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Spectrum of second-harmonic radiation generated from incoherent light
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Department of Quantum Electronics, Vilnius University, Sauletekio Avenue 9, Building 3, LT-10222 Vilnius, Lithuania

(Received 15 April 2011; published 5 October 2011)

We report on the development of the theory of second-harmonic generation by an incoherent pump with
broad angular and frequency spectra. We show that spatial as well as temporal walk-off effects in a nonlinear
crystal result in angular dispersion of the second-harmonic radiation. We demonstrate that the acceptance angle
in second-harmonic generation by incoherent light is caused by the width of the pump angular spectrum and the
resulting angular dispersion of second-harmonic radiation but does not depend on crystal length. In this case the
frequency spectrum of second-harmonic radiation is determined by its angular dispersion and the pump angular
spectrum. The theory is supported by an experiment in which a LiIO3 crystal was pumped by a tungsten halogen
lamp.
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I. INTRODUCTION

Since its first demonstration in 1961 [1], second-harmonic
(SH) generation has traditionally been studied in the frame-
work of laser physics. Several papers published in the same
decade [2–4] on the upconversion of incoherent light did not
give rise to an extensive study of the subject. Meanwhile, laser-
excited SH generation is frequently used for transformation of
the frequency of laser radiation and it has already become
a standard procedure. The main reason that research into
incoherent pumping and its applications did not continue
may be its low conversion efficiency, of the order of 10−12.
Nevertheless, the idea of incoherent excitation resulted in
several interesting theoretical works. For example, in 2001
Picozzi and Haelterman showed that it is possible to generate
a parametrically coherent signal by use of an incoherent
pump [5,6]. Another wave, the idler, remains incoherent and
the process takes place if the group velocities of the two
incoherent waves, pump and idler, coincide and differ from
the group velocity of the signal wave. Recently, in Ref. [7],
it was shown that a similar effect can be observed in the
process of SH generation from temporally incoherent light.
It was shown that the SH frequency spectrum narrows and the
conversion is more efficient if the proper angular dispersion
of the fundamental wave is chosen. The predictions of Picozzi
and Haelterman as well as of Piskarskas et al. [7] have not yet
been confirmed experimentally. On the other hand, in the early
experimental papers [2–4], an attempt was made to explain the
observed phenomena, e.g., the conversion efficiency as well
as SH spectral profiles were calculated and compared to the
measured ones. Still a detailed theoretical overview of the
problem is missing; for example, what determines the spectral
width of the second harmonic?

So, in the present study we turn to a more realistic model
than that in Refs. [5–7], which describes the fundamental wave
as a spatially and temporally incoherent wave. It is revealed
that both spatial and temporal walk-off have to be taken into
account in order to explain the observed angular distribution of
SH frequency components. It is demonstrated by the use of the
phase-matching conditions as well as numerical calculations
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that the spectrum of the SH obeys an angular dispersion. The
dispersion angle is determined by both spatial and temporal
walk-off parameters. The result is confirmed experimentally.
Further study shows that in the chosen nonlinear crystal
(LiIO3) the frequency bandwidth of the SH is determined by
the angular bandwidth of the fundamental wave rather than by
its frequency bandwidth. We demonstrate that SH generation
can be effective even when the angular bandwidth of the pump
exceeds by 100 times the acceptance angle of the nonlinear
crystal. We present a theoretical formula which describes
how the conversion efficiency of the SH is determined by
the angular and frequency bandwidths of the fundamental
wave. It is interesting to note that a similar expression was
obtained in Ref. [8], where SH generation from a regular
wave in the presence of both temporal and spatial walk-off
was investigated. Finally, it is demonstrated that SH spectral
radiance grows faster than linearly with the crystal length, and
there exists the possibility of exceeding the spectral radiance
of the fundamental wave by SH generation from an incoherent
source.

The paper is organized as follows. The theory is derived
in Sec. II starting with analysis of the angular dispersion law
of the SH determined by the phase-matching conditions. The
numerically calculated spectra are presented and discussed in
Sec. III. In Sec. IV the experimental results obtained with
a tungsten halogen lamp pump are compared to the ones
calculated theoretically. The conclusions are drawn in Sec. V.

