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Regimes of strong light-matter coupling under incoherent excitation
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We study a two-level system (atom, superconducting qubit, or quantum dot) strongly coupled to a single
photonic mode of a cavity, in the presence of incoherent pumping and including detuning and dephasing.
This system displays a striking quantum-to-classical transition. On the grounds of several approximations that
reproduce to various degrees exact results obtained numerically, we separate five regimes of operations, that we
term “linear,” “quantum,” “lasing,” “quenching,” and “thermal.” In the fully quantized picture, the lasing regime
arises as a condensation of dressed states and manifests itself as a Mollow triplet structure in the direct emitter
photoluminescence spectrum, which embeds fundamental features of the full-field quantization description of
light-matter interaction.
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I. INTRODUCTION

The strong-coupling regime is the ultimate limit of light-
matter interaction, at the level of a single quantum or a few
quanta of excitations. This gave rise to the field of cavity
quantum electrodynamics (cavity QED) [1], which in the
recent years has blossomed in a large variety of physical
systems, from atoms [2] to semiconductors [3] passing by
superconducting circuits [4] and nanomechanical oscillators
[5]. A fascinating aspect of this fundamental problem is how it
bridges the gap between quantum and classical coherence. In
the former case, one has quantum superpositions of light and
matter, entangling photons with the ground and excited states
of the emitter. In the latter case, one has a classical photon field,
a continuous function of a continuous variable, fully specified
in all its attributes. The passage from one to the other can be
tracked in the one-atom lasing transition. The one-atom laser
is a concept first proposed and theoretically studied by Mu
and Savage [6], with the aim of achieving lower thresholds for
lasing. They encouraged experimentalists to bring the number
of atoms N in a conventional laser to unity. In a very high
quality factor cavity, the emitter reaches the strong-coupling
regime at the single excitation level. They showed that in
this regime, a single incoherently excited emitter (a two-level
system in the simplest case) can constitute the whole gain
medium and populate singlehandedly the cavity with a very
large number of photons. If the spontaneous emission rate of
the atom into other modes than the cavity is small, the growth
in the population of photons exhibits no threshold as a function
of the pumping rate [7] and develops a classical (Poissonian)
field statistics, thanks to the efficient periodic exchange of
excitations with the atom.

On the theoretical side, the single-atom laser has been
extensively studied [6,8–25], mostly solving its steady state
numerically but also through analytical techniques, such as the
continued fraction expansion [25] or phase-space representa-
tion [12,13,24,25], and under different approximations such as
the few-photon [9,15,21,24,25] or semiclassical [6,11,16,18,
22,25] dynamics. On the other hand, the spectral properties,
that is, atom and cavity photoluminescence emission spectra,
have been studied only numerically [6,8,9,11,14,17,18,23],

although some approximations for the linewidth of the cavity
spectrum, that converges to a single peak and exhibits the
standard line-narrowing, provided useful analytical expres-
sions [11,18,24]. Given that the cavity field is coherent in
the lasing regime, the back-action of the field on the emitter
leads to the formation of a Mollow triplet in its spontaneous
emission spectrum [9,14,17], with similar properties to that
theoretically predicted by Mollow for an atom under resonant
laser excitation [26]. This structure is of a great fundamental
interest as it represents a pinnacle of nonlinear quantum optics.

On the experimental side, the strong-coupling regime is
now firmly established at the single and few photon level with
atoms [27] as well as with artificial atoms, superconducting
qubits [28,29], or semiconductor quantum dots [30–32]. The
one-atom laser as described above has been realized in all
these systems [33–35]. The Mollow triplet under incoherent
pumping has not yet been reported in any experiment, one
reason being that they typically focus on the cavity field
lasing properties. Only the original configuration proposed by
Mollow, under resonant coherent excitation, has been reported,
also in all the systems above, namely with a single atom [36], a
molecule [37], a superconducting qubit [38,39], and a quantum
dot [40–43].

In this text, we consider in detail the quantum-to-classical
transition that leads to lasing in strong coupling, starting from
the fully quantized description of Jaynes and Cummings [44].
We show that quantization breaks down as coherence is formed
and a classical description becomes more appropriate. We
provide several limiting cases that describe the system in its
various regimes of operation. Varying degrees of agreement
are afforded depending on the complexity of the approx-
imation. We provide compact analytical approximations in
the simplest cases and a straightforward numerical procedure
that leads to an excellent quantitative agreement. We include
pure dephasing, important in solid state systems [45,46],
and arbitrary detuning between the modes. We focus more
particularly on the lasing regime at resonance, where we show
that the emergence of a Mollow triplet manifests classical
nonlinearities of strong light-matter coupling in cavity QED.
As a whole, we show that the lasing transition is a rich and
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complex one and we hope to give a rather comprehensive view
of its various limits.

The remaining of this text is organized as follows. As
the most striking and characteristic manifestation of lasing in
strong coupling is the Mollow triplet formed under incoherent
pumping, we first revisit its coherent excitation counterpart;
this is done in Sec. II, including pure dephasing and detuning.
Starting from Sec. III, we turn to the case of incoherent
excitation exclusively and obtain analytically the steady state,
mode populations, and photon counting statistics (III A), the
system full density matrix (III B), and the two-time correlators
needed to compute the power (or luminescence) spectra (III C).
We derive the expressions for the lasing properties by applying
the semiclassical approximation that we compare to other
approximations that describe the transition into and out of
lasing. In Sec. IV, we put all these elements together and derive
the spectra of emission for both the cavity and the emitter. We
analyze the resonances of the system (IV B) as well as the
elastic scattering component (IV C). We apply again the semi-
classical approximation to simplify the emitter spectra into a
compact closed-form expression for the Mollow triplet under
incoherent pumping (IV D). This expression is used to explore
the parameters where the Mollow triplet can be observed
experimentally. In Sec. V, we summarize our main findings.

II. MOLLOW TRIPLET UNDER COHERENT EXCITATION

The analysis of light scattering by a two-level system
(representing an atomic transition) was first given by Mollow
[26], who reported the antibunching of the scattered light,
as well as the spectral structure now known as the Mollow
triplet [47]. It results in the case where a strong-beam of light,
with frequency ωL, impinges on the emitter which has a natural
frequency ωσ (h̄ = 1). The Hamiltonian reads

HL(t) = ωσσ †σ + �L(eiωLt σ + e−iωLt σ †), (1)

where σ is the pseudo–spin operator for the two-level system
and �L is its coupling strength with the optical laser field. Note
that the latter, described by a complex (c-number) wave E(t) ≈
�L(eiωLt + e−iωLt ), is thus entirely classical. The explicit (and
fast) time dependence in HL can be removed by going into a
frame rotating with the laser (� = ωL − ωσ ):

HL = −�σ †σ + �L(σ + σ †). (2)

The spontaneous decay and the pure dephasing suffered by the
emitter can be described by two Lindblad terms in the master
equation:

∂tρ = i[ρ,HL] +
[
γσ

2
Lσ + γφ

2
Lσ †σ

]
ρ, (3)

where Lσ (ρ) = (2σρσ † − σ †σρ − ρσ †σ ). The steady state of
this simple system (∂tρ = 0) can be solved analytically (see
Appendix A) in terms of the emitter population and coherence
[26,47]:

nσ ≡ 〈σ †σ 〉 =
(
�eff

L

)2
2
(
�eff

L

)2 + γσ

2
γσ +γφ

2

, (4a)

〈σ †〉 = i
γσ /2

�L
nσ

(
1 − i

2�

γσ + γφ

)
. (4b)

The effective coupling to the laser (intensity that effectively
excites the emitter) is

�eff
L ≡ �L√

1 + ( 2�
γσ +γφ

)2 . (5)

At resonance, �eff
L → �L and 〈σ †〉 is pure imaginary. The

effective laser intensity �eff
L is reduced with detuning by an

amount that depends on the overlap in frequency between
the laser and the emitter line shapes. As the laser has no
linewidth, the total emitter width γσ + γφ determines the
overlap. Therefore pure dephasing compensates for detuning
by increasing this overlap.

The normalized spectra of emission reads in the steady state
(that we set as t = 0)

Sσ (ω) = 1

πnσ

Re
∫ ∞

0
〈σ †(0)σ (τ )〉eiωτ dτ. (6)

Any two-time correlators can always be decomposed as a
sum of complex damped exponentials [48]:

〈σ †(0)σ (τ )〉 = nσ

∑
p

(Lp + iKp)e−iωpτ e−(γp/2)τ , (7)

where all the parameters, weights Lp, Kp, frequencies ωp,
and effective decay rates γp, are real. They can be obtained by
means of the quantum regression formula (see Appendix A).
Equation (6) leads to the spectrum,

Sσ (ω) = 1

π

∑
p

Lp
γp

2 − Kp(ω − ωp)( γp

2

)2 + (ω − ωp)2
. (8)

In the case of Eqs. (1)–(3), the spectrum has four components,
that we label p = coh, 0, +, −. The elastic scattering com-
ponent (p = coh) is a delta peak δ(ω) at the laser frequency
(ωcoh = γcoh = Kcoh = 0) with weight:

Lcoh = |〈σ †〉|2
nσ

= γ 2
σ

8
(
�eff

L

)2 + γσ (γσ + γφ)
. (9)

The inelastic scattering part is a triplet with a central peak
(p = 0) and two sidebands p = ± that carry the information
about the light-matter interaction. The physical origin of these
two peaks is in the transitions between the dressed states
of the Jaynes-Cummings Hamiltonian at high number of
excitations [49], as shown in Fig. 1(a). The two transitions
between different types of dressed states become degenerate
and form the central peak (0), while transitions between the
same type of dressed states give rise to the sidebands. The full
expression of the spectrum out of resonance is too lengthy to
be given here. The resonant case formula is shorter. It reads

L0 + iK0 = 1

2
, (10a)

ω0 = 0, γ0 = γσ + γφ, (10b)

L± + iK±

=
8�2

L
γσ (γσ +γφ )

[
1 ± 5γσ −γφ

4RL

]− γσ −γφ

γσ +γφ

[
1 ± i

γσ −γφ

4RL

]
4
(

1 + 8�2
L

γσ (γσ +γφ )

) ,

(10c)

ω± = ±Re (RL), γ± = 3γσ + γφ

2
± 2Im (RL) (10d)

043816-2



REGIMES OF STRONG LIGHT-MATTER COUPLING UNDER . . . PHYSICAL REVIEW A 84, 043816 (2011)

0 7 14 0 7 14 0 7 14

FIG. 1. (Color online) (a) Origin of the peaks in the Mollow
triplet: The three different frequencies (p = 0,±) are found in the
four possible transitions between two Jaynes-Cummings rungs at high
intensities. Below, different Mollow triplets when varying detuning
[(b), (d)] or dephasing (c), with �L = 1.5γσ . The symmetry of the
triplet is broken only under the combined action of detuning and
dephasing.

where we have defined the (half) Mollow splitting:

RL =
√

(2�L)2 −
(

γσ − γφ

4

)2

. (11)

Strong coupling, where the character of the dynamics of
the two-time correlator is oscillating rather than damped, is
defined by the appearance of this splitting [Re (RL) �= 0];
that is,

2�L > |γσ − γφ|/4. (12)

We see from Eqs. (10b) and (10d) that, beyond the expected
broadening of the lines, dephasing also shifts the two satellite
peaks. In general, this shift brings the side peaks closer
to each other, inducing the transition into weak coupling
when γφ > γσ + 8�L. However, surprisingly, the maximum
splitting, for a fixed γσ and �L, corresponds to a nonzero
dephasing, γφ = γσ . In fact, the splitting remains different
from zero, in the presence of dephasing, as long as γσ − 8�L <

γφ < γσ + 8�L. If the driving field is too weak to bring by
itself the system to strong coupling (�L < γσ/8), it can be
aided by increasing dephasing. However, higher dephasing
also blurs the spectral features. For the regimes of excitation
where dephasing induces strong coupling (0 < γσ − 8�L <

γφ � γσ ), the observed line shape always remains single
peaked.

