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We apply the input-output theory of optical cavities to formulate a quantum treatment of a continuous-wave
singly resonant optical parametric oscillator. This case is mainly relevant to highly nondegenerate signal and
idler modes. We show that both intensity and quadrature squeezing are present and that the maximum noise
reduction below the standard quantum limit is the same at the signal and idler frequencies as in the doubly
resonant case. As the threshold of oscillation is approached, however, the intensity-difference and quadrature
spectra display a progressive line narrowing which is absent in the balanced doubly resonant case. By use
of the separability criterion for continuous variables, the signal-idler state is found to be entangled over wide
ranges of the parameters. We show that attainable levels of squeezing and entanglement make singly resonant
configurations ideal candidates for two-color quantum information processes, because of their ease of tuning in
experimental realizations.
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I. INTRODUCTION

Squeezed states of light, where the noise in one quadrature
of the fields is reduced below the vacuum level, are important
elements in several applications, such as sub-shot-noise phase
measurements [1,2], interferometric detection of gravitational
radiation [3,4], and quantum information with continuous
variables [5]. In the last case, squeezed states are used to
generate continuous-variable entanglement and achieve high
fidelity in quantum teleportation protocols [5]. To squeeze
quantum fluctuations of the electromagnetic field one needs
nonlinear optical effects such as parametric down-conversion
or four-wave mixing [6]. In parametric down-conversion a
pump photon at frequency ωp splits into a photon at frequency
ωs , the signal, and another at ωi , the idler, by interacting with a
nonlinear crystal with a second-order nonlinear susceptibility
χ (2) [6]. The strong nonlinearities required to achieve large
noise reductions are, however, uncommon in many crystals.
To overcome this limitation, optical cavities are used to form
an optical parametric oscillator (OPO). In this case, by setting
the device into resonance at the desired frequencies, the
oscillation buildup inside the cavity increases noise reduction
by considerably extending the interaction time. Theoretical
and experimental efforts in nondegenerate cases have mainly
concerned the doubly (or even triply) resonant configurations
where both the signal and idler fields are resonant [7–9]. The
singly resonant cavity is in principle a simpler configuration
to realize experimentally but, to the best of our knowledge,
theoretical investigations of squeezing and entanglement of
the light from a singly resonant OPO (SROPO) are missing.
One of the reasons is that SROPOs operate with strongly
nondegenerate frequencies while much of the literature on
squeezing focuses on the degenerate or close-to-degeneracy
cases [10,11]. Recent interest in nonclassical correlations
of the strongly nondegenerate regime of parametric down-
conversion [12] makes the study of entanglement in SROPOs
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important for the optimization of coherent sources with fluc-
tuations below the shot-noise level. There are clear technical
advantages for SROPO configurations: only resonance of the
signal field has to be maintained, and continuous temperature
tuning and suppression of mode hopping are possible. It is the
aim of this work to investigate the squeezing and entanglement
properties of a SROPO when signal and idler fields have
large frequency separations (two-color case). Our approach is
similar to what has been used in the case of second-harmonic
generation [13,14], namely, a two-photon loss model in which
a cavity mode is coupled quadratically to a continuum of
output modes rather than linearly, as usual in the input-output
formulation of optical cavities.

II. QUANTUM LANGEVIN EQUATION

We consider parametric down-conversion in a monolithic
cavity, resonant with the signal field only, and pumped with
a monochromatic classical beam of ampliude αp at frequency
ωp (see Fig. 1). By assuming perfect collinear phase matching
and considering energy conservation, one has [6]

�kp = �ks + �ki, (1)

ωp = ωs + ωi, (2)

where �kp, �ks , and �ki are the wave vectors of the pump, the
signal, and the idler fields, respectively. In the case of perfect
phase matching, the frequencies of the signal and idler fields
depend only on the frequency of the pump and the orientation
of the crystal with respect to the direction of the pump beam.
The quantum-mechanical Hamiltonian for the system in the
rotating-wave approximation is

H = Hsys + Hbath,1 + Hbath,2 + Hint,1

+Hint,2 + Hint,3, (3)

where Hsys is the sum of the free energies for the single
signal mode as and the continuum of idler modes b(ω) treated
here within the approach of [15]; Hbath,1 is the free energy
of bosonic heat bath modes c1(ω) providing a description
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FIG. 1. The singly resonant OPO cavity scheme. αp is the input
pump amplitude, ain

