponding to Figs. 4(d)–4(f),
respectively.

Re(δ) for T = 0.01 in Fig. 2(c)]. When T = 0, Re(δ) = 0
in the whole range, and solitons are always stable. This is
consistent with fundamental solitons in pure Kerr nonlinear
media always being stable.

To confirm the results of the linear stability analysis, we
simulate the soliton propagation based on Eq. (1) with the
input condition U (x,z = 0) = f (x)[1 + εη(x)] by the split-
step Fourier method, where η(x) is a random function with a
value of between 0 and 1. ε is a perturbation constant, which is
10% in our simulation. Figure 3 shows the evolution of beams
corresponding to those in Fig. 1, which is in agreement with
the stability analysis in Fig. 2. When fundamental solitons
are stable, the corresponding linear modes propagate with
no distortion [Figs. 3(d) and 3(f)]. This means that the
linear modes absorb the energy of the perturbation noise
and maintain its mode profiles. When fundamental solitons
are unstable, the corresponding linear modes propagate with
random distortions [Fig. 3(e)]. This indicates that the linear
modes and perturbation propagate independently without
energy exchange. According to Figs. 1 and 3, we can see
that the stability of fundamental solitons are mainly decided
by the complex potentials for low propagation constants or
deep potentials.

We also study fundamental solitons in the PT -symmetric
Gaussian potentials with W0 = 0.8. Figures 4(a)–4(c) show
the field distributions of fundamental solitons with different
propagation constants and potential depths for W0 = 0.8,
whereas Figs. 4(d)–4(f) are the linear modes corresponding to
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FIG. 6. (Color online) Profiles of dipole solitons with W0 = 0.1
at (a) T = 4, λ = 0.3; (b) T = 4, λ = 0.8; and (c) T = 5, λ = 0.8.
(d)–(f) Linear modes corresponding to (a)–(c), respectively. Solid
(blue) and dotted (red) lines represent real and imaginary parts of
fields, and imaginary parts are multiplied by 2.

them. We can see that the properties of fundamental solitons
for different W0 are very similar, except the imaginary parts of
fields for W0 = 0.8 are larger than those for W0 = 0.1. Figure 5

FIG. 7. (a) Power P versus propagation constant λ with different
modulated depths T for dipole solitons; solid lines represent stable
range and dashed lines represent unstable range. (b) Power P versus
modulated depth T with different propagation constants λ for dipole
solitons. (c) Perturbation growth rate versus propagation constant λ

with different T values. (d) Critical propagation constant λc versus
modulated depth T .

FIG. 8. (Color online) (a)–(c) Evolution of dipole solitons corre-
sponding to Figs. 6(a)–6(c), respectively. (d)–(f) Evolution of dipole
linear modes corresponding to Figs. 6(d)–6(f), respectively.

shows the beam evolutions corresponding to those in Fig. 4.
We can see that fundamental solitons can propagate stably,
although W0 is close to the point of PT breaking [Figs. 5(a)
and 5(c)].

IV. DIPOLE AND TRIPOLE SOLITONS

We now investigate dipole solitons in PT -symmetric
Gaussian potentials with W0 = 0.1. Figures 6(a)–6(c) show
the field distributions of dipole solitons, which correspond to
the cases represented by circles in Fig. 7(a). Figures 6(d)–6(f)
are the linear modes corresponding to Figs. 6(a)–6(c). We can
see that all the real parts of the fields are odd symmetrical and
the imaginary parts are even symmetrical, which is converse to
the situation for fundamental solitons. It is noteworthy that all
of the field distributions of linear modes and dipole solitons are
similar in Fig. 6. Due to the deep potentials and small propa-
gation constants, the field distributions of solitons are decided
mainly by PT -symmetric Gaussian complex potentials.

The changes in the power versus λ and T for dipole solitons
are shown in Figs. 7(a) and 7(b), respectively. The power of
solitons increases with increasing λ or decreasing T , which is
similar to the situation for fundamental solitons. Figure 7(c)
shows the perturbation growth rate versus the propagation
constant λ for different T values. Figure 7(d) shows the critical
propagation constant λc versus the modulated depth T . We can
see that dipole solitons exist stably only in deep potentials,
i.e., T � 3, and the stable range increases with increasing
modulation depth T .

043818-4



SOLITONS SUPPORTED BY COMPLEX PT - . . . PHYSICAL REVIEW A 84, 043818 (2011)

-20 -10 0 10 20
-0.6

-0.3

0.0

0.3

0.6

-20 -10 0 10 20
-1.0

-0.5

0.0

0.5

1.0

-20 -10 0 10 20
-0.6

-0.3

0.0

0.3

0.6

-20 -10 0 10 20
-0.6

-0.3

0.0

0.3

0.6

-20 -10 0 10 20
-1.0

-0.5

0.0

0.5

1.0

-20 -10 0 10 20
-0.6

-0.3

0.0

0.3

0.6

f
x

(d)

f

x

(e)
f

x

(f)

f

x

(a)

f

x

(b)

f

x

(c)

FIG. 9. (Color online) Profiles of tripole solitons with W0 = 0.1 at
(a) T = 10, λ = 0.3; (b) T = 10, λ = 0.6; and (c) T = 12, λ = 0.6.
(d)–(f) Linear modes corresponding to (a)–(c), respectively. Solid
(blue) and dotted (red) lines represent real and imaginary parts of
fields.