II. PHASE-MATCHING CONDITIONS

Let us examine for simplicity the phase-matching condi-
tions of the SH generation process in the xz plane:

k1 sin θ1 + k2 sin θ2 = k3 sin θ3, (1a)

k1 cos θ1 + k2 cos θ2 = k3 cos θ3, (1b)

ω1 + ω2 = ω3, (1c)

where the indices 1, 2, and 3 correspond to the first and second
fundamental waves and the SH wave, respectively. k is the
wave number and ω the cyclic frequency. The angle θ is the
angle in the xz plane with respect to the z axis. The type-I phase
matching in a nonlinear crystal is considered, so k1 = k1(ω1),
k2 = k2(ω2), and k3 = k3(ω3,θ3). The z axis corresponds to the
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direction of collinear phase matching at the same frequency
ω10 of both fundamental waves:

k1(ω10) = k2(ω10) = k3(2ω10,0)/2. (2)

Let us denote k10 = k1(ω10), k30 = k3(ω30,0), and ω30 = 2ω10.
Further, we bring into consideration the frequency shifts �j :

ωj = ωj0 + �j, j = 1,2,3. (3)

In the experiment discussed below these shifts satisfy the
condition �j/ωj0 < 0.3. Then we can use the Taylor ex-
pansion of kj : k1 = k10 + �1/u10 + g10�

2
1/2, k2 = k20 +

�2/u20 + g20�
2
2/2, k3 = k30 + �3/u30 + g30�

2
3/2 + k30γ θ3,

where uj0 is the group velocity, u−1
j0 = (dkj/dωj )ωj0 , and

gj0 = (d2kj/dω2
j )ωj0 is the group velocity dispersion coef-

ficient. γ < 0 is the walk-off angle in a LiIO3 crystal. From
Eqs. (1c) and (3) it follows that

�1 + �2 = �3. (4)

Let us consider the paraxial approximation. Then sin θ ≈ θ ,
cos θ ≈ 1 − θ2/2, and from Eqs. (1a) and (2) we obtain

θ1 + θ2 ≈ 2θ3. (5)

By use of Eqs. (1), (4), and (5) we find the angular dispersion
relation of the fundamental wave at exact phase matching:

m2
0

(
�1

ω10
− D

)2

− (θ1 − θ3)2 − 2h(D,θ3) = 0, (6)

where

h(D,θ3) = νcD

n10
+ m2

0

(
g30

g10
− 1

2

)
D2 − |γ |θ3, (7)

m2
0 = ω2

10g10/k10, D = �3/ω30, ν = 1/u30 − 1/u10 is the
group velocity mismatch, and n10 is the refractive index of
the fundamental wave at frequency ω10. As a result, the SH
wave at fixed values �3 and θ3 is generated in a phase-matched
way by various fundamental plane waves whose frequencies
�1 and angles θ1 obey the dispersion relation (hyperbola)
given by Eq. (6). The corresponding dispersion curves of
the fundamental wave are presented in Fig. 1. These and
further calculations were performed for type-I phase matching
in a LiIO3 crystal. The Sellmeier equations from Ref. [9]
were adopted. The points lying on the dashed line (h = 0)
correspond to the collinear phase matching of fundamental
waves at equal frequencies �1 = �2 = �3/2. In this case the
corresponding angular dispersion law of the SH wave is

νcD0

n10
+ m2

0

(
g30

g10
− 1

2

)
D2

0 − |γ |θ30 = 0. (8)

If we neglect the small D2
0 values, then h = 0 yields a linear

angular dispersion law for the spectrum of the SH wave at
collinear interaction:

D0 ≈ |γ |n10

νc
θ30. (9)

The dispersion is determined by the walk-off angle γ as well
as the temporal walk-off ν. In this case the angular dispersion
curves of the fundamental wave are two intersecting straight
lines. If D �= D0 and θ3 �= θ30, then h �= 0, and the angular

FIG. 1. (Color online) The angular dispersion curves of the
fundamental wave at exact phase matching for h = 0 (intersecting
straight solid red lines) and h �= 0 (hyperbolas). h < 0, D − D0 =
1.4 × 10−4, θ3 − θ30 = 10−4 rad (a, dotted blue curves); h > 0, D −
D0 = −10−4, θ3 − θ30 = 0.8 × 10−4 rad (b, dotted green curves). The
collinear phase matching of fundamental waves at equal frequencies
is also shown (�1 = �2 = �3/2, h = 0, dashed black line). LiIO3

crystal with central fundamental wavelength λ10 = 905 nm. θ1 is
given in radians.

dispersion curve of the fundamental wave is a hyperbola
(Fig. 1).

