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Spin-to-orbital momentum conversion via electro-optic Pockels effect in crystals
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In the present work we have demonstrated a possibility for operation by orbital angular momentum (OAM)
of optical beams via the Pockels effect in solid-crystalline materials. Based on the analysis of an optical Fresnel
ellipsoid perturbed by a conically shaped electric field, we have shown that the point groups of crystals convenient
for the conversion of spin angular momentum (SAM) to OAM should contain a threefold symmetry axis or a
sixfold inversion axis. The results of our experimental studies and theoretical simulations of the SAM-to-OAM
conversion efficiency carried out for LiNbO3 crystals agree well with each other.
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I. INTRODUCTION

The interest of researchers in operation by orbital angular
momentum (OAM) of optical beams is caused by novel
possibilities appearing in relation with quantum computing,
cryptography, and quantum teleportation [1–3]. Following
from the principles of singular optics [4], these possibilities
appear if one uses spin angular momenta (SAMs) and OAMs
of optical beams, which represent quantum quantities. The
SAM associated with orthogonal circular polarizations of
light can acquire only two values expressed in units of h̄

as s = +1 and s = −1 [5], while the OAM value can, in
principle, be infinite (l = 0, ± 1, ± 2, . . .) [6]. Hence, the
OAM has some advantages in the information processing,
when compared with the SAM, since a single photon has
only two distinct spin states and infinitely many distinct OAM
states. In such a case, the information can be encoded by
multiplying a number of distinguishable states, because a
photon can carry an arbitrarily large amount of information
distributed over its spin and orbital quantum states [7]. Thus,
alternative possibilities for applications of these quantum
properties of photons arise, e.g., utilization of qubits and
qudits in the information processing performed in quantum
computers. They are capable of considerable increase in the
information content which can be simultaneously processed. A
problem which should still be solved when realizing quantum
photonic encoding consists in a need for developing efficient
methods for SAM-to-OAM conversion.

It has been shown [8–11] that so-called q plates which
represent specific liquid-crystalline plates revealing a struc-
tural defect in the geometrical center of the plate, with a
topological charge equal to unity, facilitate efficient SAM-
to-OAM conversion performed with the aid of temperature
tuning or electro-optic operation of orientation of the director.
In case of propagation of a nearly plane circularly polarized
light wave through such a plate, the outgoing helical mode
acquires an OAM equal to ±2. The work by Brasselet
[12] has demonstrated experimentally that the optical phase
singularities can be written or erased using giant optical Kerr
nonlinearities of liquid crystals. Notice that liquid crystals
have a number of disadvantages, when compared with their
solid analogs. For instance, they manifest low response speeds
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due to their viscosity, are relatively unstable, cannot be used
for operation of powerful laser radiation, and often reveal
unnecessary nonlinear responses. Thus, it seems reasonable to
consider solid-crystalline materials as material media relevant
for the SAM-to-OAM conversion. In the study by Ciattoni
et al. [13], a conservation law for the angular momentum has
been considered for the case of paraxial beam propagation
along the optic axis of uniaxial crystals. It has been shown that
the exchange between the intrinsic momentum and the orbital
one leads to saturation at the outgoing face of the sample;
i.e., the intrinsic part vanishes while the orbital one amounts
to the total angular momentum flux. The SAM-to-OAM
conversion has been also demonstrated [14] to take place under
propagation of white Gaussian beams along the optic axis of
calcite crystals. Using crystal slabs of different thicknesses,
the authors have experimentally studied dynamics of the
optical SAM-to-OAM conversion, along with beam shape
transformations for the coupled doubly charged optical vortex
and nonsingular Gaussian mode. Recently we have suggested
a method for the SAM-to-OAM conversion that employs
solid-crystalline materials subjected to torsion stresses [15,16].
Then the emergent light beam should have the OAM equal
to ±1, whereas the topological defect strength associated
with optical indicatrix orientation is equal to ±1/2, in terms
commonly used for the liquid-crystal-based singular optics.
As a consequence, the OAM would be described by a set of
even quantum numbers l = 0, ± 2, ± 4 . . . in the case of
the q plates with the unit topological defects [8], [11], and
a set of discrete values l = 0, ± 1, ± 2, . . . in case of the
solid crystals. In other words, utilization of the latter should
increase twice the number of states in which information
can be encoded. On the other hand, the piezo-optic effect
associated with torsion stresses is rather difficult to accomplish
in practice when designing relevant devices and, moreover,
some additional piezoelectric transducers are necessary in
order to convert electrical signals to mechanical stresses.