The final expression for the Mollow triplet spectrum at
resonance in the presence of dephasing reads

Sσ (ω) = Lcohδ(ω) + 1

2π

γσ +γφ

2( γσ +γφ

2

)2 + ω2

+ 1

π

(
γσ�2

L − γσ − γφ

16

(
γ 2

σ + ω2
))/

(
γ 2

σ + ω2

16
[(γσ + γφ)2 + 4ω2]

+ [γσ (γσ + γφ) − 2ω2]�2
L + 4�4

L

)
. (13)

The δ scattering peak and the central peak in the first line
are neatly set apart from the two sidebands in the rest of the
expression. This decomposition is shown in Fig. 1(a).

The effect on the Mollow triplet of detuning the laser from
the emitter is shown in Fig. 1(b). It spreads the sidebands apart,
with asymptotes ωσ and ωσ + 2�, while the central peak,
pinned at the driving laser frequency ωL, gets suppressed. The
scattering peak, not shown, ultimately dominates the spectrum
over its incoherent part which fades away. In any case, the
line shape remains always symmetric with respect to the laser
frequency (central peak), a characteristic proper to coherent
excitation as we shall see later.

Out of resonance, pure dephasing has a strong qualitative
effect: It breaks the above symmetry, bringing the spectrum
toward the uncoupled case with only one Lorentzian peak at
ωσ with FWHM γσ + γφ . This is similar to the effect of a
broadband excitation [50–52] instead of the δ energy peak
that is usually considered [26,53]. Even a small dephasing
enhances considerably the emitter peak relative to the others,
as shown in Fig. 1(c). This asymmetry becomes larger the
weaker the effective laser drive, that is, for lower �L and
larger � and dephasing. One can quantify the visibility of this
asymmetry as the difference between the intensities of the two
side peaks:

V = |L+ − L−|
|L+| + |L−| . (14)

This is plotted in Fig. 2, where lighter (yellow) colors refer to
smaller degrees of symmetry (minimum when only one peak

2.0

1.5

1.0

0.5

0.0
0 1 2 3 4 5 6 7

FIG. 2. (Color online) Degree of asymmetry V of the Mollow
triplet under coherent excitation, as a function of detuning � and
pure dephasing γφ for �L = 1.5γσ . It is 0 (dark blue) when the side
peaks have the same intensity and 1 (bright yellow) when one of them
disappears completely.
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of the two sidebands survives). As a practical application, one
can measure the magnitude of pure dephasing as a function of
detuning from the degree of asymmetry.

III. ONE-ATOM LASER

In the cavity QED version of this physics, the system is
described by the Jaynes-Cummings Hamiltonian [54]:

H = ωaa
†a + ωσσ †σ + g(a†σ + aσ †), (15)

where also the light field is quantized, through the annihilation
operator a. The detuning is now � = ωa − ωσ and we consider
ωa = 0 as the reference energy. The Liouvillian, ∂tρ = Lρ, to
describe this system in a dissipative context with decay (γc),
incoherent pumping (Pc), and pure dephasing (γφ) has the
form [17]

LO = i[O,H ] +
∑

c=a,σ

γc

2
(2cOc† − c†cO − Oc†c) (16a)

+
∑

c=a,σ

Pc

2
(2c†Oc − cc†O − Occ†) (16b)

+γφ

2
(2σ †σOσ †σ − σ †σO − Oσ †σ ), (16c)

where ρ is the density matrix for the combined emitter/cavity
system. The effective broadenings of the uncoupled modes are
defined by 
a = γa − Pa and 
σ = γσ + Pσ .

A. One-time correlators: populations and statistics

The light field that was previously a classical laser field was
fully characterized by its intensity (|�L|2) and its frequency
(ωL). In the fully quantized description, correlations between
the fields should be taken into account, namely, in the steady
state,

Na[n] = 〈a†nan〉, Nσ [n] = 〈a†n−1
an−1σ †σ 〉, (17a)

Ñaσ [n] = 〈a†nan−1σ 〉 = Nr
aσ [n] + iNi

aσ [n], (17b)

with Na[n] and Nσ [n] real and iÑaσ [n] complex in general but
real at resonance, all others being zero. The main observables
that characterize the system are

na = Na[1], nσ = Nσ [1], and g(2) = Na[2]/n2
a. (18)

In the following, we provide exact implicit expressions for
the correlators (17), that allow an efficient numerical solution,
and derive approximate analytical expressions for different
regimes of excitation.

In the case without any direct cavity pumping, Pa = 0, the
field correlators admit a simple expression in terms of Na[n]
(the general equations are given in Appendix B):

Nσ [n] = Pσ Na[n − 1] − γaNa[n]


σ + γa(n − 1)
, (19a)

Ni
aσ [n] = γa

2g
Na[n], (19b)

Nr
aσ [n] = −�γaNa[n]/g


σ + γφ + γa(2n − 1)
. (19c)

This allows us to obtain a single equation for Na[n]:

0 = −
[

1

Ceff[n]
+ nγa


σ + (n − 1)γa

− 2Pσ


σ + nγa

+ 1

]
Na[n]

+ nPσ


σ + (n − 1)γa

Na[n − 1] − 2γa


σ + nγa

Na[n + 1],

(20)

where we have introduced, respectively, the effective cooper-
ativity, effective coupling, and total decoherence rate (in the
presence of detuning and pure dephasing):

Ceff[n] = 4(geff[n])2

γa
T[n]
, (21a)

geff[n] = g√
1 + (2�/
T[n])2

, (21b)


T[n] = 
σ + γφ + (2n − 1)γa. (21c)

Let us note that geff[n] = g for all n at resonance or when
decoherence is large as compared to the detuning. As in the
case of laser excitation, the effect of detuning is to effectively
diminish the coherent coupling, which magnitude is linked to
the spectral overlap between modes (represented by 
T). Here
too, the decoupling caused by detuning can be compensated
by increasing decoherence (decay or pure dephasing) since
in this case the spectral overlap between the cavity and the
emitter increases, bringing them effectively back to resonance.
Detuning and pure dephasing only appear in the cooperativity
parameter Ceff[n], as noted also by Auffèves et al. [21].
This situation is similar to the case of two coupled harmonic
modes [56].

We reduced the whole steady-state problem of the Jaynes-
Cummings with emitter pumping and decay to a single
equation (20), which is however a recurrence equation with
n-dependent coefficients, for which there is no general method
leading to an exact solution. The problem put in this form is
nevertheless quite tractable numerically and we shall in the
following present various limiting cases which will spell out
the physics of this problem.

Since Na[0] = 1 by definition, Eq. (20) can be easily
iterated numerically to provide Na[n] for all n as a function
only of the mean number of photons in the cavity, na . The
small n equations are the most important since they capture
the dominant few-photons correlations. The exact expressions
for nσ and g(2) in terms of na are, in any case, simple enough:

nσ = Pσ − γana


σ

, (22a)

g(2) = 
σ + γa

2γana

×
(

Pσ

na
σ

+ 2Pσ


σ + γa

− 
σ + γφ + γa

κσ

− γa + 
σ


σ

)
.

(22b)

They are given in terms of a key parameter of the system, the
Purcell rate of transfer of population from emitter to the cavity
mode:

κσ = 4(geff[1])2

γa

. (23)
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FIG. 3. (Color online) Exact results computed numerically for (a) γana/g, (b) nσ , and (c) g(2), as a function of pumping for various systems,
with γa/g ∈ {0.1,0.22,0.46,1,2.15,4.64,10} from lighter to darker shades [top to bottom in (a)]. Other parameters are γσ = 0.00334g, from
Ref. [55], and Pa = γφ = � = 0. The different regimes of operation are designated in (a).

This parameter is large for good cavities, when cavity QED is
realized at its fullest: κσ 
 g.

One can obtain na self-consistently by truncating Na[n]
at a sufficiently high number of photons, nmax, and solving
numerically the resulting finite set of equations. This gives the
results plotted in Fig. 3, for (a) γana/g, (b) nσ , and (c) g(2). In
the best systems (γa,γσ � g), we distinguish five regions in
these plots, which we shall investigate in more details in the
remaining of this text:

(1) Linear quantum regime (or simply “linear”), where
Pσ � γσ , keeping the emitter essentially in its ground state,
very rarely excited.

(2) Nonlinear quantum regime (or simply “quantum”),
where Pσ ∼ γσ is enough to probe higher (n > 1) rungs of
the Jaynes-Cummings ladder, without climbing it too highly
so that few-photon effects remain the dominant ones.

(3) Lasing or nonlinear classical regime: When Pσ 
 γσ

and the emitter population ≈ 0.5, the cavity can accumulate a
great number of photons and the field becomes Poissonian.

(4) Self-quenching regime, when Pσ � κσ /2 starts to drive
the emitter to saturation, nσ > 1/2, reducing the number of
photons.

(5) Thermal regime or linear classical regime: When Pσ >

κσ , the emitter is always in its excited state, nσ → 1, and the
dephasing induced by the pump disrupts the coherent coupling,
so that the number of photons is very low again and the field
becomes thermal.

Similar classifications have been proposed, for instance
by Poddubny et al. [18]. In the following, we address
several types of approximations, that perform to varying
degrees of accuracy depending on the level of complexity
involved and the regime under consideration. Some of our
approximations recover known results [6,11,16,18,22,25];
however, this comparative analysis will give us, beyond good
approximated formulas, valuable insights into the underlying
physics. It will also allow us to determine the pumping ranges
that determine each regime. As the expression for nσ and g(2)

follow straightforwardly from that of na , we will not provide
their explicit form in most of the cases analyzed below.

1. Linear model approximations

In the linear regime, where the emitter is excited with
very low probability, it can be well approximated by another

harmonic oscillator [56]. This allows us to find a closed-form
analytical solution:

na ≈ κσ

κσ (
σ + γa) + 
σ (
σ + γa + γφ)
Pσ , (24a)

nσ ≈ κσ + γa + γσ + γφ

κσ (
σ + γa) + 
σ (
σ + γa + γφ)
Pσ . (24b)

Equivalent expressions for na and nσ are obtained in the
first-order truncation of a continuous fraction expansion of
these quantities, as recently shown by Gartner [25]. They
are also formally identical to those obtained by truncating
the Jaynes-Cummings model at the first rung of excitation
[21,55,57].1 The only difference is in the effective broadening

σ , that appears with a − sign in the case of coupled
bosons, 
σ → γσ − Pσ [56], and a + sign in the truncated
Jaynes-Cummings model, 
σ → γσ + Pσ . At Pσ � γσ , the
sign becomes irrelevant with 
σ ≈ γσ and the population
grows linearly with pumping, na ≈ C1Pσ , with the slope

C1 = κσ

κσ (γσ + γa) + γσ (γσ + γa + γφ)
. (25)

This agrees with the numerical results for Pσ � γσ as shown
in Fig. 4(a). In the case where γσ = 0, we simply have na ≈
Pσ /γa . Interestingly, the two models also provide the right
formula in the high-pumping regime where the number of
photons is low again,

lim
Pσ →∞

na = κσ

Pσ

, (26)

but the emitter is completely saturated.
The bosonic populations diverge at two values of pumping

(where the denominators vanish):

P± =γσ + κσ + γa + γφ

2

(
1 ±

√
1 − 4κσ γa

κσ +γa + γφ

)
. (27)

For good systems with small cavity decay rates, we have
P− ≈ γσ and P+ ≈ κσ + γσ + γφ . At P−, the two populations
diverge but remain positive, a manifestation in this model
that the system enters the lasing oscillations where both

1The truncation cannot be done at the level of Eq. (20), since this
one is related to the number of photons n, but rather with Eqs. (B1).
At high numbers, truncation in manifolds of excitations or of photons
gives the same result but not at the single-particle limit.
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FIG. 4. (Color online) Comparison between the numerical results
for na [from Fig. 3(a)], in thick yellowish lines, with different
approximated solutions. In each panel, γa decreases exponentially
from bottom to top curves, ranking from 10g (darkest curve) to
0.1g (lightest curve). The limiting case γa = 0 is also shown on
the left upper corner, where the divergence is a feature of the Jaynes-
Cummings model. In (a), we superimpose the linear model (dotted
red) and Jaynes-Cummings truncated at one excitation (dashed
blue), given by Eq. (24). In (b), the approximated semiclassical
solution, Eq. (32), which provides an accurate description in the
lasing regime given by Eq. (61). In (c), the thermal approximation,
given by Eq. (39) that converges to the models in (a) at low and
high pumps. In (d), the cothermal approximation, given by the
numerical solution of Eqs. (44). In this case, we extend solutions
to values of γa down to 0.01g, out of reach numerically. A vertical
guideline marks the value of γσ = 0.00334g. Other parameters are
Pa = � = γφ = 0.

populations are “inverted.” For intermediate pumpings, where
the system is in the lasing regime P− < Pσ < P+, both
populations are negative, meaning that the physics in this
regime is out of reach of this model. For large enough pumping,
Pσ > P+, the system exits the lasing regime as na in the
bosonic model converges again to the exact numerical result
following Eq. (26). However, nσ remains negative for all Pσ >

P−, meaning that its population remains thereafter inverted.
The bosonic model thus provides an accurate description of
the transition in and out of lasing through the appearance
of divergences and negative populations, as we will confirm
later when linking it to the full Jaynes-Cummings system. The
truncated Jaynes-Cummings formulas remain always positive
and instead of a divergence, the two-level system becomes
inverted, with nσ → 1 from below. Given that the number
of photons is always below one, this model is not suited to
describe the transitions in and out of the lasing regime.