III. COUPLED EQUATIONS OF SECOND-HARMONIC
GENERATION

Now let us examine the coupled equations of SH generation
which describe the variation of the complex amplitudes Aj in
a nonlinear medium in the presence of temporal as well as
spatial walk-off:

∂A1

∂z
= i

g10

2

∂2A1

∂t2
− i

2k10

∂2A1

∂x2
+ σA∗

1A3, (10a)

∂A3

∂z
= −ν

∂A3

∂t
+ γ

∂A3

∂x
+i

g30

2

∂2A3

∂t2
− i

2k30

∂2A3

∂x2
+ σA2

1;

(10b)

here σ = defω
2
30/(2c2k30) is the coupling coefficient, and def

is the effective quadratic susceptibility. For simplicity only
one transverse coordinate x is taken into account; z is the
longitudinal coordinate, and t is the time.

We note that Eqs. (10) coincide with Eqs. (31) in Ref. [7]
when γ = 0. In Ref. [7] it was supposed that the interacting
waves are of high spatial coherence. Now we assume that
the fundamental wave is spatially incoherent, so the spatial
walk-off has to be taken into account, γ �= 0.

Let us bring into the consideration the spectral radiance
Sj = 1

4π2 〈|aj |2〉, where aj is the Fourier transform of Aj :

aj (�,β) =
∫ ∞

−∞

∫ ∞

−∞
Aj (t,x) exp[−i(�t − βx)]dt dx.

(11)

The angular brackets 〈· · ·〉 denote the average over the
realizations. We assume that the amplitude of the fundamental
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FIG. 2. Angular distribution of SH frequency components
S3(D,θ3), calculated by the use of Eq. (13). Crystal length z 200 μm
(left) and 2 cm (right). LiIO3 crystal, type-I phase matching. Central
wavelength of the fundamental wave λ10 = 905 nm. Parameters
a = 0.28, b = 0.032. θ3 is given in radians.

wave A1(t,x) is a stationary Gaussian noise and the spectral
radiance S1 is Gaussian:

S1 = S0 exp

[
− �2

1

��2
1

− θ2
1

�θ2
1

]
, (12)

where ��1 and �θ1 are the bandwidths of the frequency and
angular spectra, respectively. Then, if the nonlinear term in
Eq. (10a) is neglected, the spectral radiance of the SH radiation
reads [7]

S3(D,θ3,z)

S0
= 2

πab

(
z

Ln

)2

exp

[
−2

D2

a2
− 2

θ2
3

b2

]

×
∫ ∞

−∞

∫ ∞

−∞

sin2 F

F 2
exp

[
−2

ξ 2

a2
− 2

η2

b2

]
dξdη,

(13)

where F = α[m2
0ξ

2 − η2 − 2h], α = πzn10
λ10

, h is defined by
Eq. (7), a = ��1/ω10, b ≡ �θ1, and λ10 is the central
wavelength of the fundamental wave. Ln = (σA10)−1 is the
nonlinear interaction length, where A10 = 〈|A1|2〉1/2 is the
average amplitude of the fundamental wave at z = 0. An
analysis of Eq. (13) shows that, when α 	 1 or z 	 λ10, a
narrow maximum of the spectrum S3 for fixed value θ3 is
obtained at h = 0. The condition h = 0 corresponds to the
collinear phase matching (dashed line in Fig. 1) discussed in
the previous section. The calculated angular distributions of
SH frequency components at two different crystal lengths are

presented in Fig. 2. Both spectra clearly show the presence
of angular dispersion. We note that the width �θ3 of the SH
angular spectrum depends on the parameter b, but does not
depend on crystal length (compare Figs. 2 left and right) as it
should in the case of monochromatic fundamental radiation. So
the acceptance angle in SH generation by incoherent waves due
to angular dispersion of the SH wave is caused by the width of
the angular spectrum of the fundamental wave �θ1. In this case
the width ��3 of the SH frequency spectrum is determined
by the parameter b (or �θ1) as well as by the angular
dispersion of SH radiation. The calculated dependences of
the SH central spectral component S30 = S3(0,0) and the
frequency bandwidth ��n