Hence, development of direct, electrically driven, operation
of the OAM on the basis of solid-crystalline materials
represents an important problem. In our last work [17] it has
been shown that the electric field with a special configuration
applied to electro-optic crystals can lead to the appearance of
OAM in the outgoing light beam, provided that the incident
circularly polarized beam propagates along the optic axis
direction. It has also been found that the topological charge of
the outgoing helical mode is equal to unity. Furthermore, we
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have demonstrated on the canonical examples of electro-optic
crystals of LiNbO3 and LiTaO3 that the efficiency of the SAM-
to-OAM conversion can be gradually operated by the electric
field, using a Pockels effect. Then the following question
arises: Which of the point symmetry groups describing solid
crystals are appropriate for the SAM-to-OAM conversion
via the Pockels effect? This represents the main goal of the
present work. In addition, an experimental verification of the
electro-optic control of the SAM-to OAM conversion will also
be reported.

II. BASIC RELATIONS AND RESULTS OF SIMULATION

As already mentioned, we have earlier demonstrated that
a spatial distribution of optical birefringence induced by
torsion stresses reveals a singular point of zero birefringence,
which belongs to the torsion axis [18–22]. In general, the
coordinate distribution of the torsion-induced birefringence
has a conical shape. Due to this distribution, the outgoing
wave acquires a helical phase and an OAM. It has been
shown in [17] that, while searching electro-optic analogs of the
torsion-induced spatial birefringence distributions, one should
proceed from the following requirements: A crystal has to be
noncentrosymmetric and an electric field should be spatially
distributed in a specific manner, with a singular value at the
line parallel to the beam axis Z, which crosses the geometrical
center of its XY cross section (here and below the axes of
the coordinate system XYZ are parallel to the eigenvectors of
the Fresnel ellipsoid). The conditions mentioned are satisfied
when a “conical” spatial distribution of the electric field (see
Fig. 1) is created in crystals [17]. Such a distribution can be
produced by two circular electrodes attached to the front and
back XY faces of a sample. When the electrodes essentially
differ by their radiuses (e.g., the radius of one of them tends to
zero), the projections E1 = Ex and E2 = Ey of the electric field

FIG. 1. Schematic presentation of a crystalline plate with circular
electrodes e1 and e2, and a conical spatial distribution of electric field
produced by these electrodes.

would appear. Then the electric field components are given by
the relations

E1 = kX, E2 = kY, E3 = kZ, (1)

where

k = U

d

Z

X2 + Y 2 + Z2
. (2)

In the spherical coordinate system defined by X =
ρ sin � cos ϕ, Y = ρ sin � sin ϕ, and Z = ρ cos �, we obtain

E1 = U

d

tan �

1 + tan2 �
cos ϕ, (3)

E2 = U

d

tan �

1 + tan2 �
sin ϕ, (4)

E3 = U

d(1 + tan2 �)
, (5)

where U denotes the applied electric voltage, d the thickness
of a crystalline plate, and E0 = U/d. One can see that the E1

and E2 components are equal to zero when � = 0 (a case of
homogeneous field, with the field lines parallel to the Z axis)
and increase with increasing � and decreasing d. Notice that
the electric field appearing behind the cone limited by the field
lines presented in Fig. 1 is neglected.

The electro-optic Pockels effect is described by the relation
�Bi = rijEj , with rij being the electro-optic tensor compo-
nents and �Bi the increments of the optical impermeability
tensor. The electro-optic tensor has the following form:

E 1 E 2 E 3

1 r11 r12 r13

2 r21 r22 r23

3 r31 r32 r33

4 r41 r42 r43

5 r51 r52 r53

6 r61 r62 r63

, (6)

where the tensor components displayed by grey color are of no
practical importance in the present analysis. Since the optical
beam propagates along the Z axis, we may consider only the
XY cross section of the Fresnel ellipsoid in what follows.
The equation of the XY cross section of the optical indicatrix
perturbed by the mentioned field configuration reads as

(B1 + r11E1 + r12E2 + r13E3)X2

+ (B1 + r21E1 + r22E2 + r23E3)Y 2

+ 2(r61E1 + r62E2 + r63E3)XY = 1, (7)

where the components should E1 and E2 play a major part.
Based on the above analysis, one has to select the point
symmetry groups for which the coefficients r11, r12, r21, r22,
r61, and r62 do not equal zero. Moreover, the crystals which
belong to these symmetry groups should be optically isotropic
or uniaxial in order to fulfill the condition for existence of the
singular birefringence point, i.e., a zero birefringence value in
the center of the XY cross section. The trigonal and hexagonal
groups 3m, 32, 3, 6̄, and 6̄m2 belong to such systems.