The bosonic and fermionic models provide opposite statis-
tics for the cavity field. Two coupled harmonic oscillators
under incoherent excitation are always thermal with a photon
distribution T[n] = nn

a/(na + 1)n+1 and g(2) = 2. On the other
hand, truncating the Jaynes-Cummings model at one excitation
means that one excludes the possibility to have two photons at a
time in the cavity, which results in perfect photon antibunching,
g(2) = 0. Both models provide the exact na solution of the
Jaynes-Cummings model in two and opposite limiting cases,
namely, γa → 0 for the bosonic model, where

na = Pσ

γσ − Pσ

, (28)

with g(2) = 2, and γa → ∞ for the truncated Jaynes-
Cummings model, where

na = Pσ

γσ + Pσ

κσ

γa

, (29)

with g(2) = 0. This is seen in Fig. 4(a), where γa = 0
(uppermost curve) is exact, while γa = 10g (lowest curve)
is already a good approximation for ∞. In the first limiting
case, recovered by the bosonic model, the system accumulates
photons in the most effective way possible, which leads to
a divergence in the number of photons, also in the exact
Jaynes-Cummings model. The Rabi delivery of photons is so
efficient in the one-atom laser that, unless there is a leakage of
photons from another channel, the accumulation of photons is
unbounded. It is unlimited by the strong-coupling feed.

In the opposite limit of weak and inefficient coupling,
the emitter undergoes population inversion unaffected by the
cavity while the cavity gets an effective pumping of photons
from nσ through a very weak Purcell rate κσ [21,25]. For
γa > 4g the truncated Jaynes-Cummings model provides a
quantitatively good agreement for the entire range of pumping,
as shown in Fig. 4(a), if one excludes the behavior of g(2). This
limit is also accounted for exactly by a series expansion in Pσ ,
given in Appendix C, since the coupling is perturbative. In this
case, the system goes directly from the quantum linear to the
classical linear regime.

One can obtain an exact expression for g(2) in the linear
regime solving Eqs. (20) truncated, not at one, but at two
photons, that is, for n = 1,2 (assuming Na[3] = 0). Note that
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at Pσ = 0, Na[n] = 0 for all n, but we are interested in the
limit

g
(2)
Pσ →0 = lim

Pσ →0

Na[2]

n2
a

, (30)

that remains different from zero, since Na[n] ∝ P n
σ . This

method leads, to first order in Pσ , to the populations of Eq. (24)
and to

g
(2)
Pσ →0 = 2

κσ (γa + γσ ) + γσ (γa + γσ + γφ)

κσ (3γa + γσ ) + (γa + γσ )(3γa + γσ + γφ)
. (31)

This result is exact and valid for any set of parameters, as one
can check by simply solving the equations to the next order
of truncation (n = 1,2,3 and Na[4] = 0). In general, g(2) ∈
[0,2] in the linear regime of the Jaynes-Cummings dynamics,
although in Fig. 3(c) we only show 0 � g(2) � 2

3 since we have
chosen γσ ≈ 0.

2. Semiclassical approximation

Given that, as shown in Fig. 3(c), the cavity field becomes
Poissonian in the lasing regime, we can find good approx-
imated solutions for the steady state under the assumption
T[n] = e−nann

a/n!, which leads to Na[n] = nn
a . To establish

the lasing in the strong-coupling regime, one also needs a good
cavity, so we shall assume γa � g, and high enough pumping,
Pσ 
 γσ ,γa . Plugging Na[n] = nn

a into Eq. (20) and solving
the resulting equation for n = 1, or equivalently, imposing
g(2) = 1 in Eq. (22b), gives

na ≈ 
σ

2γa

(
1 − 2γσ


σ

− 
σ + γφ

κσ

)
. (32)

This is a very good approximation for the region where the
cavity field behaves classically [6,12], equivalent to solving
the n = 0 equation in Eqs. (20) [22,25]. The probability of
finding the emitter in its excited state reads

nσ ≈ 1

2

(
1 + 
σ + γφ

κσ

)
. (33)

The approximated na is plotted with blue dashed lines in
Fig. 4(b) for comparison with the numerical results and
exhibits a remarkable agreement for a large pumping range of
practical interest (the axis is in log scale). Similar agreement
is found for nσ [22].

The two expressions for the populations have a straightfor-
ward interpretation. Two parameters determine the populations
(neglecting for the sake of simplicity the small correction
brought by the emitter decay, 2γσ /
σ � 1): the “cavity
feeding” and the “emitter feeding” efficiencies, defined as
Fa = 
σ/(2γa) and Fσ = (
σ + γφ)/κσ , respectively. They
follow as

na ≈ Fa(1 − Fσ ) and nσ ≈ (1 + Fσ )/2. (34)

The cavity population increases linearly with pumping
(na ≈ Fa) while the emitter is half occupied (nσ ≈ 1/2). This
is the range of pumping with the most effective accumulation
of photons in the cavity, as the incoherent processes are small
enough not to disrupt the coherent coupling dynamics. All the
excitations injected into the emitter are transferred into the
cavity. We already have seen that there is a linear relationship
between na and Pσ in the—aptly denominated—linear regime,

as given by Eq. (25). A similar linear relationship na ≈ C2Pσ

also holds in the lasing regime, when Pσ � κσ but beyond
the quantum regime, Pσ > γa,γσ , this time with a slope C2

defined as

C2 = 1

2γa

. (35)

The transition between the two types of linear behaviors
na ≈ CiPσ , i = 1 → 2, and the question of the threshold in
this process is an interesting subject [14] that would bring us
too far astray and that we postpone to another work [58]. We
will only comment in the present text that this intermediate
region is the less liable to the types of approximation that
we derive here, since it lies at the frontier between the very
few and the very large number of excitations, and no good
approximation can reproduce it to a high degree of accuracy
other than by keeping track of all correlations between
the particles, which, being an N -body type of problem,
implies a numerical procedure. We call this intermediate
region the “quantum nonlinear” or simply the “quantum”
regime.

When the pumping is sizable as compared to κσ , the
emitter occupation starts to show signs of saturation, increasing
linearly with pumping, and quenching the linear increase of the
cavity population. Fσ represents therefore the degree to which
the pumping succeeds in populating the emitter itself, against
the coherent exchange of population that feeds the cavity with
efficiency Fa . The maximum population of the cavity,

max(na) ≈ κσ

8γa

(
1 − 4γσ + 2γφ

κσ

)
, (36)

is reached at the intermediate rate,

Pσ |max(na ) ≈ κσ

2

(
1 − 2γσ + γφ

κσ

)
. (37)

The present approximated expressions are valid until nσ

approaches 1, then the self-quenching dominates the dynamics
and na → 0, at around

Pmax ≈ κσ − 3γσ − 2γφ, (38)

that is, when the pump reaches the effective transfer rate of
excitation toward the cavity mode. At this point the statistics
changes to thermal due to pump-induced decoherence. Note
that Pmax ≈ P+, found in the previous subsection when
analyzing the bosonic model.

3. Thermal approximation

Assuming a thermal state for the cavity field, with statistics
T[n] = nn

a/(na + 1)n+1 and thus with Na[n] = n!nn
a , satisfies

in good approximation Eqs. (20) when the system undergoes
self-quenching and gets driven into the thermal regime
(Pσ > κσ ). The na obtained from the equation (n = 1), or
equivalently, imposing g(2) = 2 in Eq. (22b), reads

na ≈ 1

8γa

{
(
σ + γa)

×
√

16Pσ γa/
σ


σ +γa

+
[

1+ 
σ +γa+γφ

κσ

− 2Pσ


σ +γa

+ γa


σ

]2

043816-7



E. DEL VALLE AND F. P. LAUSSY PHYSICAL REVIEW A 84, 043816 (2011)

−
σ

(

σ + γφ

κσ

+ 2γσ


σ

− 1

)
− γa

(
2
σ + γφ

κσ

+ 2

)

− γ 2
a


σ

(

σ

κσ

+ 1

)}
. (39)

This solution converges to the linear result of Eq. (24) to first
order in Pσ when Pσ < γσ . The opposite limit, well into the
thermal region, is that already found with Eq. (26) to first order
in 1/Pσ , which provides the decreasing tail at large pumpings,
as shown in Fig. 4. The lines converge to the same universal
curve when plotting γana/g in Fig. 3(a). In the intermediate
region, it provides a good approximation when the system is
not good enough to lase, at large dissipation rates, similarly
to the truncated Jaynes-Cummings formula. Of course, having
g(2) = 2 throughout, does not, in general, represent well the
statistics.

Figure 4(c) may seem to show that Eq. (39) captures the
qualitative behavior of na even in the lasing regime. It does not,
however, provide the change into the linear lasing slope from
na ∼ C1Pσ to C2Pσ , discussed in the previous subsection,
which is a serious conceptual shortcoming.

In two particular cases, the thermal solution becomes exact
for Eq. (20), namely, γc = Pc = 0 with c = a (previously
discussed) on the one hand and its counterpart c = σ on the
other hand. In both cases Naσ = 0 and Nσ [n] = n̄σNa[n − 1]
with Na[n] = n!n̄n

a , where

n̄a = Pc

γc − Pc

and n̄σ = Pc

γc + Pc

. (40)

The steady state in this case is two uncorrelated thermal fields
at the same temperature. This is independent of the coupling
strength g, which only determines the speed at which this
steady state is achieved. Although the discontinuity at g = 0
might seem counterintuitive, it is physically clear that the
thermal equilibrium does not otherwise depend on details
of the microscopic couplings. The case Pσ = γσ = 0, that
corresponds to thermal excitation of the cavity mode only,
presents interesting aspects which we also postpone to a future
work.

The case Pa = 0 = γa = 0, appearing in Fig. 4(c) as the
uppermost exact curve, diverges, as we noted previously, at
Pσ � γσ , meaning that the system does not have a steady state
but rather its intensity grows without bounds. This is to be
interpreted as the instability accompanying the transition into
lasing [12].