1 and bin are the input signal and idler fields, and
aout

s and bout are the output signal and idler fields.

of the field external to the cavity and coupled to the signal
because of nonperfect reflection of the mirrors [16]; Hint,1 in
the Hamiltonian (3) represents the interaction of the signal
mode with this heat bath, describing the damping of the
signal mode caused by the nonzero transmittivity of the cavity;
Hbath,2 is the free energy of different bosonic heat bath modes
c2(ω) while the term Hint,2 is the interaction between the
signal field and these modes, describing the damping of the
signal mode associated with other loss mechanisms, like other
mirror transmissions or crystal absorptions and diffraction;
the term Hint,3 is the interaction between signal and idler
modes and the pump field αp describing the process of
parametric down-conversion inside the nonlinear crystal [6]. In
the rotating-wave approximation, all these terms have explicit
forms given by

Hsys = h̄ωsa
†
s as + h̄

∫ ∞

−∞
dω ωb†(ω)b(ω), (4)

Hbath,1 = h̄

∫ ∞

−∞
dω ωc

†
1(ω)c1(ω), (5)

Hbath,2 = h̄

∫ ∞

−∞
dω ωc

†
2(ω)c2(ω), (6)

Hint,1 = ih̄

∫ ∞

−∞
dω κ1[c1(ω)a†

s − c
†
1(ω)as], (7)

Hint,2 = ih̄

∫ ∞

−∞
dω κ2[c2(ω)a†

s − c
†
2(ω)as], (8)

Hint,3 = ih̄

∫ ∞

−∞
dω κ3[b†(ω)a†

s αp − b(ω)asα
∗
p]. (9)

The coupling constants κ1, κ2, and κ3 are considered to be
independent of the frequency ω according to the Markov
approximation. We also consider the following commutation
relations for the modes:

[as,a
†
s ] = 1, (10)

[ci(ω),c†i (ω′)] = δ(ω − ω′), (11)

[b(ω),b†(ω′)] = δ(ω − ω′), (12)

where i = 1,2 while all the other commutators are identically
zero. For the nonresonant idler field we use the theory of
Collett and Levien [13], who showed that systems described
by a continuum of mode operators b̄(ω) and possessing an

isolated mode of particular interest can be redescribed in terms
of an orthonormal set formed by this one mode and a new
continuum b(ω). From (3)–(9) one can derive a linearized
Heisenberg-Langevin equation of motion for the fluctuations
of the signal field below the threshold of oscillation in the
interaction picture:

d

dt
as = γ (ε2 − 1)as −

√
2γ εb†in +

√
2γ1a

in
1 +

√
2γ2a

in
2 ,

(13)

where bin is the idler field noise, γ1 = κ2
1 π is the signal cavity

damping rate, and ain
1 are the input vacuum modes entering

the cavity from the environment. The term γ2 = κ2
2 π is the

intracavity loss rate, mainly due to absorption by the crystal,
while ain

2 is the quantum noise associated with this loss and
defined in the usual way [15]. We also consider γ = γ1 + γ2

as the total damping rate and ε to parametrize the pump value
below threshold αp = εαth, where αth =

√
γ /(π k2

3) so that
0 < ε < 1. Note that there is no detuning in Eq. (13) since
any change in the cavity length is compensated by a change in
the signal (and idler) frequency, a property typical of SROPO
configurations. In addition to the Langevin equation (13) there
are boundary conditions, known as input-output relations:

aout
s =

√
2γ1as − ain

1 , (14)

bout = ε
√

2γ a†
s − bin. (15)

Note that the input-output relation of the signal field is written
at the cavity mirror of the SROPO while that of the idler field
makes explicit the propagation of the idler fluctuations through
the crystal (see Fig. 1). The input fields satisfy the following
commutation relations:[

ain
i (t),a†in

i (t ′)
] = δ(t − t ′), (16)

[bin(t),b†in(t ′)] = δ(t − t ′), (17)

where i = 1,2. Similar relations hold for the output fields while
all the other commutators are vanishing.