The common feature of these groups is a threefold axis
(the groups containing the threefold axis are subgroups of
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those with the inversion sixfold axis). The noncentrosymmetric
cubic groups 23 and 4̄3m also contain a threefold axis along
[111] directions, although their coefficients r11, r12, r21, r22,
r61, and r62 written in the eigen (crystallographic) coordinate
system are equal to zero. Nonetheless, if we rewrite the
tensor in a coordinate system where the Z′ axis becomes
parallel, e.g., to [111] direction, these coefficients should
not remain zero (notice that the analogical procedure has
been used when analyzing the OAM induced via piezo-optic
effect under crystal torsion [16]). Thus, we start our analysis
with the cubic crystals for the case when a nearly plane
optical wave propagates along the Z′ axis belonging to (110)
plane (see Fig. 2), in particular along the threefold symmetry
axis (i.e., the direction [111] of the principal coordinate
system).

A. Cubic crystals of the symmetry groups 23 and 4̄3m

The electro-optic tensor written in the principal coordinate
system for the crystals belonging to the point symmetry groups
23 and 4̄3m is given by a single independent electro-optic
coefficient r41 (r41 = r52 = r63). However, if one rewrites the
tensor in the coordinate system of which the Z′ axis is parallel
to the direction that belongs to the (110) plane (see Fig. 2,

where the angle between the Z′ and Z axes is equal to α), the
coefficients under interest are given by

r ′
11 = r ′

22 = −3
√

2

4
r41 sin3 α,

(8)

r ′
12 = r ′

21 = r ′
61 = r ′

62 =
√

2

4
r41(1 + 3 cos2 α) sin α.

Besides, as seen from Eq. (7), the coefficients r13, r23, and
r63 can also induce the birefringence whenever r13 �= r23 and
r63 �= 0. The relations for these tensor components rewritten
in the primed coordinate system have the following form:

r ′
13 = r ′

23 = − 3
2 r41 sin2 α cos α,

(9)
r ′

63 = 1
2 r41(3 cos2 α − 1) cos α.

It is easily seen that r ′
13 is equal to r ′

23, irrespective of the
α values. However, we have r63 = 0 only when α = 90◦ (the
[110] direction) or 54.74◦ (the [111] direction). The depen-
dences of the appropriate electro-optic tensor coefficients on
the angle α are displayed in Fig. 3.

The relations for the birefringence and the angle of optical
indicatrix rotation may be expressed as

�nX′Y ′ = −1

2
n3

√
(r ′

11 − r ′
12)2(EX′ − EY ′ )2 + 4[r ′

12(EX′ + EY ′) + r ′
63EZ′]2

= −1

2
n3E0

Z′

X′2 + Y ′2 + Z′2

√
(r ′

11 − r ′
12)2(X′ − Y ′)2 + 4[r ′

12(X′ + Y ′) + r ′
63Z

′]2, (10)

tan 2ζZ′ = 2[r ′
12(EX′ + EY ′) + r ′

63EZ′]

(r ′
11 − r ′

12)(EX′ − EY ′)
= 2[r ′

12(X′ + Y ′) + r ′
63Z

′]
(r ′

11 − r ′
12)(X′ − Y ′)

. (11)

Z

Z'

Y

Y'
X'

X 45

FIG. 2. Schematic representation of rotation of our working
coordinate system with respect to the crystallographic one, which
is used in order to describe the electric-field-induced birefringence
appearing for the propagation directions defined by angle α.

In general, as seen from Fig. 3, a number of special values
of the α angle should be considered separately, namely:
α = 0◦ (r ′

11 = r ′
22 = r ′

12 = r ′
21 = r ′

13 = r ′
23 = 0, r ′

63 = r41),
α = 90◦ (r ′

63 = r ′
13 = r ′

23 = 0, r ′
12 = r ′

21 = 0.35 r41, r ′
11 =

FIG. 3. (Color online) Dependences of relative electro-optic
tensor coefficients r ′

ij /r41 on the angle α: r ′
11/r41 (half-filled circles),

r ′
12/r41 (filled circles), r ′

13/r41 (crosses), and r ′
63/r41 (filled triangles).
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(a) (b) (c)

FIG. 4. (Color online) Spatial distributions of the effective birefringence induced by conically shaped electric field in the X′Y ′ plane of
Bi12TiO20 crystals (a) α = 0◦, (b) α = 54.74◦, (c) α = 90◦ (see also Supplemental Material [24]).

r ′
22 = −1.06 r41), and α = 54.74◦ (r ′

12 = r ′
21 = −r ′

13 =
−r ′

23 = −r ′
11 = −r ′

22 = 0.57 r41, r ′
63 = 0).