4. Cothermal approximation

A very good quantitative approximation for the whole
pumping range is obtained assuming that the field is in a
so-called cothermal state [59], which is the field with, on
average, ncoh

a coherent photons and nth
a thermal photons (with

a total cavity population na = nth
a + ncoh

a ). In this case, the
photonic statistics reads

T[n] = e−ncoh
a /(1+nth

a )

(
nth

a

)n(
1 + nth

a

)n+1 Ln

[ −ncoh
a

nth
a

(
1 + nth

a

)], (41)

and moments of the distribution are

Na[n] = n!
(
nth

a

)n
Ln

[
−ncoh

a

nth
a

]
, (42)

with Ln the nth Laguerre polynomial. The second-order
coherence function is

g(2) = 2 −
(

ncoh
a

na

)2

. (43)

One can write the set of Eqs. (20) for n =1, 2 using the
parametrization of Eq. (42):

0 =
[

1

Ceff[1]
+ γa


σ

− 2Pσ


σ + γa

+ 1

]
na

− Pσ


σ

+ 2γa


σ + γa

[
2n2

a − (ncoh
a

)2]
, (44a)

0 =
[

1

Ceff[2]
+ 2γa


σ+2γa

− 2Pσ


σ+2γa

+1

][
2n2

a − (ncoh
a

)2]
− 2Pσ


σ+γa

na+ 2γa


σ+2γa

[
6n3

a − 9na

(
ncoh

a

)2+4
(
ncoh

a

)3]
.

(44b)

Equations (44) can be easily solved numerically (two coupled
nonlinear equations), extracting the physical solution na ,
ncoh

a � 0. They yield an excellent agreement with the complete
numerical solution as shown in Fig. 4(d) for the cavity
population and Fig. 5 for g(2). We took advantage of this
to extend the results to cases out of reach of our numerical
procedure, namely, γa/g down to 0.01, shown in Figs. 4 and 5
as the dashed lines only, without the corresponding numerical
calculation. The transitions from the linear regime to lasing
and from lasing to the thermal regime are well accounted
for within this approximation. Although they are not exact,
they provide a fairly good quantitative description of the
entire pumping range for any set of parameters, particularly
of the quantum regime which eludes most approximation
schemes.

The transition into a thermal field can be induced by
increasing the incoherent pumping but also other sources of
decoherence such as dissipation, pure dephasing, or detuning.

0.001 0.01 0.1 1 10 100 1000
0.0

0.5

1.0

1.5

2.0

FIG. 5. (Color online) Comparison between the numerical g(2) (in
thick yellow lines) and the cothermal approximation (dashed black
lines), from Eq. (43) with na of Fig. 4. It interpolates neatly between
the lasing and the thermal regions (1 → 2) but also provides a very
good agreement in the linear regime. Here as well, we extend solutions
to values of γa down to 0.01g, out of reach numerically.
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FIG. 6. (Color online) (a) na , (b) g(2), and (c) Q-Mandel parameter, as a function of the pumping rate, extracted with the cothermal
approximation. Detuning is fixed in each column to the value while pure dephasing increases from 0 (thick curves) to 12g (dashed curves) in
steps of 2g. Detuning brings a threshold for lasing and, while dephasing can help to reduce it, it also makes the system less robust to quenching.
Parameters are γa = 0.1g, Pa = 0 = γσ = 0.

In Fig. 6, we plot the extracted na and g(2), respectively, under
the cothermal approximation, as a function of pumping, when
increasing detuning and pure dephasing. The lasing to thermal
transition is even more apparent in the Mandel-Q parameter,
defined as Q = na(g(2) − 1), featuring it with a broad peak, as
shown in the third row of Fig. 6. Both detuning and dephasing
are clearly detrimental for the intensity and coherence in the
self-quenching regime but they may compensate each other
in the transition from the linear regime into lasing. Figure 6
shows the appearance of a threshold in the presence of detuning
(at small pumping the thermal fraction increases), due to the
reduction of geff [7]. Adding dephasing, γφ , may compensate
this reduction and smoothen the threshold up to a certain point
(as it also increases to the total decoherence rate 
T). This
observation was made by Auffèves et al. [21]. In general,
the maximum intensity, max(na), and coherence achieved
always decrease with both detuning and dephasing. However,
detuning makes it occur at higher pumpings while dephasing
does at lower ones. Pure dephasing is thus indeed making
both transitions, from quantum to lasing and from lasing to
self-quenching, occur at smaller pumping.

B. Density matrix

We have obtained in the previous section good approx-
imations for the statistics of the cavity field, T[n], as well
as the main quantities of interest such as na . To compute the
photoluminescence spectrum, which we will do in next section,
we also need the full density matrix in the steady state. In the
very strong coupling regime, we can relate it analytically to
T[n], as we show in this section.

The full statistics is most conveniently obtained from the
master equation with elements ρm,i;n,j for m, n photons
and i, j excitation of the emitter (m,n ∈ N, i,j ∈ {0,1}).
Rather than to consider the equations of motion for the
matrix elements directly, it is clearer and more efficient to
consider only elements that are nonzero in the steady state.
These are

p0[n] = ρn,0;n,0, p1[n] = ρn,1;n,1, q[n] = ρn,0;n−1,1, (45)

and correspond to, respectively, the probability to have n

photons without (p0) or with (p1) excitation of the emitter, and
the coherence element between the states |n,0〉 and |n − 1,1〉,
linked by the Hamiltonian in Eq. (15). Both p0 and p1 are
real. It is convenient to separate q into its real and imaginary
parts, q[n] = qr [n] + iqi[n], as they play different roles in the
dynamics. The equations for these quantities are derived from
the Liouvillian equation (16). They read (their full form is
given in Appendix A)

∂tp0[n + 1] = Dphot{p0[n + 1]}
−Pσ p0[n + 1] + γσp1[n + 1]

− 2g
√

n + 1qi[n + 1], (46a)

∂tp1[n] = Dphot{p1[n]}
− γσp1[n] + Pσp0[n] + 2g

√
n + 1qi[n + 1],

(46b)

∂tqi[n + 1] = Dphot{qi[n + 1]}

−
[

σ + γφ

2
+ 2�2


σ + γφ

]
qi[n + 1]

+ g
√

n + 1(p0[n + 1] − p1[n]), (46c)
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where we have separated the cavity dynamics into a superop-
erator Dphot, which exact expression is given in the appendix.
If this photonic dynamics is much slower than the rest, that is
γa,Pa � 
σ ,g, one can solve the emitter dynamics separately,
ignoringDphot [6,60]. This assumes that the photon distribution
T[n] = p0[n] + p1[n] does not change during the excitation
and interaction with the emitter that happens at a timescale of
order 1/Pσ or 1/g, much faster than the photon one, of order
1/γa . This approximation becomes exact for the perfect cavity,
when γa = 0 (and Pa = 0, which we already assumed), which
is why the system admits an exact solution [cf. Eq. (40)].
Neglecting the photon dynamics allows one to link all the
density matrix elements with the photon statistics T[n]:

p0[n + 1]

≈ κa(n + 1)
(

Pσ


σ
T[n] + γσ


σ
T[n + 1]

)+ γσT[n + 1]

2κa(n + 1) + 
σ

,

(47a)

p1[n]

≈ κa(n + 1)
(

Pσ


σ
T[n] + γσ


σ
T[n + 1]

)+ PσT[n]

2κa(n + 1) + 
σ

, (47b)

qi[n + 1] ≈ κa

√
n + 1

2g
(p0[n + 1] − p1[n])

≈ −κa

√
n + 1

2g

PσT[n] − γσT[n + 1]

2κa(n + 1) + 
σ

, (47c)

where

κa = 4(geff[1])2


σ + γφ

(48)

is the Purcell rate of transfer of population from the cavity
mode to the emitter [cf. Eq. (23)] and geff follows the definition
in Eq. (21) for negligible γa . Note that p0[n] + p1[n] is not
strictly equal to T[n], due to our approximations, but the
numerical discrepancy is small in the regime of interest where
the number of photons is high and n ≈ n + 1. In particular,
the equality holds exactly in the aforementioned case of
γa = Pa = 0, thanks to some nontrivial simplifications of the
expressions when T[n] is thermal.

C. Two-time correlators

We now turn to the problem of the steady-state optical emis-
sion spectrum, that consists in computing two-time correlators
of the type 〈c†(0)c(τ )〉 with c = a, σ . We can link the two-time
correlators to the quantities derived in the previous sections
following an implementation of the quantum regression
theorem that relies explicitly on the density matrix ρ:

〈c†(0)c(τ )〉 =
∑
k,l

ρc
[k;l](τ ) 〈l| c |k〉 , (49)

where ρc
[k;l](τ ) = 〈c†(|l〉 〈k|)(τ )〉 is in the Schrödinger picture,

where the states evolve and operators have their steady-state
values [61]. The indices k, l go through all the states in the
system Hilbert space [k = (k1,k2) with k1 = 0,1, . . . ,nmax for
the photons and k2 = 0,1 for the emitter]. The elements ρc

[k;l]
follow the same master equation as the density matrix elements
ρ[k;l]. Since similar approximations can also be naturally

implemented, this will allow us to provide closed-form
solutions for the two-time correlators, as is detailed in
Appendix D. We give here the main lines of the derivations
and introduce the key quantities that lead to the final result.
We single out, again, only the nonzero elements. For two-time
correlators, they can be gathered in four functions of n:

Si[n] ≡ ρc
[n,i;n−1,i], i = 0,1, n � 0, (50a)

Q[n] ≡ ρc
[n,1;n,0], n � 0, (50b)

V [n] ≡ ρc
[n,0;n−2,1], n � 1. (50c)

The two-times correlators follow from these quantities
(with c = σ , a respectively) as

〈σ †(0)σ (τ )〉 =
∞∑

n=0

Q[n], (51a)

〈a†(0)a(τ )〉 =
∞∑

n=0

(
√

n + 1S0[n + 1] + √
nS1[n]). (51b)

Each term n of these sums accounts for the transitions
between the rungs n + 1 and n, as in the case of spontaneous
emission [17], the first rung, being given by n = 0.

The equations of motion for the quantities in Eqs. (50) are
extracted from the master equation [cf. Eq. (D5)], and can
also be, as for the single-time dynamics, separated into a slow
photonic dynamics embedded in a superoperator Dphot on the
one hand, and a fast emitter and coupling dynamics on the
other hand:

∂τS0[n + 1] = Dphot{S0[n + 1]}
−Pσ S0[n + 1] + γσS1[n + 1]

+ ig(
√

nV [n + 1] − √
n + 1Q[n]), (52a)

∂τS1[n] = Dphot{S1[n]}
+Pσ S0[n] − γσS1[n]

− ig(
√

n + 1V [n + 1] − √
nQ[n]), (52b)

∂τQ[n] = Dphot{Q[n]}

−
(


σ + γφ

2
− i�

)
Q[n]

+ ig(
√

nS1[n] − √
n + 1S0[n + 1]), (52c)

∂τV [n + 1] = Dphot{V [n + 1]}

−
(


σ + γφ

2
+ i�

)
V [n + 1]

+ ig(
√

nS0[n + 1] − √
n + 1S1[n]), (52d)

for n � 1. After some long but straightforward algebra, we
can express S0,1[n] and Q[n] in terms of p0,1[n] and qi[n],
which, in turn, are expressed in terms of the statistics T[n].
This can be done for arbitrary parameters, including detuning.
However, simple expressions are possible only at resonance,
where we can write Eq. (49) as

〈c†(0)c(τ )〉 = Ec + nc

∞∑
n=0

{
Cc

I [n]e−iRI[n]τ e−(3
σ +γφ )τ/4

+ R.s.i. + Cc
O[n]e−iRO[n]τ e−(3
σ +γφ )τ/4 + R.s.i.

}
.

(53)
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The most fundamental quantities that arise in the above
treatment are the nth manifold inner and outer (half) Rabi
frequencies:

RO,I[n] =
√

g2(
√

n + 1 ± √
n)2 −

(

σ − γφ

4

)2

. (54)

“R.s.i.” in Eq. (53) stands for “Rabi sign inversion” and is the
operation that consists in changing the sign of RO,I keeping all
other quantities the same. The first term Ec, that factors out of
the sum, is independent of τ , due to the approximation of very
large photonic lifetime. It is discussed separately in Sec. IV C.