For completeness we present the explicit expressions for the
input and output fields, following the usual definition of [11]:

ain
i (t) = − 1√

2π

∫ +∞

−∞
dω e−ıω(t−t0)c0

i (ω),

bin(t) = − 1√
2π

∫ +∞

−∞
dω e−ıω(t−t0)b0(ω),

(18)

aout
i (t) = 1√

2π

∫ +∞

−∞
dω e−ıω(t−t1)c1

i (ω),

bout(t) = 1√
2π

∫ +∞

−∞
dω e−ıω(t−t1)b1(ω),

where i = 1,2, t0 < t and c0
i (ω) and b0(ω) are the values

of ci(ω) and b(ω) at t = t0, respectively, while t1 > t and
c1
i (ω) and b1(ω) are the values of ci(ω) and b(ω) at t = t1,

respectively. We consider the input noise to be a Gaussian-
distributed white noise and the heat bath to be at zero
temperature. In this basis the correlation functions for the input
fields are 〈

ain
i (t)a†in

i (t ′)
〉 = 〈bin(t)b†in(t ′)〉 = δ(τ ), (19)

where i = 1,2 and where we have defined τ = t − t ′.
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FIG. 2. (Color online) Signal or idler spectrum of Eq. (21) for
ε = 0.8.

Quantities that can be readily calculated are the signal and
idler output spectra. For the signal field, the spectrum is defined
as

Ss(ω) =
∫ +∞

−∞
dτ

〈
: a†out

s (0)aout
s (τ ) :

〉
eiωτ , (20)

where the symbols 〈: :〉 denote time averaging and normal
ordering, respectively, and with an analogous expression valid
for the idler field. By using formal solutions of the Langevin
equation (13), it is possible to evaluate the signal and idler
spectra as functions of the normalized pump amplitude ε:

Ss|i(�) = (1 − ε2)2

(1 − ε2)2 + �2
s|i

, (21)

where s|i means either signal or idler field, and we have
defined �s|i = (ω − ωs|i)/γ and normalized to the value of
the spectrum at resonance. The spectrum of Eq. (21) is
shown in Fig. 2; the spectra for signal and idler fields are
two Lorentzians centered at the signal and idler frequencies,
respectively. Although the idler is not resonant, this field still
experiences the presence of the cavity because of the frequency
entanglement which is peculiar to the process of parametric
down-conversion in the crystal.

III. DIRECT DETECTION OF INTENSITY
FLUCTUATIONS

Direct detection of intensity fluctuations of signal and idler
fields is the simplest type of measurement one can perform
in a two-color OPO. A reduction in the intensity difference
fluctuations below the shot-noise level in doubly resonant
OPOs above the threshold of oscillation was calculated by
Reynaud et al. [17] and Lane et al. [18] and demonstrated
by Heidmann et al. [19] for a type-II nondegenerate OPO.
Here we extend these approaches to include the study of
signal-idler intensity fluctuations in a SROPO below the
threshold of oscillation. In this type of measurement the signal
and idler fields hit two different photodetectors and then the
resulting intensity-difference fluctuations are studied with a
power spectrum analyzer. The measurable output is related to

the Fourier transform of the intensity-difference correlation
function:

SD[ω]

S0
= 1 + 1

S0

∫ +∞

−∞
dτ

〈
: I out

D (0),I out
D (τ ) :

〉
eiωτ , (22)

where I out
D (t) = a

†out
s (t)aout

s (t) − b†out(t)bout(t) is the output
intensity-difference operator for signal and idler fields, S0 is the
shot-noise level given in this case by the sum of the intensities
of signal and idler beams, S0 = I out

s + I out
I . Furthermore, for

any operators A and B:

〈A,B〉 = 〈AB〉 − 〈A〉〈B〉. (23)

From the solution of Eq. (13) one can calculate the
squeezing spectrum of the intensity-difference correlation
analytically:

SD[�]

S0
= 1 − 8(� − ε2)(1 − �ε2)

(1 + �)[4(1 − ε2)2 + �2]
, (24)

where we have defined � = γ1/γ . The spectrum (24) is shown
in Fig. 3(a) for different values of the pump parameter ε and
for � = 1 (i.e. γ2 = 0). In this case (24) reduces to:

SD[�]