The spatial distributions of the effective birefringence (i.e.,
the birefringence appearing in an inhomogeneous sample for
certain directions of light propagation) and the angle of optical
indicatrix rotation simulated for Bi12TiO20 crystals taken as an
example of cubic electro-optic crystals are presented in Figs. 4
and 5, respectively. Here the point symmetry group is 23, n =
2.56, and r41 = 5.7 × 10−12 m/V at λ = 632.8 nm [23]. The
rest of the parameters are taken to be R = 0.01 m (the larger
electrode radius), d = 0.005 m (the sample thickness), and U
= 5000 V. Continuous changes in the effective birefringence
and the angle of optical indicatrix rotation occurring with
changing α angle are illustrated using multimedia [24]. Notice
that the spatial distributions of the effective birefringence
presented in Fig. 4 have been obtained using integration of
the phase difference along the direction of light propagation
based on the function given by formula (10). In other words,
the mean value of the phase difference function over the
optical path has been derived on the basis of the evident
relationship �	 = − 2π

λ

∫ d
ρ ′d
R

�nX′Y ′dZ′. As shown in [17,22],

the mean value of the phase difference function is equal to the
effective phase difference calculated using a straightforward
Jones matrix approach.

As seen from Fig. 4(a), at α = 0◦ the module of the effective
birefringence has a maximum in the center of the X′Y ′ cross

section and follows to zero with increasing distance ρ ′ (here the
polar coordinate system is introduced, with X′ = ρ ′ cos ϕ and
Y ′ = ρ ′ sin ϕ). The angle of optical indicatrix rotation is equal
to 45◦ throughout all the X′Y ′ cross section [see Fig. 5(a)]. In
fact, following from Eqs. (8)–(11) we have

�nX′Y ′ = −n3E0
Z′2

ρ ′2 + Z′2 r41

= −n3E0
Z′2

ρ2
r41 and ζZ′ = 45◦, (12)

so that, at ρ ′ = 0, the module of the induced birefringence
reveals a maximum (�n

ef

X′Y ′ = −n3E0r41). Hence, the spatial
distribution of the effective birefringence has a singular point
in the center of the X′Y ′ cross section. However, this singular
point cannot lead to the appearance of screw dislocation of the
phase front of the emergent beam (as well as the appearance
of an optical vortex and an OAM) because of lack of any
dependence of ζZ′ (and so of the phase of light wave) on
the tracing angle ϕ. Moreover, the intensity of light emergent
from the system consisting of a sample placed between circular
polarizers is not equal to zero at ρ ′ = 0, being dependent on
the electrically induced phase difference.

With increasing α angle (see Figs. 4 and 5, and the
Supplemental Material [24]), the maximum of the effec-
tive birefringence is gradually replaced by its minimum

(a) (b) (c)

FIG. 5. (Color online) Spatial distribution of the angle of optical indicatrix rotation induced by conically shaped electric field in the X′Y ′

plane of Bi12TiO20 crystals (a) α = 0◦, (b) α = 54.74◦, (c) α = 90◦ (see also Supplemental Material [24]).
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(�n
ef

X′Y ′ = 0). Notice that the coordinates of the minimal
effective birefringence correspond to those for which the
angle of optical indicatrix rotation has indefinite value. At
α = 54.74◦ [see Figs. 4(b) and 5(b)], the point that corresponds
to zeros of the effective birefringence and indefinite indicatrix
rotation angle occupies the center of the X′Y ′ cross section.
Following from Eqs. (8)–(11), one can write for this case:

�nX′Y ′ = −
√

2

3
n3r41E0

ρ ′

ρ2
Z′, (13)

tan 2ζZ′ = − (X′ + Y ′)
(X′ − Y ′)

= −cos ϕ + sin ϕ

cos ϕ − sin ϕ

= tan

(
3π

4
− ϕ

)
or ζZ′ = 3π

8
− ϕ

2
. (14)

Thus, the optical indicatrix rotation angle changes twice
as slowly than the tracing angle ϕ, beginning from the initial
value ϕ0 = 3π/8 that corresponds to the appearance of a pure
screw dislocation of the phase front of the emergent light and
the OAM equal to unity (see our recent works [15,16]).

When considering the central point of the X′Y ′ cross
section as a defect on the spatial map of the optical indicatrix
orientation and using definitions usual for the liquid-crystal
terminology, one can see that the topological strength of this
defect is equal to q = ±1/2 and the angle ζZ′ amounts to half
the angle ϕ. It is obvious that the sign of the optical indicatrix
rotation would reverse whenever the sign of the applied electric
field does so. This corresponds to a sign reversal of the induced
effective birefringence and the optical indicatrix rotation by
90◦. Contrary to the torsion-induced birefringence [15,16], the
birefringence caused by the electric field reveals nonlinear
dependences on both coordinates X′ and Y ′, which in general
are defined by the ratio ρ ′Z′/ρ2.