The (half) Rabi frequency of the linear regime, R0, is
recovered as the particular case n = 0 with

R0 = RO[0] = RI[0] =
√

g2 −
(


σ − γφ

4

)2

. (55)

The coefficient Cc
I [n] (the same for Cc

O[n]) are complex
quantities in general that we decompose into their real and
imaginary part as

Cc
I [n] = Lc

I [n] + iKc
I [n]. (56)

They are a function of RI[n] (and CO of RO[n]).
As stated previously, the coefficients Cc

I,O[n] are written in
terms of the system parameters and the steady-state photon
distribution T[n] only. Their general full expression are too
long to be given. Only for the simplest case of γσ , γφ = 0, and
c = σ , the expressions simplify sufficiently to be reproduced
here:

Cσ
I,O[n] = ασ

I,O[n]

nσ

T[n] + βσ
I,O[n]

nσ

T[n − 1], (57)

where

ασ
I,O[n] =

(
Pσ

2

)2 + g2(1 + n)

P 2
σ + 8g2(1 + n)

+ iPσ

4RI,O[n]

×
(

Pσ

2

)2 − g2(1 + n ∓ 2
√

n(1 + n))

P 2
σ + 8g2(1 + n)

, (58a)

βσ
I,O[n] = ±g2P 2

σ

(
4 + 3

iPσ

4RI,O[n]

)

× 2g2(
√

n(1 + n) ± n) + P 2
σ (

√
n(1 + n) ∓ n)

4
(
8g2n + P 2

σ

)[
4g4 + 4g2P 2

σ (1 + 2n) + P 4
σ

] ,
(58b)

where the notations ± and ∓ associate I to the upper sign and
O to the lower one.

IV. MOLLOW TRIPLET UNDER
INCOHERENT EXCITATION

The luminescence spectra can, like all other quantities, be
obtained “exactly” through numerical computations [9,17]. In
our case, computing Eqs. (52) and applying the definition of
Eq. (8) for the power spectra, one arrives at results such as
those shown in Fig. 7, where PL spectra are computed both
for the cavity and the emitter, as a function of pumping. In
insets (a)–(f), we select various snapshots plotted in log scale
that illustrate the regimes discussed previously. Namely, (a)
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FIG. 7. (Color online) Cavity (left blue) and emitter (right pink)
spectra of emission computed numerically. As a function of pumping,
a transition from (a) the quantum linear regime to (f) lasing can be
followed passing through (b) the quantum nonlinear regime that (c)
melts into (d) and (e) structures of much reduced complexity, namely,
triplets. A Mollow triplet is neatly visible in the emitter spectrum,
whereas the cavity gives rise to a single narrowing line. Note that
in the cuts (a)–(f), spectra are displayed in log scale. Parameters are
γa = 0.1g, γσ = 0.00334g, Pa = γφ = � = 0.

shows a case from the linear regime, where only the first rung
of the Jaynes-Cummings ladder is occupied, the system being
otherwise in vacuum. This yields the vacuum Rabi splitting.
The differences in line shapes in this regime have been
amply discussed elsewhere [62]. In (b), one is in the quantum
nonlinear regime, where the spectrum has a complex structure
featuring the many peaks that arise from transitions between
the lower rungs of the Jaynes-Cummings ladder. These can also
be probed with other types of excitation, such as thermal cavity
excitation [63,64]. In (c), one leaves the quantum regime, with
a collapse of the quantum nonlinear peaks that “melt” to form
an emerging structure of much reduced complexity, namely,
a triplet, as seen in (d) where one enters the lasing regime
that develops in (e) and is fully formed in (f). The triplet is
particularly evident in the emitter power spectrum, where it is
neatly visible also in a linear scale. Quenching is not shown
explicitly in this plot but is elsewhere [17].

A remarkable feature of lasing in strong-coupling arises in
the form of a scattering peak, well known from Mollow’s
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results [cf. Eq. (13)], where it is due to the driving laser
scattering photons off the atom. This δ peak also forms in
the cavity QED version of this problem, as seen in Fig. 7(f) on
the emitter spectrum as the very sharp peak sitting on top of
the incoherent Mollow triplet. Note that this peak arises from a
numerical computation. It is a close counterpart of the Rayleigh
scattering peak of resonance fluorescence, although this is the
coherent field grown by the emitter itself in the lasing process
that is the source of the scattered photons, on the very emitter
that created them in the first place. More interestingly, this peak
which, in the lasing regime, is maximum and narrower (with
the same linewidth as the cavity emission), forms smoothly
from a similar depletion when approaching the lasing regime
from below, as seen in Fig. 7(d), where an equally narrow
absorption peak is carved in the emerging triplet. As opposed to
scattering, in this case, the cavity is coherently and resonantly
absorbing excitations from the emitter (this depletion is pinned
at the cavity energy). As the field is building its coherence, it
sucks energy very efficiently from its source, until a point,
shown in Fig. 7(e), where the cavity does not require such a
coherent absorption to keep building in intensity. This marks
the transition between the point where the system is building
its coherent field to the one where it is fully formed and acting
back on the emitter.

These results are certainly beautiful (an animation of
this transition is available in the supplementary material of
Ref. [65]) but obtaining them numerically is an intensive
computer task since the Hilbert space becomes very large,
whereas the final output certainly looks amenable to a
simple analytical description. Solving the system numerically
nevertheless gives access to every single transition that occurs
in the many rungs of the Jaynes-Cummings ladder through
the dressed state decomposition of Eq. (8). This yields a
surprisingly complex structure, shown in Fig. 8, where we
plot the positions ωp where the system emits, weighted by the
intensity Lp of the transition such that resonances disappear
with vanishing intensities. Figure 8(a) gives an overall picture
while a zoom of the transitions lying between the Rabi doublet
is given in Fig. 8(b), showing an emerging and intricate
structure, further zoomed in Fig. 8(c) in the lasing region.
The inner peaks form “bubbles” that open and collapse around
the origin, where the lasing mode lies. Such behaviors of
the dressed states also appear in simpler systems such as
two coupled two-level emitters incoherently pumped, which
can be solved fully analytically [66]. The bubbles formation
results from a complex interplay between pumping and decay,
which open new channels of coherence flow in the system.
Figure 8(a) shows clearly the satellite peaks of the Mollow
triplet. Although the lines are neatly split the one from the
other, their increasing broadening allows the formation of
a smooth spectral shape in the lasing regime, that one can
follow with the naked eye from the “melting” of the quantized
structure, as shown in Fig. 7. Figure 8(a) also shows how
the inner peaks ultimately all converge at the origin, thereby
forming the lasing mode. In the lasing in the strong-coupling
scenario, lasing can thus be seen as a Bose condensate of the
dressed states [67–69]. It is fascinating to follow the formation
of a coherent and classical field from a fully quantized picture,
but this brings little insights into the actual phenomenon.
Besides hinting at its underlying richness and complexity,

Fig. 8 essentially shows that a complete and fully quantized
description of a system that is behaving basically classically
is hopelessly complicated, keeping track of a huge amount
of irrelevant details, while the behavior is well accounted
for by a few macroscopic degrees of freedom, such as an
intensity na and a off-diagonal coherence element 〈a〉. Figure
7 thus illustrates, in one of the most fundamental system of
quantum optics, the breakdown of the quantum picture in
a quantum-to-classical transition. Even in the simplest and
exactly solvable system, it is difficult to read much, and
we surmise that the condensation of dressed states in the
lasing process is out of reach of the present understanding
of dissipative quantum optics, calling for a framework such as
that developed for conservative systems [70–72].

Since the intricate patterns of Fig. 8 occur at a different
energy scale than that of the observables and do not show
up in the spectra, one can hope in the wake of the excellent
approximations derived previously to get similar analytical
results also in the spectral domain. In the following, we derive
such an approximate description of the exact picture presented
above [22], allowing us to read the essential physics of this
transition in the lasing regime.

A. Spectral decomposition

The Fourier transform in Eq. (6) of the two-time correlators
(53) provides an approximated expression for the spectrum of
emission:

Sc(ω) = Re (Ec)

nc

δ(ω)

+ 1

π

∞∑
n=0

{
Lc

I [n] γI[n]
2 − Kc

I [n](ω − ωI[n])(
γI[n]

2

)2 + (ω − ωI[n])2
+ R.s.i.

+ Lc
O[n] γO[n]

2 − Kc
O[n](ω − ωO[n])(

γO[n]
2

)2 + (ω − ωO[n])2
+ R.s.i.

}
, (59)

where we have introduced the positions and broadenings:

ωI,O[n] = Re (RI,O[n]), (60a)

γI,O[n] = 3
σ + γφ

2
− 2 Im (RI,O[n]), (60b)

so that the optical spectrum is composed of a series of
Lorentzian lines at frequencies ωp with linewidths γp and
weight Lp plus interference terms weighted by Kp. These
lines arise from transitions between rungs n + 1 and n of
the Jaynes-Cummings ladder. The spectra are normalized to
unity; therefore, the incoherent part of the spectra (second and
third lines) is normalized to 1 − Re (Ec)/nc. Each transition
can exhibit weak or strong coupling, that is, the rungs being
split or not into dressed states, similarly to the case with no
pumping [17]. When split, all peak broadenings are the same,
regardless of the rung: γI[n] = γO[n] = (3
σ + γφ)/2.

In Fig. 9, we see two examples of spectra computed as
in Eq. (59) with T[n] taken as Poissonian. The first case,
with γa = 0.1g, corresponds to a very good cavity well in the
strong-coupling regime with the emitter, such as is realized in
circuit QED. The second case, with γa = 0.5g, corresponds
to a less favorable situation representative of the state of
the art of systems such as quantum dots in microcavities
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FIG. 8. (Color online) Lasing as a condensation of dressed states: Transition energies between the dressed states when solving numerically
the dynamics exactly are shown. The color code (online) has blue shades corresponding to a positive weight of the transition in the cavity
emission and red shades corresponding to a negative weight. In (a) all regimes are shown over all energies, in (b) a close-up of (a) is given for
frequencies |ωp| < g lying between the vacuum Rabi splitting, and in (c) a close-up of (b) is given in the lasing regime, showing an extremely
complex structure of the exact solution obtained in the full-quantization picture, although the final result washes out completely most of this
underlying information, to provide only the single narrow line of a lasing system.

[73]. In both plots, the pump increases from the top to the
bottom curves and features the quantum-to-classical crossover.
The transitions between the Jaynes-Cummings rungs are first
resolved individually, at low pumping, and then merge into
a Mollow triplet. The approximated spectrum of emission
differs from the numerical exact result at low pumpings,
since the assumption of much larger pumping than decay does
not apply here. The regime of validity for our approximated
spectrum and that for the observation of the Mollow triplet
with incoherent excitation is

γa,γσ ,γφ � g < Pσ � κσ . (61)

Note that out of resonance, one must consider geff[1] instead
of g in Eq. (61). As the position of the peaks is still
well approximated, however, this approximation provides an
instructive and physically transparent picture of the Mollow
triplet formation. We analyze these peak positions in more
details in the next subsection.

FIG. 9. (Color online) Approximated spectra of emission,
Eq. (59), as pumping is increased and the system undergoes the
quantum-to-classical transition. Parameters: γa = 0.1g, Pa = γσ =
γφ = � = 0. In inset, the comparison between the approximated-
analytical (thin blue) and exact-numerical (thick black) spectra for the
lowest pump Pσ = 0.1g. Although the approximation breaks down
in the quantum regime, it shows how the Mollow triplet is formed.
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FIG. 10. (Color online) Transition energies (positions of the
spectral peaks) as a function of decoherence |
|/(4g) from rungs n =
1,2,3,4 (from dark to light lines) for two cases: spontaneous emission
[
 = γa − γσ , Eq. (62), thin dashed lines] and in the presence of
pumping [
 = 
σ − γφ , Eq. (60a), thick lines]. The line starting
at ω = g corresponds to the linear regime or first-rung-to-vacuum
transition [Re (R0), thick black line] and is common to both cases.
The curves starting above (resp. below) 1 correspond to the outer
(inner) transitions.