3 at θ3 = 0 (normalized to its initial
value at z ≈ 0) on the propagation length in a nonlinear crystal
are presented in Fig. 3. So a significant monochromatization
of SH radiation (by three orders of magnitude) at a fixed value
θ3 takes place in a 2-cm-length crystal. By use of Eq. (13) we
find that S30 ∼ z2 as z → 0 and S30 ∼ z3/2 at z � 1 mm and
b � a. So the SH spectral radiance can exceed the spectral
radiance of the fundamental wave [Fig. 3 (solid line)]. In
this case the nonlinear term in Eq. (10a) could be omitted
because the conversion efficiency at z = 40 cm is equal to
0.44. The conversion efficiency was calculated by the use of
Eq. (18) given below. In practical applications, extension of
the effective length of the crystal may be achieved by locking
the SH radiation into the cavity.

Further we will calculate the intensity of the SH wave,
I3 ∼ 〈|A3|2〉, where

〈|A3|2〉 = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
S3(�3,β3)d�3dβ3. (14)

By use of the approximations sin2 F/F 2 ≈ exp(−κ2F 2), κ ≈
1√
3

≈ 0.58, and in the case of linear angular dispersion of the

SH wave (h ≈ νcD
n10

− |γ |θ3), integration of the spectrum S3

over �3 and β3 gives

〈|A3|2〉 = 4ω10k10z
2S0

m0καL2
n

∫ ∞

0

∫ π

0
e−ρ2 cos2 ϕ−pρ−qρ cos ϕdρ dϕ,

(15)

where

p =
√

1 + 2κ2α2

[ (
νc

n10
a

)2

+ γ 2b2

] (
1

m2
0a

2
+ 1

b2

) /
(κα),

(16)

q =
√

1 + 2κ2α2

[ (
νc

n10
a

)2

+ γ 2b2

] (
1

m2
0a

2
− 1

b2

) /
(κα).

In a 2-cm-long LiIO3 crystal at λ10 = 905 nm as in experiment
we find κα ≈ 8 × 104. If

p + q 	 1 and p − q 	 1, (17)

then the term ρ2 cos2 ϕ in the power of the exponent of Eq. (15)
can be neglected, and

∫ ∞
0

∫ π

0 exp(−pρ − qρ cos ϕ)dρ dϕ =

π (p2 − q2)−1/2. In this case, taking into account that L−2
n =

1
4π

σ 2S0ω10k10ab, Eq. (15) at large values κα 	 1 gives

〈|A3|2〉 = 4
√

2π5/2n10c
2σ 2S2

0

κλ3
10

a2b2z√
(νca/n10)2 + γ 2b2

; (18)
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FIG. 3. Calculated S30/S0 (solid line) and normalized frequency
bandwidth ��n

3 of the SH at θ3 = 0 (dashed line). LiIO3 crystal,
type-I phase matching. Central wavelength of the fundamental
wave λ10 = 905 nm. Parameters a = 0.28, b = 0.032. Nonlinear
interaction length Ln = 2 cm.

compare to Eq. (20) in Ref. [8]. For a 	 b as in experiment
the conditions (17) can be rewritten as a � 2

√
2νc

n10m
2
0

≈ 3.3, b2 �
2
√

2νc
n10

a ≈ 0.18a, and Eq. (18) takes the form

〈|A3|2〉 ∼ σ 2S2
0zab2. (19)

So the SH intensity in the one-dimensional (x) case depends
quadratically on the width of the angular spectrum of the
fundamental wave. This result is determined by the dispersion
curves of the fundamental wave which are presented in
Fig. 1. Each plane monochromatic SH wave is created in
a phase-matched way by various fundamental waves whose
frequencies �1 and angles θ1 obey the dispersion relation given
by Eq. (6). For example, at h = 0 this dispersion curve is a
straight line and its length is determined by the parameter b.
Then the summation over all angles θ1 leads to quadratic
dependence of the SH intensity on the parameter b. We
note that in the two-dimensional case (x,y) Eq. (19) can be
written as

〈|A3|2〉 ∼ σ 2S2
0zab4, (20)

and for the SH power P3 we obtain

P3 ∼ P 2
1 z/a, (21)

where P1 ∼ S0ab2 is the power of the fundamental wave. It
means that the SH power rises by a second-order dependence
on the pump power independently of its spatial content.