The induced effective birefringence reveals a circular
distribution in the X′Y ′ plane [see Fig. 4(b)], being equal
to zero at the geometrical center of the X′Y ′ cross section.
A typical spatial distribution of the effective birefringence
along the X′ axis is shown in Fig. 6. It is evident from Fig. 6

FIG. 6. (Color online) Dependence of the effective birefringence
of Bi12TiO20 crystals induced by the electric voltage 5 kV on the X′

coordinate.

that the module of the effective birefringence increases with
increasing |X′| coordinate, tending from a zero value at X′ =
0 to its maximum at X′

max = ±4.0 mm. Note that the X′
max

value is independent of either the electro-optic coefficient or
the electric voltage applied. Further increase in X′ produces
a decrease in the induced value |�n

ef

X′Y ′ |. The coordinate
dependence of the effective birefringence mentioned above
is caused by the two mechanisms: (i) increase in |�n

ef

X′Y ′ |
occurring with increasing |X′|, due to increasing E1 and
E2 projections, and (ii) decrease in |�n

ef

X′Y ′ | occurring with
increasing |X|, due to decreasing effective optical path (i.e.,
the optical path in that part of the crystal which is subjected to
the electric field).

It has been shown in [17] that the appropriate analytical
relationship describing the effective birefringence distribution
corresponds to the relation for the mean value of the function

�n
ef

X′Y ′ = − n3r41E0Rρ ′
√

6d(R − ρ ′)
ln

(ρ ′2 + d2)R2

(R2 + d2)ρ ′2 . (15)

As a consequence, the minimization procedure yields the
following radius that corresponds to the extreme �n

ef

X′Y ′
value:

ρ ′
max = d

√
−W

(− 2R2e−2

R2+d2

)[
W

(− 2R2e−2

R2+d2

) + 2
]

W
(− 2R2e−2

R2+d2

) + 2
, (16)

where W (− 2R2e−2

R2+d2 ) implies the Lambert-W function. This is
why the mentioned radius depends only on the geometrical
parameters of the sample and the electrodes.

With further increase in the angle α (see Figs. 4 and 5), the
ring of the maximum effective birefringence values with the
unchangeable height is gradually transformed into the ring
with changeable height, the latter being dependent on the
tracing angle ϕ (see Fig. 7). At α = 90◦, the relations for
the birefringence and the optical indicatrix rotation angle are
given by the formulas

�nX′Y ′ = − 1

2
√

2
n3r41E0

ρ ′Z′

ρ2

√
5 − 6 sin ϕ cos ϕ, (17)

tan 2ζZ′ = − X′ + Y ′

2(X′ − Y ′)
= − cos ϕ + sin ϕ

2(cos ϕ − sin ϕ)

= 1

2
tan(3π/4 − ϕ),

ζZ′ = 1

2
arctan

[
1

2
tan(3π/4 − ϕ)

]
. (18)

Equation (17) is similar to Eq. (13), with the only
difference being that the extra factor

√
5 − 6 sin ϕ cos ϕ =√

5X′2 − 6X′Y ′ + 5Y ′2 appearing in Eq. (17) represents the
relation for the oval. Hence, the total effective birefringence
distribution is given by multiplication of the function of the
oval and the function �nX′Y ′ ∼ E0ρ

′Z′/ρ2, which describes
a craterlike spatial birefringence distribution [see Figs. 4(b)
and 6]. Let us note that such spatial birefringence distribution
produces a mixed screw-edge dislocation of the phase front of
the outgoing optical wave (see [15,21,25]). This is a reason
why the dependence of the optical indicatrix rotation angle on
the tracing angle [see Eq. (18) and Fig. 5(c)] is nonmonotonic.
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(a) (b)

(c)

FIG. 7. (Color online) Spatial distributions of the effective birefringence induced in Bi12TiO20 crystals by the electric voltage 5 kV at
(a) α = 0◦, (b) α = 54.74◦, and (c) α = 90◦.

In other words, in the case of α = 90◦ we will deal with
the mixed screw-edge dislocation of the phase front of light
emerging from the system consisting of a sample placed
between the crossed circular polarizers. Finally, the changes
in the angle α from the zero value to 90◦ should lead to the
appearance of the screw dislocation of the phase front, which
occupies the center of the X′Y ′ cross section at α = 54.74◦.
Further increase in α results in a mixed screw-edge dislocation.
The pure screw dislocation of the phase front, and so the optical
vortex and the OAM, can be observed when the circularly
polarized light propagates along the [111] direction in the
cubic crystals of the point symmetry groups 23 and 4̄3m, and
the conically shaped electric field is applied.