B. Peak positions

Let us recall the expression of the Jaynes-Cummings
quadruplets positions in the spontaneous regime, in order
to appreciate better the features brought by the incoherent
pump [17]:

�O,I[n] = Re

[√
g2(n + 1) −

(
γa − γσ

4

)2

±
√

g2n −
(

γa − γσ

4

)2]
. (62)

These branches are plotted as thin dashed lines in Fig. 10 (only
the positive frequency ones) as a function of their decoherence
rate 
 = γa − γσ . They can be exactly mapped with transitions
between rungs in the dissipative Jaynes-Cummings ladder,
exhibiting three regimes depending on their splittings: (a)
at low decoherence, both rungs—initial and final—are split
(in the strong coupling regime) and we have four peaks (two
shown in the figure). (b) When the lower rung enters weak
coupling and recovers the bare modes, only two transitions
(one in the figure) can be seen from the upper, still split, rung.
(c) At large decoherence, none of the rungs are split and all
transitions are at the origin.

In the same Fig. 10, we have plotted with thick lines the
positions in the presence of pumping, Eq. (60a), as a function
of the corresponding decoherence rate, 
 = Pσ + γσ . The
positions, paired around the center (still only the positive
half is shown), also depend on the rung. In the linear regime,
n = 0, these are simply the two Rabi transitions ±Re (R0),
with the same structure as two coupled harmonic oscillators or
the spontaneous regime that we have just described. However,
for n > 0 outer and inner peaks have an interesting nontrivial
behavior. The inner peaks close at low 
, before the Rabi
transitions do, forming, in the lasing or classical regime
(na 
 1), the central peak of the Mollow triplet. The outer
peaks close much after the corresponding Rabi peaks do,
grouping to form the two sidebands of the Mollow triplet with
ωO[n] ≈ Re

√
4ng2 − (
σ/4)2 (see Fig. 9).

In the presence of pumping, it is no longer possible to
map exactly the position of the peaks composing the spectra
with transitions from the Jaynes-Cummings ladder. The effect
of the incoherent pump, before being so strong to close the
dressed state splitting of the Jaynes-Cummings rungs, is to
make it homogeneous throughout the ladder. Then, the inner
peaks do not close because the rungs enter the weak-coupling
regime but rather because the transitions coincide with the
cavity frequency. In any case, the Jaynes-Cummings structure
is very much distorted and the transitions between its rungs
very much mixed, in such a way that it is no longer possible
to reconstruct the ladder. Furthermore, in our derivation of
Eq. (54) we have neglected the interplay between the cavity
and emitter dynamics (by assuming them to have very different
time scales) and, therefore, Fig. 10 shows the isolated effect
of the incoherent pump in contrast with the complex features
we observed in Fig. 8.

C. Elastic scattering Ec

It is possible to give the general expression (with detuning,
dephasing, and decay) for the elastic scattering contribution to
the spectra, for both emitter and cavity emission:

Re (Eσ ) = 4g


σ + γφ

∞∑
n=0

γσ (κa + 2
σ )
√

1 + nqi[n + 1] + Pσ (κa − 2
σ )
√

nqi[n]

κ2
a

[
1 + ( 2�


σ +γφ

)2]+ 4
2
σ + 4
σκa(2n + 1)

,

(63a)

Re (Ea) =
∞∑

n=0

2

κ2
a

[
1 + ( 2�


σ +γφ

)2]+ 4
2
σ + 4
σκa(2n + 1)

×{γσ (κa(4n + 1) + 2
σ )(1 + n)T[n + 1]

+Pσ (κa(4n + 3) + 2
σ )nT[n]}. (63b)

Note that Re (Ea) > 0 in all cases, while Re (Eσ ) can be
negative, as we pointed out in the discussion of Fig. 7.
The expressions (63) support our qualitative discussions. In
the cavity emission, the scattering peak is simply the direct
emission of photons through the cavity mode and therefore
is always positive. For the emitter, however, these coherent
cavity photons must “convert” into material excitations before
being emitted, which implies the possibility of interferences
that can be positive or negative. This change of sign is even
more clear when γσ = 0 where Eσ < 0 if Pσ <

√
2g. At low

pumping, this carves a “hole” in the spectra pinned at the
cavity frequency. For Pσ >

√
2g, the delta peak is positive.

In the case of the cavity, most of the emission comes from
it, and not the de-excitation of the dressed states, that is,
from the photons that undergo an efficient interaction with the
emitter.

When the two-level system is not sufficiently popu-
lated/inverted (at low Pσ ), the cavity has a smaller elastic
scattering contribution. The emitter sees an interference
hole being carved in its spectrum, reminiscent of a Fano
resonance. The emitter represents an efficient pumping for
the cavity in a linear way. As we already mentioned, the
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cavity is sucking the cavity photons (at ωa) out of the
emitter. Although at very low pumping (Pσ ≈ γa) these
approximations are not valid (a delta function weighted
negatively means a negative spectrum) and do not provide a
quantitative agreement with the numerical results, they are in-
teresting to understand the qualitative features that are obtained
numerically.

When the two-level system is saturated in the self-
quenching regime (at high Pσ ), it is mainly in its excited state.
The cavity spectrum tends toward the bare cavity emission
(thermal regime). In the exact solution, this is a Lorentzian
with the cavity linewidth γa . In our approximated solution,
the cavity bare emission is a delta function and the two-
level system emission loses completely the elastic scattering
component because there is weak interaction with the cavity
which provides it.

In the lasing region, 1 < Pσ < 20g, the triplet appears in
both channels of emission: cavity and emitter. The emitter
grows some small positive elastic scattering component on top

of the triplet, as a collateral effect from the strong interaction
with the cavity (proportional to qi[n]).

D. Semiclassical approximation

In the lasing regime, where the n and n + 1 rungs that
are close to na (having na 
 1) have similar splittings
and the cavity field becomes Poissonian (coherent), simple
expressions—in regard to the complexity of the underlying
machinery to obtain them—arise for the spectra of emission
[22]. The variable n becomes continuous as compared to the
large intensity na and, given that the distribution is Poissonian
(peaked at the mean value), we can consider only the case
n = na in Eq. (59). The integral over the distribution T[n]
simplifies to 1. In this regime, the inner peaks have collapsed
into the center while the outer remain split. Substituting na

(and nσ for the normalization) from Eq. (59), we obtain the
final expression for the emitter spectrum:

Sσ (ω) =
(

2Pσ


σ + γφ + κσ

− 
σ

κσ

)
δ(ω) + 1

2π


σ +γφ

2(
σ +γφ

2

)2 + ω2

+ 1

(
σ + γφ + κσ )[(−2Pσ + 
σ )2κ2
σ + ((3
σ + γφ)2+4(
σ−2Pσ )κσ )ω2 + 4ω4]

{− 4P 2
σ κσ (3
σ +γφ + κσ ) + 2Pσ 
σ

× [3
2
σ + 4
σ (γφ + 2κσ )+(γφ + κσ )(γφ+3κσ )

]+4Pσ κσω2 − (
σ + γφ + κσ )
[

2

σ (3
σ +γφ + 2κσ ) + (
σ−γφ)ω2]}
(64)

Similarly to the coherent excitation case, it is composed of an
elastic scattering term (delta peak), a central peak (a Lorentzian
peak with FWHM 
σ + γφ), and two sidebands. When split,
these have a FWHM (3
σ + γφ)/2 and positions given by
ωO[na] ≈ Re (RO), where

RO =
√

(2Pσ − 
σ )κσ

2
−
(


σ + γφ

4

)2

. (65)

This is the Mollow splitting in the case of incoherent excitation,
analogous to RL in Eq. (11). It is plotted in Fig. 11. Contrary
to the laser excitation, this splitting can now close due to the
pumping intensity Pσ . In Fig. 11, we show the domains where
the Mollow triplet is clearly resolved. This naturally requires
that the system is able to enter the regime of lasing in strong
coupling, which starts at figures of about γa/g ≈ 0.1. This is
the case shown in the figure, where we compare the Mollow
splitting, Eq. (11), with the observed splitting, represented
as the shaded area which is delimited by the maximum
(upper boundary, solid) and the neck (lower boundary, dashed)
of a side peak. When the Mollow splitting is maximum,
decoherence has however broadened so much the satellite
peaks that no triplet is observable anymore.

Applying the same procedure, for the cavity emission one
finds Sa(ω) = δ(ω), that is, a purely elastic spectrum with
negligible linewidth. A more accurate approximation to the
FWHM of the elastic peaks in this regime, which reproduces
the typical lasing cavity line narrowing, is given by the

broadening γL:

γL = 2g2γa/P
2
σ (66)

as derived by Poddubny et al. [18].
In Fig. 12, we show the excellent agreement between

the analytical approximation (in dashed lines) and the exact

FIG. 11. (Color online) Comparison between the position of the
side peaks [Re (RO), in solid blue] and those observed in the emitter
spectrum (in solid purple, above the filling), as a function of pumping.
In dashed is shown the neck of the side peak so that the filled
area delimits approximately its half-width. Parameters: γa = 0.1g,
γσ = 0.
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FIG. 12. (Color online) Mollow triplet in the direct PL spectra
from the emitter, Sσ (ω) for γa = 0.1g, Pa = 0, γσ = 0.00334g, and
Pσ = 7g (na ≈ 11.6 and nσ ≈ 0.53), for various configurations of
detuning and dephasing. The exact numerical results are plotted with
a dark-blue dashed line, overlapping almost exactly our analytical
formula, in light-blue solid. The coherent scattering peak is featured
in the analytical solution in (a) while only the incoherent spectrum
is shown in (b) and (c). The dotted line in (a) represents the Mollow
triplet obtained under coherent excitation, with a laser intensity
equivalent to the cavity occupation in the incoherent case, that is,
for �L → √

nag and also an equivalent emitter broadening, γσ →
γσ + Pσ . The two types of Mollow line shapes are clearly different
even though their peak positions and broadening are equal. Also, as
compared to the coherent excitation case, the Mollow triplet under
incoherent pumping is a resonant structure that becomes strongly
asymmetric with detuning.

numerical computation (solid lines). In Fig. 12(a), the case
of resonance—the one of most interest—is where the Mollow
triplet is best observed. Its analytical expression is given by
Eq. (64), where we also include the scattering peak [both
as a result of the numerical procedure and approximated by
Eq. (66)] seen as a very sharp line, which we have truncated
in the plot, as it extends more than one hundred times higher
than is shown. In Fig. 12(a), we also provide further evidence
that the Mollow triplet formed under incoherent pumping is of
a different nature than that formed under coherent excitation
[22], by superimposing the coherent excitation Mollow triplet
(dotted line). We take �L → √

nag and γσ → γσ + Pσ to
compare both expressions on equal grounds (both line shapes
remain dissimilar even when parameters are left completely
free). This substitution makes both types of triplet share the
same position and broadening for their three peaks. However
their relative weight is different, as shown in Fig. 13. These
strong qualitative departures result in the striking differences
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0
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FIG. 13. (Color online) Contributions to the Mollow triplet under
(a) incoherent and (b) coherent excitation for the three types of peaks:
the central Lorentzian peak (constant at 1/2, solid line), the sidebands
(dashed), and the elastic scattering peak (dotted). The parameters are
chosen so that the two Mollow triplets can be compared on equal
grounds, as explained in the text, for γa = 0.1g, Pa = 0, γσ = γφ = 0,
and � = 0.

between the final spectra, although the peaks have identical
characteristic if taken in isolation.

When the system is not at resonance, in sharp contrast with
the conventional Mollow triplet that retained its qualitative
features (cf. Fig. 1), the Mollow triplet under incoherent
pumping becomes strongly asymmetric, as it recovers the sce-
nario of an anticrossing of two modes. The out-of-resonance
case is studied in details in Fig. 14. Whereas both detuning
and dephasing were needed to break the symmetry of the
conventional Mollow triplet, the one formed under incoherent
pumping is lost by detuning alone, pumping playing already
the role of dephasing. Dephasing has otherwise the expected
effect of smearing out and broadening the spectral features.
Analytical results can also be given for the nonresonant case
when � �= 0, but, as for the conventional Mollow, they are too
long to be reasonably written down. We plot it on top of the
numerical solution in Figs. 12(b) and 12(c), where one can see
the semiclassical approximation is excellent there as well.