IV. EXPERIMENT

A simplified scheme of the experimental setup, which is
a modification of the one presented in Ref. [10], is shown in
Fig. 4. It consists of a halogen lamp (Halostar 64440 S from
OSRAM GmbH) as the light source, a 20-mm-long LiIO3

crystal cut for Type-I interaction, θ = 35◦, and an ANDOR
iDus420-OE camera cooled down to −55 ◦C as a light sensor.
Colored glass filters F1 and F2 provide isolation of the source
light passing directly to the CCD sensor up to 10−15. The
filters in combination with the transmittance of the rest of

HAL

C
C

D

L1

A1

L2

M2

M1

L3 LiIO3 F1F2 IF

FIG. 4. (Color online) Simplified experimental setup: HAL, light
source halogen lamp; LiIO3, second-harmonic-generation crystal;
CCD, light power sensor based on a CCD camera; F1, short-wave
cutoff filter; IF, interference filter; F2, long-wave cutoff filter;
L1,L2,L3, lenses; A1, aperture of spatial filter; M1, broadband
dielectric mirror; M2, Au metallic mirror.

the optics formed a pump bandwidth of 0.73–1.2 μm and
a detection bandwidth of 390–550 nm. The pump beam is
formed by two complex lenses L1 (focal length f = 50 mm
achromat) and L2 (two lenses with f = 420 mm mounted
side by side) with the image of the tungsten wire formed
inside the nonlinear crystal. The iris aperture A1 controls the
angular bandwidth of the pump, maintaining a uniform angular
distribution up to 75 mrad. The angular bandwidth without the
aperture is 150 mrad; some angular components are cut by the
aperture of the mirror M2 and therefore the angular spectrum
is not perfectly uniform. The SH radiation passing through the
long-wave cutoff filter F2 is imaged from the nonlinear crystal
onto the CCD camera by the lens L3 (combination of f = 178
mm and f = 100 mm achromats).

The power of the second harmonic shows a second-order
dependence on pump power when the rest of the parameters
of the pump (angular and frequency spectra) are kept constant;
see [2,10]. Characterization of the upconverted field is rather
complicated because of very low power conversion efficiency.
The SH power is too low to be sent into the spectrometer in
order to record the wavelength spectra directly. An insufficient
amount of light may be fed through the input slit of the
spectrometer because of poor coherence, which prevents the
SH beam from being focused into a small spot. Therefore,
the interference filters IF were used in order to evaluate SH
spectra without significant modification of the existing setup.
The dependence of the SH wavelength on crystal orientation
may be obtained by recording the dependences with multiple
interference filters. A set of Lorenz function transmittance
filters with bandwidth 5–9 nm was used to measure multiple
power dependences on crystal orientation. The resulting SH
peak power wavelength dependence on orientation of the
crystal is shown in Fig. 5. In this figure the measured curve
is compared to the calculated angular dispersion law. The
theoretical dispersion law was obtained from the condition
h = 0. Good agreement between experiment and theory was
obtained.

Evaluation of the spectrum profile relies on the idea that
the wavelength spectrum of the pump is very broad, and
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FIG. 5. Measured (black line) and calculated (gray line) angular
dispersion law of the second harmonic (obtained as second-harmonic
power peak). LiIO3 crystal, type-I phase matching. The angle θ is
calculated with respect to the optical axis of the crystal. Central
wavelength of the fundamental wave λ10 = 905 nm.

it can be expected that the SH spectrum is dependent on
rotation of the nonlinear crystal. Whatever the profile of
the SH spectrum, it will change rather uniformly, mainly
by shifting the central frequency. As a result, by rotation of
the crystal and recording of the power passing through the
narrowband filter, a signal equivalent to that of a convolution
transformation is obtained. The SH spectrum shown in Fig. 6
was obtained by deconvoluting the result of a crystal rotation
experiment, performed with a Gaussian transmittance filter of
7 nm bandwidth (full width at half maximum) at 455 nm.
The correspondence of the SH central wavelength to a certain
crystal orientation was obtained from the results in Fig. 5. The
experimental data in Fig. 6 are compared to the theoretical
ones. In the experiment the frequency spectral width of the