B. Trigonal and hexagonal crystals of the point symmetry
groups 3m, 32, 3, 6̄, and 6̄m2

Now we write out the relations for the birefringence
and the rotation angle of optical indicatrix induced in the
crystals belonging to the point symmetry groups 3m (m⊥X),
32 (2 ‖ Y ), and 6̄m2 (m⊥X) in the case when the conically

shaped electric field is applied along the optic axis and the
light propagates along the same direction:

�nXY = −n3
or22E0

Z
√

X2 + Y 2

X2 + Y 2 + Z2
= −n3

or22E0
ρ ′

ρ2
Z, (19)

tan 2ζZ = X

Y
= cot ϕ, or ζZ = π

4
− ϕ

2
, (20)

where no means the ordinary refractive index. These relations
are almost the same as Eqs. (13) and (14) that describe the
birefringence and the optical indicatrix rotation in the cubic
crystals, provided that the electric field is applied along the
[111] direction and the light propagates in the same direction
[see Figs. 4(b) and 5(b)]. Hence, now we will deal with a
canonical vortex of which OAM is equal to unity. On the
other hand, for the crystals belonging to the point symmetry
groups 3 and 6̄ the corresponding relations have somewhat
different form:

�nXY = −n3
o

√
r2

11 + r2
22E0

Z
√

X2 + Y 2

X2 + Y 2 + Z2

= −n3
o

√
r2

11 + r2
22E0

ρ ′

ρ2
Z, (21)
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tan 2ζZ = − r22X + r11Y

r11X − r22Y
= − r22 cos ϕ + r11 sin ϕ

r11 cos ϕ − r22 sin ϕ
,

(22)
or ζZ = π

2
− ϕ0 − ϕ

2
,

where ϕ0 = 1
2 arctan r22

r11
. The latter case differs from the former

only by the initial indicatrix rotation angle ϕ0, which is now
defined by the ratio of electro-optic tensor components.

III. SAM-to-OAM CONVERSION IN LITHIUM
NIOBATE CRYSTALS

Lithium niobate crystals LiNbO3 are canonical electro-
optic materials that belong to the symmetry group 3m. Let
us analyze the appearance of the OAM in the emergent light
beam that has passed through an optical system consisting
of a right-handed circular polarizer, a crystalline sample
subjected to the electric field of conical configuration, and
a left-handed circular polarizer. Notice that the incident beam
can be represented by a nearly plane wave and the SAM equal
to Sinc = −h̄. The electric field of the emergent light may be
written as

Eout (ρ ′,ϕ) = EA cos
�	(ρ ′)

2

[
1

±i

]

+ iEA sin
�	(ρ ′)

2
e±i2qϕ±i2α0

[
1

∓i

]
, (23)

where 2q = m = 1 is the helicity number and EA the wave
amplitude. The first term in Eq. (23) describes the plane
wave with the same SAM as in the incident one (i.e., −h̄),
while the second one corresponds to the wave with the helical
wave front that carries some OAM (see [11]). Since the angular

momentum must be conserved, one can write the following
relation for the SAM-to-OAM conversion:

J inc = J out + M, (24)

where J inc = Sinc = −h̄ is the total angular momentum of
the incident photon, J out = Lout + Sout = −2qh̄ + h̄ = 0 the
total angular momentum of the emergent photon (Sout = +h̄,
Lout = −2qh̄), and Lout the OAM of the latter. The mechanical
angular momentum transferred to the crystalline sample due
to the Beth effect [5] is therefore equal to M = −h̄. However,
the latter relation which reflects the fact of conservation of
the angular momentum has been written under the condition
�	 = π , though the phase difference can depend on the
module ρ ′. In this case one should take into account that
the plane wave described by the first term of Eq. (23), with
the SAM equal to −h̄, also emerges from the sample. Then the
efficiency of the SAM-to-OAM conversion is defined by the
ratio

η = I out
l

I inc
r

, (25)

where I inc
r is the intensity of the right-handed incident wave

and I out
l that of the left-handed outgoing wave.

The XY intensity distribution for the outgoing beam can
be calculated using the Jones matrices [15,17]. Since the
birefringence depends on all the coordinates X, Y, and Z, it
is convenient to divide the sample by n homogeneous layers
perpendicular to the Z direction. In its turn, each of the layers is
divided by kl homogeneous elementary cells in the XY plane. In
practice, we have used division given by k = 100, l = 100, and
nmax = 1–100. One can use a standard Jones matrix approach
for simulating the electrically induced phase difference. The
resulting Jones matrix may be written as

Jkl =
nmax∏
n=1

∣∣∣∣∣
(
ei�	n

kl/2 cos2 ζ n
kl + e−i�	n

kl/2 sin2 ζ n
kl

)
i sin

(
�	n

kl/2
)

sin 2ζ n
kl

i sin
(
�	n

kl/2
)

sin 2ζ n
kl

(
ei�	n

kl/2 sin2 ζ n
kl + e−i�	n

kl/2 cos2 ζ n
kl

)
∣∣∣∣∣, (26)

where �	n
kl = 2πdn

kl

λ
(−n3

0r22
U
d

Z
√

X2+Y 2

X2+Y 2+Z2 ) and ζ n
kl = 1

2 arctan X
Y

represent, respectively, the phase difference and the angle of
optical indicatrix rotation within the elementary cells, and dn

kl is
the thickness of the cell along the direction of light propagation
(r22 = 3.4 × 10−12m/V and no = 2.286 [26]). Let E1, E2 and
Ekl