V. SUMMARY AND OUTLOOK

We investigated the steady states of the Jaynes-Cummings
Hamiltonian established under the interplay of decay and

-20 0 0 0-20 20 -20 2020

FIG. 14. (Color online) Counterpart of Fig. 1 for the Mollow
triplet under incoherent excitation. In contrast to the coherent
excitation case, detuning alone breaks the Mollow triplet. Parameters
are γa = 0.1g, γσ = 0.01g, Pa = 0, and Pσ = 7g.
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incoherent pumping (of the emitter), including pure dephasing
and detuning for wider generality. This is the simplest and
most fundamental realization of a fully quantized system,
realized with atoms, quantum dots, or superconducting qubits
in a cavity. We identify five regimes through semianalytical
and approximated solutions, all confronted to exact numerical
solutions. These are (1) the linear quantum regime, (2)
the nonlinear quantum regime, (3) the nonlinear classical
regime or lasing regime, (4) the self-quenching regime, and
(5) the thermal regime. We provided closed-form analytical
expressions that account for most of theses regimes and a
simple numerical procedure (solving a set of two coupled
nonlinear equations) that afford an excellent description over
the entire range of excitation and all the five regimes that
we have outlined. This also allows a transparent reading
of the physics involved; namely, the first regime involves
the lowest rung of the Jaynes-Cummings ladder only and
corresponds to spontaneous emission. A linear model (two
coupled oscillators) and a truncated Jaynes-Cummings model
offer two complementary views of this regime. The quantum
regime is the one where the system starts to climb the ladder,
requiring a full record of all the quantum correlators involved.
This is therefore the most complicated regime from the point
of view of the amount of information required to describe it,
since no good approximation can synthesize the dynamics of
a few quanta. In very good systems, this manifests spectrally
in a complex structure of peaks at anharmonic frequencies. As
pumping is further increased, lasing ensues which brings back
the system to a simple level of description in a semiclassical
approximation. A single narrowing line in the cavity or
a variation of the Mollow triplet for the emitter describe
accurately the system. In the fully quantized picture, lasing
appears as a condensate of dressed states, with a complex
pattern that however does not manifest in the observable,
showing a breakdown of the quantized picture in favor of a
classical description.

The Jaynes-Cummings model that arose as a challenge for
full-field quantization [74] remains to this day a proficient
source of theoretical and experimental investigations into
the quantum realm. The realization in the laboratory of the
nontrivial quantum physics that it covers will shed light on
foremost issues such as the quantum-to-classical crossover,
emergence of coherence, lasing, and quantum nonlinearities. A
solid understanding of the various regimes it realizes may also
lead to useful devices and applications, from single-photon
sources to low-threshold lasers.
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APPENDIX A: QUANTUM REGRESSION FORMULA
FOR COHERENT EXCITATION

Two-time correlators of the type 〈σ †(0)σ (τ )〉 can be
computed by means of the quantum regression formula [17].

Once we find the set of operators C{m,n} = σ †mσn (with
m, n ∈ {0,1}) and the regression matrix M

mn
m′n′

that satisfy

Tr[C{m,n}LO] =∑{m′n′} M
mn
m′n′

Tr[C{m′,n′}O] for a general op-

erator O, then the equations of motion for the two-time
correlators (τ � 0) in the steady state (t = 0) read

∂τ 〈O(0)C{m,n}(τ )〉 =
∑
{m′n′}

M mn

m′n′
〈O(0)C{m′,n′}(τ )〉. (A1)

The corresponding regression matrix M is given, in the case of
a coherent and classical excitation of the emitter, as explained
in Sec. II, by

M mn

mn

= i�L(m − n) − γσ

2
(m + n) − γφ

2
(m − n)2,

(A2a)

M mn

1 − m,n

= i�L[m + 2n(1 − m)], (A2b)

M mn

m,1 − n

= −i�L[n + 2m(1 − n)], (A2c)

and zero everywhere else. We concentrate on computing
〈σ †(0)σ (τ )〉, which corresponds to setting O = σ † and having
{m,n} = {0,1} in Eq. (A1). We obtain the following differential
equation:

∂τ vL(τ ) = −MLvL(τ ) + AL〈σ †〉, (A3)

where

vL(τ ) =
⎛
⎝ 〈σ †(0)σ (τ )〉

〈σ †(0)σ †(τ )〉
〈σ †(0)σ †σ (τ )〉

⎞
⎠, AL = i�L

⎛
⎝−1

1
0

⎞
⎠, (A4)

and

ML =
⎛
⎝−i�L + γσ +γφ

2 0 −2i�L

0 i�L + γσ +γφ

2 2i�L

−i�L i�L γσ

⎞
⎠. (A5)

The solution is

vL(τ ) = e−MLτ
[
vL(0) − M−1

L AL〈σ †〉]+ M−1
L AL〈σ †〉, (A6)

in terms of the steady-steady values 〈σ †〉 and vL(0) =
[〈σ †σ 〉,0,0] [initial condition of Eq. (A4)]. We also need,
therefore, to compute the steady state of the system,

uL =
⎛
⎝ 〈σ 〉

〈σ †〉
〈σ †σ 〉

⎞
⎠, (A7)

which can be done, again, by means of the general formula in
Eq. (A1). This time we take O = 1 and {m,n} = {0,1}, {1,0},
{1,1} and find the equation

∂tuL = 0 = −MLuL + AL. (A8)

The solution is uL = M−1
L AL. It allows us to simplify Eq. (A6)

further as

vL(τ ) = e−MLτ [vL(0) − uL〈σ †〉] + uL〈σ †〉. (A9)

The final explicit solutions for the mean values and correlators
of interest are presented in the main text.
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APPENDIX B: DERIVATION OF THE FIELD
CORRELATORS AND DENSITY MATRIX

The equations of motion of the correlators in Eq. (III A) can
be derived from the master equation (III) by simply applying
the general formula 〈O〉 = Tr(Oρ) or from the rules given by
the quantum regression formula [17]:

∂tNa[n] = −n
aNa[n] + n2PaNa[n− 1] + 2gnNi
aσ [n],

(B1a)

∂tNσ [n] = −[
a(n − 1) + 
σ

]
Nσ [n] + Pa(n− 1)2Nσ [n− 1]

+Pσ Na[n−1] − 2gNi
aσ [n], (B1b)

∂tN
i
aσ [n] = −

[

a

2
(2n − 1) + 
σ + γφ

2

]
Ni

aσ [n]

+Pan(n − 1)Ni
aσ [n − 1] + �Nr

aσ [n]

+ g(2Nσ [n + 1] + nNσ [n] − Na[n]), (B1c)

∂tN
r
aσ [n] = −

[

a

2
(2n − 1) + 
σ + γφ

2

]
Nr

aσ [n]

+Pan(n − 1)Nr
aσ [n − 1] − �Ni

aσ [n], (B1d)

with n � 1 and also Na[0] = 1. In the steady state, with Pa =
0, one can further simplify these equations and write Naσ [n]
and Nσ [n] in terms of Na[n] to obtain Eqs. (19).

The master equation (16) can also be rewritten in terms of
the density matrix elements in Eq. (45) as

∂tp0[n] = −[(γa + Pa)n + Pa]p0[n]

+ γa(n + 1)p0[n + 1] + Panp0[n − 1]

−Pσ p0[n] + γσp1[n] − 2g
√

nqi[n], (B2a)

∂tp1[n] = −[(γa + Pa)n + Pa]p1[n]

+ γa(n + 1)p1[n + 1] + Panp1[n − 1]

− γσp1[n] + Pσp0[n] + 2g
√

n + 1qi[n + 1],

(B2b)

∂tqi[n] = −
[

(γa + Pa)n − 
a

2

]
qi[n]

+ γa

√
(n+1)nqi[n + 1]+Pa

√
(n−1)nqi[n−1]

− 
σ+γφ

2
qi[n]+g

√
n(p0[n]−p1[n−1])−�qr [n],

(B2c)

∂tqr [n] = −
[

(γa + Pa)n − 
a

2

]
qr [n]

+ γa

√
(n + 1)nqr [n+1] + Pa

√
(n − 1)nqr [n−1]

− 
σ+γφ

2
qr [n] + �qi[n]. (B2d)

At resonance, the real part of the coherence distribution, qr ,
gets decoupled and vanishes in the steady state. As a result,
only Eqs. (B2b)–(B2d) need to be solved. When g vanishes,
qi does not couple the two modes anymore, and their statistics
become thermal, as in the boson case. Through the off-diagonal
elements qi , the photon density matrix can vary between
Poissonian, thermal (super-Poissonian), and sub-Poissonian
distributions.

In order to solve these equations in the steady state, we
neglect the photonic dynamics (as explained in the main text)

and further substitute qr [n] = [2�/(
σ + γφ)]qi[n] in the
equation for qi , and write everywhere p0[n] as T[n] − p1[n]
and p1[n + 1] as T[n + 1] − p0[n + 1], so that qr [n], p0[n],
p1[n + 1] do not appear explicitly in the remaining three
equations. Then, the equations read in matricial form

∂tu0[n] = −M0[n]u0[n] + A0[n] (B3)

with

u0[n] =
⎛
⎝p0[n + 1]

p1[n]
qi[n + 1]

⎞
⎠, A0[n] =

⎛
⎝γσT[n + 1]

Pσ T[n]
0

⎞
⎠,

M0[n] =

⎛
⎜⎝
σ 0 2g

√
n + 1

0 
σ −2g
√

n + 1
−g

√
n + 1 g

√
n + 1 
σ +γφ

2 + 2�2


σ +γφ

⎞
⎟⎠.

(B4)

The solution in the steady state is u0[n] = (M0[n])−1A0[n]
which gives the result of the text, Eq. (47). Note that this
solution is only exact in the case γa = Pa = 0.

APPENDIX C: PERTURBATIVE REGIME OF
INTERACTION IN THE LIMIT OF WEAK COUPLING

Equation (20) can be solved exactly as a series Taylor
expansion on the pumping Pσ . For this, we rewrite Eq. (20) in
terms of the fraction F [n] = Na[n + 1]/Na[n] (for n > 1):

F [n − 1]

(
F [n] + Bn

An

)
= Cn

An

, (C1)

where

An = 2γa


σ + nγa

, (C2a)

Bn = 1

Ceff[n]
+ nγa


σ + (n − 1)γa

− 2Pσ


σ + nγa

+ 1, (C2b)

Cn = nPσ


σ + (n − 1)γa

. (C2c)

All quantities can be expanded, or assumed to have a
solution in the case of F [n], in power series of Pσ :

Bn

An

=
∞∑

k=0

αk[n]P k
σ ,

Cn

An

=
∞∑

k=0

βk[n]P k
σ , (C3a)

F [n] =
∞∑

k=0

fk[n]P k
σ . (C3b)

A key feature of this expansion is that β0[n] = 0 and
f0[n] = 0 for all n (we recall the linear behavior of na at
low pumping). With this considerations, Eq. (C1) now reads
∞∑

q=1

∞∑
k=1

fq[n − 1](fk[n] + αk[n])P k+q
σ =

∞∑
t=1

βt [n]P t
σ . (C4)

We further change the sum index q, on the left-hand side of
the equation, for t = q + k, so that we can get rid of it and of
the pump dependence:

t∑
k=1

ft−k[n − 1](fk[n] + αk[n]) = βt [n]. (C5)
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The exact solution can be found exactly and recurrently as

f1[n] = β1[n + 1]

α0[n + 1]
, (C6a)

f2[n] = β2[n + 1] − f1[n](f1[n + 1] + α1[n + 1])

α0[n + 1]
, (C6b)

. . . ,

ft [n] = βt [n + 1] − ft−1[n]
∑t−1

k=1(fk[n + 1] + αk[n + 1])

α0[n + 1]
.

(C6c)

This method is only useful in practical terms when the effect
of the coupling is perturbative, that is, at very low pumping
or in the weak coupling regime, where only a few terms of
the expansion are needed. Otherwise, in order to reproduce
nonperturbative effects such as the transition into lasing, the
sum should be performed to all orders of Pσ , which might not
be practical numerically.