S0
= 1 − 4

4 + [�/(1 − ε2)]2
, (25)
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FIG. 3. (Color online) (a) Intensity-difference correlation spec-
trum of (25) plotted for a range of input powers and � = 1. Curves
correspond to ε = 0.2 (black dotted line), ε = 0.4 (blue dashed
line), ε = 0.6 (green dash-dotted line), and ε = 0.8 (red solid line).
(b) Intensity-difference correlation spectrum of (26) plotted for a
range of Z = γi/γs values. Curves correspond to Z = 1 (black dotted
line), Z = 4 (blue dashed line), Z = 6 (green dash-dotted line), and
Z = 10 (black solid line).
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where a narrowing of the spectrum when approaching thresh-
old clearly confirms the plots of Fig. 3. The dependence of
the spectrum (24),(25) on the pump parameter, which leads to
the progressive narrowing of the spectral line when threshold
is approached, is peculiar to the singly resonant case. No
dependence on the pump is in fact observed in the doubly
resonant OPO where the spectrum has the following analytical
expression [7,20]:

SD[�]

S0
= 1 − 4

�2

γsγi
+ [√

γs

γi
+

√
γi

γs

]2
, (26)

where γs and γi are the signal and idler cavity decay rates.
In order to study the behavior of the SROPO configuration,
one may be tempted to use Eq. (26) in the limit of γs or
γi approaching infinity. In this case Eq. (26) would reach
the asymptotic value of 1 [see Fig. 3(b) where Z = γi/γs is
increased from 1 to 10], meaning that no squeezing would be
observable in such a measurement. Such a limit, however, is
not well posed mathematically since it breaks the mean-field-
limit approximation used in the derivation of Eq. (26). Our
calculations predict instead that the narrowing of the spectral
line is a function of the pump parameter ε and that squeezing
below the shot noise is indeed possible in the SROPO. It is
worth noting that, analogously to the doubly resonant case,
perfect suppression of noise below the shot noise level is
achievable at resonance, independently of the pump power
in SROPO.

IV. PHASE-SENSITIVE MEASUREMENTS

The intensity correlation function calculated in Sec. III
contains no phase information since it is a measure of
the fluctuations in the photon numbers. A useful approach
to characterize squeezing is a phase-sensitive scheme that
measures the variance of field quadratures, as shown in [21,22].
Such a scheme is based on homodyne detection and consists
of superposing the input field on the field from a strong local
oscillator. In this section we consider the case in which the
signal and idler beams from the SROPO are spatially separated
and then combined separately with their own local oscillators,
one at the frequency of the signal and the other at the frequency
of the idler field, before hitting two different photodetectors.
The fluctuations in the signal-idler intensity difference are then
investigated with the use of a power spectrum analyzer. In this
case the measurable output is related to the Fourier transform
of signal-idler quadrature difference fluctuations:

VD[ω] = 1 +
∫ +∞

−∞
dτ 〈: XD(0)XD(τ ) :〉eiωτ , (27)

where XD(t) = Xs
θ (t) − Xi

φ(t) and

Xs
θ (t) = as(t)e

i(θ+ωs t) + a†
s (t)e−i(θ+ωs t),

(28)
Xi

φ(t) = b(t)ei(φ+ωi t) + b†(t)e−i(φ+ωi t)

are the quadrature operators for signal and idler beams
corresponding to the angles θ and φ, respectively.
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FIG. 4. (Color online) (a) Quadrature squeezing spectrum (29)
for a range of input powers and � = 1. Curves correspond to ε = 0.2
(black dotted line), ε = 0.4 (blue dashed line), ε = 0.6 (green dash-
dotted line), and ε = 0.8 (red solid line). (b) Quadrature squeezing
spectrum in the doubly resonant case for a range of input powers and
Z = γi/γs = 1. Curves correspond to ε = 0.2 (black dotted line),
ε = 0.4 (blue dashed line), ε = 0.6 (green dash-dotted line), and
ε = 0.8 (red solid line). Only minimal fluctuations corresponding to
θ + φ = 0 are shown.

Lengthy calculations provide the quadrature squeezing
spectrum:

VD[�] = 1 + 4ε[(1 + �)ε − √
�(1 + ε2) cos(θ + φ)]

(1 − ε2)2 + �2
.