1 , Ekl
2 be the components of, respectively, the input and

output Jones vectors, and JQWP−, JQWP+ and JA the Jones
matrices of the quarter wave plates rotated by 90◦ and the
analyzer. Then we have

(
Ekl

1

Ekl
2

)
= JAJQWP−J klJQWP+

(
E1

E2

)
, (27)

where

E1 = 1, E2 = 0, JA =
(

0 0

0 1

)
,

JQWP− =
( 1√

2
ei π

4
1√
2
e−i π

4

1√
2
e−i π

4
1√
2
ei π

4

)
, (28)

JQWP+ =
( 1√

2
e−i π

4
1√
2
ei π

4

1√
2
ei π

4
1√
2
e−i π

4

)
.

The resulting intensity for each of the elementary beams is
determined by the relation

(Ikl)
out
l =

(
Ekl

1

Ekl
2

)(
Ekl∗

1

Ekl∗
2

)
. (29)

The appropriate spatial intensity distributions calculated
for different electric voltages are presented in Fig. 8, while
the dependences of the efficiency η on the voltage are given
in Fig. 9. The points in Fig. 9 correspond to the data obtained
experimentally, whereas the curve gives the efficiency of the
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FIG. 8. Spatial intensity distributions for the beam of 8.5 mm radius emergent from the system consisting of orthogonal circular polarizers
and a sample of LiNbO3 in between (a) 5.0, (b) 10.0, and (c) 20.0 kV (simulation results); (d) 10.0 kV (experimental result).

SAM-to-OAM conversion calculated theoretically following
from the Jones matrix approach and the known values of
electro-optic coefficients for the LiNbO3 crystals. As seen
from Figs. 8(a)–8(c), the outgoing light beam corresponds to
a pure doughnut mode that bears the OAM. The efficiency of
the SAM-to-OAM conversion calculated theoretically reaches
∼30% at ∼19 kV for LiNbO3 crystals, if the beam radius is
equal to ρ ′ = R. This efficiency can be further increased by
decreasing the light beam radius.

FIG. 9. (Color online) Dependences of efficiency of the SAM-to-
OAM conversion on the electric voltage applied to LiNbO3 crystals:
Curve corresponds to calculations and points to experimental results.

The lithium niobate crystal sample used in our experiment
was prepared as a parallelepiped, with its faces perpendicular
to the Z axis. The sample had a thickness of 8.5 mm along
the Z axis. The electric field was applied as shown in Fig. 1.
The electrode with the smaller radius was fabricated using a
metallic wire with a diameter of 0.2 mm, while the electrode of
the larger radius (R = 8.0 mm) was made as a thin glass plate
coated by a transparent conducting SnO layer. The light of a
He-Ne laser (wavelength of λ = 632.8 nm) propagated along
the same Z axis which represents the optic axis of our crystal.
An experimental setup for the birefringence measurements
is shown in Fig. 10. We made the probing beam circularly
polarized, since it is not sensitive to the orientation of the
optical indicatrix. The angle between the principal axes of a
quarter-wave plate and the transmission direction of polarizer
8 was equal to 45◦. In this case the sample can be modeled a
linear phase retarder, for which the dependence of the output
intensity I on the analyzer azimuth β is expressed as

I = I0

2
[1 + sin �	 sin 2(β − ζZ)]

= C1 + C2 sin 2(β − C3), (30)

where ζZ is the orientation angle of the optical indicatrix and
�	 = 2π�nXY d/λ the optical phase difference. After record-
ing and filtering an output image, azimuthal dependences of
the intensity I were fitted by the sine function for every pixel
of the image, with the fitting coefficients

C1 = I0

2
, C2 = I0

2
sin �	, C3 = ζZ. (31)
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FIG. 10. Scheme of our imaging polarimeter (I: light source section; II: polarization generator; III: sample section; IV: polarization analyzer;
V: controlling unit). 1: He-Ne laser; 2: ray shutter; 3, 8: polarizers; 4, 9: quarter-wave plates; 5: coherence scrambler; 6: beam expander; 7:
spatial filter; 10: analyzer; 11: objective lens; 12: CCD camera; 13: TV monitor; 14: frame grabber; 15: PC; 16: shutter’s controller; 17: step
motors’ controllers; 18: step motors; 19: reference position controller.

It is seen that the optical phase difference �	 is determined
by the coefficients C1 and C2:

sin �	 = C2/C1, (32)

while the angular orientation of the intensity minimum is
determined by the orientation of principal axis ζZ of the optical
indicatrix and the coefficient C3. Hence, fitting of dependences
of the light intensity behind the analyzer upon the azimuth
for each pixel of the sample image enables the construction
of two-dimensional maps of optical anisotropy parameters of
the sample under study (the optical phase difference and the
optical indicatrix orientation).