Dipole solitons are always unstable for T = 0, which cor-
responds to pure Kerr nonlinear propagation. A dipole soliton
can be considered two solitons with a π phase difference, and
a repulsive force exists between them. However, we find that
the dipole solitons are stable in deep PT -symmetric Gaussian
potentials. The reason is that the inherent repulsive interaction
between solitons can be effectively overcome by the real parts
of the complex PT -symmetric potentials. This is the reason
that dipole solitons are stable only in deep potentials.

Figure 8 shows the beam evolutions corresponding to those
in Fig. 6, which is agreement with the stability analysis
in Fig. 7. The relations of the propagation between dipole
solitons and the corresponding linear modes are similar to
those between fundamental solitons and their linear modes.

Finally, we study tripole solitons in PT -invariant Gaussian
potentials with W0 = 0.1. Figure 9 shows the field distributions
of tripole solitons and their corresponding linear modes, which
correspond to the cases represented by circls in Fig. 10(a). We
can see that all the real parts of the fields are even symmetrical
and the imaginary parts are odd symmetrical, which is similar
to the fundamental solitons. Similarly to dipole solitons,
tripole solitons exist stably in deeper potentials, i.e., T � 8
[Fig. 10(d)], and all of the field distributions of linear modes
and dipole solitons are similar.

The power of solitons increases with increasing λ and
decreasing T , which is similar to the power of fundamental and

FIG. 10. (a) Power P versus propagation constant λ with different
modulated depths T for tripole solitons. Solid lines represent stable
range and dashed lines represent unstable range. (b) Power P versus
modulated depth T with different propagation constants λ for tripole
solitons. (c) Perturbation growth rate versus propagation constant λ

with different T values. (d) Critical propagation constant λc versus
modulated depth T .

dipole solitons, as shown in Figs. 10(a) and 10(b). Figure 10(c)
shows the perturbation growth rate versus propagation constant
and Fig. 10(d) shows the critical propagation constant λc versus
the modulated depth. We can see that tripole solitons are stable
when T � 8, which is larger than the value for dipole solitons.
The reason is that a tripole soliton can be considered two pairs
of out-of-phase solitons, and the repulsive force between them

FIG. 11. (Color online) (a–c) Evolution of tripole solitons corre-
sponding to Figs. 9(a)–9(c), respectively. (d–f) Evolution of tripole
linear modes corresponding to Figs. 9(d)–9(f), respectively.
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is stronger than that for dipole solitons. Therefore, it needs a
larger modulation depth T to support tripole solitons than that
for dipole solitons.

Figure 11 shows the beam evolutions corresponding to
those in Fig. 9, which are in agreement with the stability
analysis in Fig. 10.

V. CONCLUSION

In conclusion, we have reported the existence and stability
of fundamental, dipole, and tripole solitons supported by
Gaussian PT -symmetric complex potentials. For monopole
fundamental solitons, the waveguide effects from both the
nonlinearity and the real part of PT potentials are in balance
with the diffraction and the energy flows from the imaginary
part of PT potentials. Thus fundamental solitons are stable
not only in deep potentials but also in shallow potentials. For
multipole solitons, a repulsive force exists between their peaks,
which needs a large modulation depth for counterbalance.
Therefore multipole solitons exist for a large modulation depth
and relatively small propagation constant. Our results may be
extended to other PT -symmetric optical system, in which
multipole solitons can exist.

Our model [Eqs. (1) and (2)] is given in dimensionless
form, where x and z are scaled to the potential width a and

the diffraction length L = 2k0n0a
2, respectively. Here k0 is the

wave number in vacuum and n0 is the refraction index. a is
defined as the half-width at the 1/e maximum of the real part of
PT potentials [see Eq. (2) ], so the full width at half-maximum
for V (x) is about 1.665a and the extreme of W (x) is located at
±0.707a. The modulation depth T is scaled to the parameter
1/(2k2

0n0a
2). Thus, for a typical waveguide a = 10 μm with

the substrate refraction index n0 = 3, the wavelength λ0 =
1.0 μm, and the diffraction length L = 3.77 mm. Then T = 1
means that the maximum variation of the refractive index is
4.22 × 10−5, and W = 0.1 means that the maximum gain/loss
coefficient is about 0.53 cm−1. For these physical parameters,
it is feasible to realize multipole solitons in synthetic PT -
symmetric systems. We hope that the various types of solitons
may provide alternative methods in potential applications of
synthetic PT -symmetric systems.
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