FIG. 6. Measured spectrum of the second harmonic (black line)
and calculated spectral profile at h = 0, Eq. (13) (gray line). Crystal
length z = 2 cm. LiIO3 crystal, type-I phase matching. Central
wavelength of the fundamental wave λ10 = 905 nm. Parameters
a = 0.28, b = 0.032.

fundamental wave, a = 0.28, is much larger than the angular
spectral width, b = 0.032. Thus the frequency spectral width
of the SH wave is determined by the parameter b rather than
by a [Fig. 2 (right)]. The calculated spectral profile at h = 0 as
well as the measured SH spectrum are depicted in Fig. 6. The
reason for the difference in the spectra could be the theoretical
assumption that the spectrum of the fundamental wave is Gaus-
sian. In the experiment, the frequency as well as the angular
spectral profile differ from those of a Gaussian profile. The
measured as well as the calculated frequency spectral width
is ∼20 nm. The experimentally measured power conversion
efficiency was equal to 4.8 × 10−12. A value of the same
order was obtained in [2]. The theoretical conversion efficiency
μ = 〈|A3|2〉

〈|A1|2〉 was evaluated by use of Eq. (18). An experimental

value 〈|A1|2〉 = A2
10 = 1

4π
S0abω10k10 was obtained from the

equation A2
10 = 2I/(cε0n10), where I = P/s is the intensity

of the fundamental wave, and P = 130 mW and s = 0.63 cm2

are the power and irradiated area, respectively. We also took
into account that the input light was not linearly polarized,
and that the polarization factor was equal to 0.6. As a result,
the obtained efficiency μ at λ30 = 475 nm and crystal length
z = 2 cm was 3.2 × 10−10.

The SH power dependence on angular bandwidth of the
pump is shown in Fig. 7. The present measurement may answer
whether the pump acts as a superposition of independent
pump portions or as an ensemble. The power of the pump
increases by a square law, increasing the angular bandwidth of
the constant radiance source. The irradiated area in the crystal
also remains unchanged. The SH power dependence on angular
bandwidth would be of the second order if the pump acted as a
superposition of noninteracting waves, each in its own spatial
acceptance bandwidth range, which could be expected, taking
into account that the acceptance bandwidth, in the case of a
monochromatic fundamental wave for a 2-cm-length crystal,
is 0.3 mrad. The dependence, recorded experimentally and
obtained by simulation, is of the fourth order, which means
that the whole wave packet acts simultaneously and the SH

FIG. 7. Dependence of the output power of the second harmonic
on external angular bandwidth be of the fundamental wave. Circles,
measured; line, fit of the fourth order.
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power still rises by a second-order dependence on pump power
and does not depend on the angular content of the pump.

V. CONCLUSIONS

The theory of SH generation by an incoherent fundamental
wave with simultaneous temporal and spatial walk-offs has
been developed. It is revealed that SH radiation generated
by incoherent light obeys a linear angular dispersion law
which is determined by the temporal as well as the spatial
walk-off. It is demonstrated that the power of the SH increases
with pump power as a quadratic law independently of its
angular content, if the relative frequency bandwidth of the
fundamental wave ��1/ω10 significantly exceeds the width

of its angular spectrum �θ1 (a 	 b). As a result, we conclude
that the acceptance angle in SH generation by incoherent
waves is caused by the angular bandwidth of the fundamental
wave. The significant enhancement of the acceptance angle in
comparison with the case of a monochromatic fundamental
wave is conditioned by the angular dispersion of the SH
radiation. The frequency spectrum of the SH radiation is
determined by the angular bandwidth of the fundamental wave
and the angular dispersion of the SH radiation. It is shown that
the dependence of the SH spectral radiance on crystal length
is greater than linear (∼z3/2). In this case an enhancement
of the SH spectral radiance in comparison with that of the
fundamental wave is possible. A good agreement between
theoretical and experimental data was obtained.
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