APPENDIX D: DERIVATION OF THE
TWO-TIME CORRELATORS

We can obtain the elements ρc
k;l(τ ) needed to compute

the two-time correlators in Eq. (49), in an equivalent way
as ρ[k;l], as they follow the same master equation [61]:
∂tρ[k;l] =∑i,j M[

k; l
i; j ]

ρ[i;j ]. That is, we can solve

∂τρ
c
[k;l](t + τ ) =

∑
i,j

M[
k; l
i; j

]ρc
[i;j ](t + τ ). (D1)

The initial conditions are given in terms of the steady-state
density matrix:

ρc
[k;l](0) = 〈c†(|l〉 〈k|)(0)〉 =

∑
α

ρ[k;α] 〈α| c† |l〉 . (D2)

Let us be more specific by writing the formulas for the
two correlators of interest. For the emitter spectra, we have
〈l1,l2|σ |k1,k2〉 = δl1,k1δl2,0δk2,1, which gives

〈σ †(0)σ (τ )〉 =
nmax∑
n=0

ρσ
[n,1;n,0](τ ). (D3)

For the cavity spectra, we have 〈l1,l2|a|k1,k2〉 =√
k1δl2,k2δl1,k1−1, which gives

〈a†(0)a(τ )〉 =
nmax∑
n=0

∑
i=0,1

√
nρa

[n,i;n−1,i](τ ). (D4)

ρc is obtained by solving the master Eq. (D1) in both cases,
but the initial conditions that follow in each case from
Eq. (D2) are different. For the emitter correlator, they are
ρσ

[n,i;m,j ](0) = ρ[n,i;m,1]δj,0, while for the photon, ρa
[n,i;m,j ](0) =√

m + 1ρ[n,i;m+1,j ]. In the same way as when solving the
steady-state distributions, we write the master equation for
ρc

[n,i;m,j ] only for the elements that will be different from zero
during the evolution with τ . We have to include all the elements
that are nonzero in the initial condition plus those that are
linked to them. One can check that the nonzero elements are
the same for the initial conditions of both the cavity and the

emitter correlators, those defined in Eq. (50). They follow the
equations

∂τS0[n] = −
[
γa + Pa

2
(2n − 1) + Pa

]
S0[n]

+ γa

√
n(n + 1)S0[n + 1]+Pa

√
n(n − 1)S0[n − 1]

− PσS0[n]+γσS1[n]+ig(
√

n−1V [n]−√
nQ[n−1]),

(D5a)

∂τS1[n] = −
[
γa + Pa

2
(2n−1) + Pa

]
S1[n]

+ γa

√
n(n+1)S1[n+1]+Pa

√
n(n − 1)S1[n−1]

+ PσS0[n]−γσS1[n]−ig(
√

n+1V [n+1]−√
nQ[n]),

(D5b)

∂τQ[n] = −[(γa + Pa)n + Pa]Q[n]

+γa(n + 1)Q[n + 1] + PanQ[n − 1]

−
(


σ + γφ

2
− i�

)
Q[n]

+ ig(
√

nS1[n] − √
n + 1S0[n + 1]), (D5c)

∂τV [n] = −[(γa + Pa)n − γa]V [n]

+ γa

√
(n − 1)(n + 1)V [n + 1]

+ Pa

√
n(n−2)V [n−1]−

(

σ + γφ

2
+ i�

)
V [n]

+ ig(
√

n − 1S0[n] − √
nS1[n − 1]). (D5d)

As explained in the main text, we solve these equations by
neglecting the very slow photonic dynamics. We then define
the steady state and slow varying function

X[n] ≡ S0[n](0) + S1[n](0), (D6)

and substitute S0[n] = X[n] − S1[n] and S1[n + 1] =
X[n + 1] − S0[n + 1], so that we can rewrite the equations
in a matricial form (B3):

∂τ u1[n](τ ) = −M1[n]u1[n](τ ) + A1[n] (D7)

with

u1[n] =

⎛
⎜⎝

S0[n + 1]
S1[n]
Q[n]

V [n + 1]

⎞
⎟⎠, A1[n] =

⎛
⎜⎝

γσX[n + 1]
PσX[n]

0
0

⎞
⎟⎠,

and

M1[n] =⎛
⎜⎜⎝


σ 0 ig
√

n + 1 −ig
√

n

0 
σ −ig
√

n ig
√

n + 1
ig

√
n + 1 −ig

√
n


σ +γφ

2 − i� 0
−ig

√
n ig

√
n + 1 0 
σ +γφ

2 + i�

⎞
⎟⎟⎠.

(D8)

The solution in the steady state is

u1[n](τ ) = e−M1[n]τ (u1[n](0) − (M1[n])−1A1[n])

+ (M1[n])−1A1[n]. (D9)
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For the emitter correlator, the initial condition derived from
Eq. (D2) reads

u1[n](0) =

⎛
⎜⎜⎝
(

2�

σ +γφ

+ i
)
qi[n + 1]

0
p1[n]

0

⎞
⎟⎟⎠, (D10)

which implies substituting X[n] = ( 2�

σ +γφ

+ i)qi[n] in A1[n].
The final correlator is found by taking the third element of the
vectorial solution and summing contributions from all rungs:
〈σ †(0)σ (τ )〉 =∑∞

n=0(u1[n])3, which corresponds to Eq. (51a).
For the photonic correlator, the initial condition is

u1[n](0) =

⎛
⎜⎜⎜⎜⎝

√
n + 1p0[n + 1]√

np1[n](
2�


σ +γφ
− i
)√

n + 1qi[n + 1](
2�


σ +γφ
+ i
)√

nqi[n + 1]

⎞
⎟⎟⎟⎟⎠, (D11)

which implies substituting X[n] = √
nT[n] in A1[n]. The final

correlator is found as 〈a†(0)a(τ )〉 =∑∞
n=0[

√
n + 1(u1[n])1 +√

n(u1[n])2], which corresponds to Eq. (51b).

1. Elastic scattering term

The second line in Eq. (D9),

B1[n] = (M1[n])−1A1[n], (D12)

is independent of τ , due to the approximation of infinite
lifetime γa ≈ 0. If γa was of the order of g,
σ , we could
not have assumed X[n] to be τ independent nor, therefore,
B1[n]. In the regime where our approximation is valid, this
term gives rise to the first element in Eq. (53), Ec, which turns

into a delta function at the cavity frequency in the frequency
domain, Eq. (59).

For the emitter, the intensity of this contribution is found
from summing the third element of B1[n], for all rungs n � 0:
Eσ =∑∞

n=0(B1[n])3. For the cavity case, it is found as Eσ =∑∞
n=0[

√
n + 1(B1[n])1 + √

n(B1[n])2].

2. First rung

In principle, we must solve separately the Rabi dynamics
of the first rung with the ground state, n = 0, having a 2 × 2
system (S1[0] = 0 and V [0] = 0):

u1[0] =
(

S0[1]
Q[0]

)
, A1[0] =

(
γσX[1]

0

)
,

M1[0] =
(


σ ig

ig

σ +γφ

2 − i�

)
. (D13)

For the emitter, the initial conditions are

u1[0](0) =
((

2�

σ +γφ

+ i
)
qi[1]

p1[0]

)
. (D14)

In the photonic case, the initial conditions are

u1[0](0) =
(

p0[1](
2�


σ +γφ
− i
)
qi[1]

)
. (D15)

One can check that the solution for n = 0 is finally the same
as taking the limit n → 0 in the expressions we obtained for
n > 1. Therefore, there is no further need of separating the
Rabi from the rest of rungs in our expressions, although it
will find simpler expressions for the quantities of interest. For
instance, if γσ = 0, in both cases, A1[0] = 0 and the solution
simplifies to u1[0](τ ) = e−M1[0]τ u1[0](0).
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[24] S. André, P.-Q. Jin, V. Brosco, J. H. Cole, A. Romito,

A. Shnirman, and G. Schön, Phys. Rev. A 82, 053802 (2010).

043816-20

http://dx.doi.org/10.1103/RevModPhys.73.565
http://dx.doi.org/10.1103/RevModPhys.73.565
http://dx.doi.org/10.1038/nphys227
http://dx.doi.org/10.1103/RevModPhys.73.357
http://dx.doi.org/10.1103/RevModPhys.73.357
http://dx.doi.org/10.1038/456458a
http://dx.doi.org/10.1103/PhysRevA.46.5944
http://dx.doi.org/10.1103/PhysRevA.50.4318
http://dx.doi.org/10.1103/PhysRevA.50.4318
http://dx.doi.org/10.1103/PhysRevA.48.732
http://dx.doi.org/10.1103/PhysRevA.55.3923
http://dx.doi.org/10.1103/PhysRevA.55.3923
http://dx.doi.org/10.1103/PhysRevA.60.3267
http://dx.doi.org/10.1103/PhysRevA.59.4756
http://dx.doi.org/10.1134/1.1405210
http://dx.doi.org/10.1134/1.1528672
http://dx.doi.org/10.1364/JOSAB.21.002025
http://dx.doi.org/10.1364/JOSAB.21.002025
http://dx.doi.org/10.1134/S1054660X08060157
http://dx.doi.org/10.1134/S1054660X08060157
http://dx.doi.org/10.1088/1367-2630/11/2/023030
http://dx.doi.org/10.1088/1367-2630/11/2/023030
http://dx.doi.org/10.1103/PhysRevB.79.235326
http://dx.doi.org/10.1103/PhysRevB.79.235326
http://dx.doi.org/10.1103/PhysRevB.82.205330
http://dx.doi.org/10.1103/PhysRevB.82.205330
http://dx.doi.org/10.1364/OE.18.007002
http://dx.doi.org/10.1364/OE.18.009909
http://dx.doi.org/10.1364/OE.18.009909
http://dx.doi.org/10.1103/PhysRevB.81.245419
http://dx.doi.org/10.1103/PhysRevLett.105.233601
http://dx.doi.org/10.1103/PhysRevLett.105.233601
http://dx.doi.org/10.1080/09500340903580807
http://dx.doi.org/10.1103/PhysRevA.82.053802


REGIMES OF STRONG LIGHT-MATTER COUPLING UNDER . . . PHYSICAL REVIEW A 84, 043816 (2011)

[25] P. Gartner, e-print arXiv:1105.2189.
[26] B. R. Mollow, Phys. Rev. 188, 1969 (1969).
[27] A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever,

and H. J. Kimble, Phys. Rev. Lett. 93, 233603 (2004).
[28] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang,

J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Nature
(London) 431, 162 (2004).
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S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L.
Reinecker, and A. Forchel, Nature (London) 432, 197 (2004).

[31] T. Yoshie, A. Scherer, J. Heindrickson, G. Khitrova, H. M. Gibbs,
G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, Nature
(London) 432, 200 (2004).

[32] E. Peter, P. Senellart, D. Martrou, A. Lemaı̂tre, J. Hours, J. M.
Gérard, and J. Bloch, Phys. Rev. Lett. 95, 067401 (2005).

[33] J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J.
Kimble, Nature (London) 425, 268 (2003).

[34] O. Astafiev, K. Inomata, A. O. Niskanen, T. Yamamoto, Y. A.
Pashkin, Y. Nakamura, and J. S. Tsai, Nature (London) 449,
588 (2007).

[35] M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa,
Nature Phys. 6, 279 (2010).

[36] F. Y. Wu, R. E. Grove, and S. Ezekiel, Phys. Rev. Lett. 35, 1426
(1975).

[37] G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and
V. Sandoghdar, Nature Phys. 4, 60 (2008).

[38] O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov Jr., Y. A.
Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S.
Tsai, Science 327, 840 (2010).

[39] C. Lang et al., Phys. Rev. Lett. 106, 243601 (2011).
[40] A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe,

W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, Phys.
Rev. Lett. 99, 187402 (2007).

[41] A. N. Vamivakas, Y. Zhao, C.-Y. Lu, and M. Atatüre, Nature
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