While studying the optical indicatrix rotation, we exploited
an imaging polarimetric setup (Fig. 10), in which linearly
polarized incident light was used. An analyzer (10) was
placed into the extinction position with respect to a polarizer.
The crossed polarizers were simultaneously rotated by 180◦
with steps of 5◦. The rotation stage angles corresponding to
minimums of the transmitted light intensity detected by a CCD
camera were ascribed to the extinction positions (i.e., to the
orientation angles of optical indicatrices in different parts of
the image).

Finally, when checking the appearance of the optical
vortices, we used a wide circularly polarized incident beam
propagating along the Z axis of LiNbO3 subjected to a
conically shaped electric field. A circular polarizer was used
behind a crystalline sample, with its circularity sign opposite
to that of the input polarizer. Then an additional quarter-
wave plate was placed between a sample (Sec. III) and an
analyzer (10).

As seen from Fig 8(d), the shape of the doughnut mode
obtained experimentally agrees well with that estimated
theoretically (Fig. 8(b). The central dark spot where the
optical vortex is located [Figs. 8(b) and 8(d)] corresponds
to the coordinates of zeros of the phase difference [Figs. 11(a)
and 8(b)] and to the singular point of the optical indicatrix
rotation angle [Fig. 11(c)]. Here the map of the optical
indicatrix orientation in the XY plane is characterized by

the topological defect with strength equal to 1/2 (the optical
indicatrix rotation angle is twice as small when compared with
the tracing angle), so that the vortex transferred by the outgoing
beam should be characterized by the OAM equal to unity. It
should be noted that the screwlike distribution of the optical
indicatrix rotation observed around the vortex core is a strong
argument for appearance of the helical mode. Obviously,
the orientation of the azimuth of the polarization ellipse for
the light emerging from the sample follows the orientation
of the principal axes of optical indicatrix; i.e., it rotates by
the angle β = 180◦ when the tracing angle changes by �ϕ =
360◦. The change in the azimuth orientation of the polarization
ellipse equal to 180◦ corresponds to the change by 360◦ for
the phase of the light wave, due to the relation β = πd�n/

λ = �	/2.
The efficiency of the SAM-to-OAM conversion increases

with increasing electric voltage, making it possible to operate
the conversion efficiency using the Pockels effect in solid-
crystalline materials. Somewhat high experimental noise seen
in Fig. 9 is mainly caused by the initial optical inhomogeneity
of our LiNbO3 crystals. Nonetheless, one can notice that
the experimental results obtained by us are in fairly good
agreement with the theoretical consideration presented above.
The efficiency of the SAM-to-OAM conversion reached in our
experiment is ∼10% at 10 kV.

IV. CONCLUSIONS

In the present work we have demonstrated a possibility for
operation by OAM of optical beams based on the Pockels
effect in solid-crystalline materials. Using the analysis of
optical indicatrix perturbed by a conically shaped electric field
we have proven that the point symmetry groups of crystals
convenient for the SAM-to-OAM conversion should contain
the threefold symmetry axis or the sixfold inversion axis. It has
also been shown that, in the cubic crystals of the symmetry
groups 32 and 4̄3m, a canonical vortex (i.e., a screw dislocation
of the phase front) should appear whenever the light propagates
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(a) (b)

(c)

FIG. 11. (Color online) Experimental distributions of the phase difference induced by electric voltage U = 9 kV in LiNbO3 crystals in the
XY plane (a) and along the X axis (at Y = 0) (b), and experimental distributions of the optical indicatrix rotation angle in the XY plane.

along the [111] direction, the conical electric field is applied
along the same direction, and the sample is placed between
the crossed circular polarizers. The simultaneous changes in
the directions of light propagation and electric field result in
displacement of the optical field singularity out of the beam
and/or replacement of the pure screw dislocation by the mixed
screw-edge dislocation of the phase front.

For the crystals belonging to the trigonal and hexagonal
systems, the application of a conically shaped electric field
along the optic axis leads to appearance of the pure screw
dislocation of the phase front, with the unit topological charge.

The results of the experimental studies and the theoretical
simulations of the SAM-to-OAM conversion efficiency carried
out for the case of LiNbO3 crystals are shown to be in good
agreement. The fact of appearance of the pure doughnut mode
under the action of electric field in LiNbO3 is experimentally
detected. Moreover, we have checked experimentally that the
efficiency of the SAM-to-OAM conversion can reach ∼10%
at the electric voltage of 10 kV. The results presented in this
work open a possibility for direct operation by OAM of optical
beams using electric fields via the Pockels effect in solid-
crystalline materials.
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