(29)

The spectrum (29) is shown in Fig. 4(a) for different values
of the pump parameter ε and for � = 1. In this case Eq. (29)
reduces to

VD[�] = 1 − 4ε

(1 + ε)2 + [�/(1 − ε)]2
, (30)

showing again a line narrowing when threshold is approached.
This result should be contrasted with that for the doubly
resonant OPO, where one obtains the same formula (30) for
Z = γi/γs = 1 after replacing �/(1 − ε) = � and where no
line narrowing is observed [8,22]. This is made clear in the
plots of Fig. 4(b). The singly and doubly resonant cases,
however, have coincident spectra at � = 0. The squeezing
spectrum is symmetric around � = 0, which corresponds to
the local oscillator frequencies ωs|i . One important difference
with the intensity case of Sec. III is that a progressive growth
in the squeezing level is observed when the threshold of
oscillation is approached.
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FIG. 5. (Color online) Quantum fluctuations of the signal-idler
quadrature difference at ω = ωs|i for several values of the pump
parameter ε and � = 1. φ is kept constant while θ is scanned
linearly. Curves correspond to ε = 0.2 (black dotted line), ε = 0.4
(blue dashed line), ε = 0.6 (green dash-dotted line), and ε = 0.8
(red solid line).

Another useful way to visualize squeezing is shown in Fig. 5
where we plot the quantum fluctuations of the signal-idler
quadrature difference at ω = ωs|i in a decibel scale with respect
to the shot-noise level obtained by blocking the SROPO pump.
The plot is obtained by keeping the phase φ of one of the two lo-
cal oscillators fixed while varying the phase θ of the other. The
shot-noise level or standard quantum limit is represented by the
zero black line. It is evident that a large amount of squeezing
(−19 dB) can, in principle, be obtained in this situation.

Figure 6 displays the noise spectrum as a function of the
normalized pump amplitude in the case in which the signal
field experiences other losses besides those due to the mirror
transmittance (� = 0.8 in this plot). Figure 7 shows the signal-
idler quadrature fluctuations for � = 0.8 for several values of
the pump parameter as a function of θ , the phase of the signal
local oscillator. It is clear from these figures that the squeezing
level is severely affected by other asymmetric loss mechanisms
and that squeezing degradation becomes more important as we
approach threshold. The degradation of squeezing in Figs. 6
and 7 reflects the difficulty in achieving noise cancellation
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FIG. 6. (Color online) Noise power at resonance as a function of
normalized pump amplitude. Here ε = 0.6 and � = 0.8.
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FIG. 7. (Color online) Quantum fluctuations of the signal-idler
quadrature difference at ω = ωs|i for several values of the pump
parameter ε and � = 0.8. Curves correspond to ε = 0.2 (black dotted
line), ε = 0.4 (blue dashed line), ε = 0.6 (green dash-dotted line), and
ε = 0.8 (red solid line). φ is kept constant while θ is scanned linearly
in time.

in the signal-idler intensity for an asymmetric cavity in the
presence of growth of the single beam noise. It is, however,
possible to compensate for this behavior by introducing the
optimal squeezing angle [8]. In the case where signal and
idler beams experience other asymmetric losses, the symmetric
combination of quadrature operators in Eq. (27) is no longer
the best choice and we have to use a more general linear
combination of signal-idler quadrature operators parametrized
by an angle ψ :

XD(t) = cos(ψ)Xs
θ (t) − sin(ψ)Xi

φ(t). (31)

In this more general case the calculated squeezing spectrum
turns out to be

VD[�] = 1

+ 4ε{2ε cos2[ψ] + 2�ε sin2[ψ] − √
�(1 + ε2) sin[2ψ]}

(−1 + ε2)2 + �2
.

(32)

3 2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

V
D

FIG. 8. (Color online) Optimized quadrature spectrum. In this
case � = 0.8, ε = 0.8, and ψ = π/4 (blue solid line), ψ = ψ0 (red
dashed line).
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FIG. 9. (Color online) Amount of entanglement as a function
of the normalized pump value. The decibel scale is evaluated with
respect to the value 2 which sets the limit of state separability in
Eq. (34). � = 1 in this figure.

The optimization of signal-idler correlations is achieved by
minimizing Eq. (32) with respect to ψ for a given fixed value
of all the other parameters and by choosing the frequency �

where minimal fluctuations occur (in our case � = 0). The
optimal angle ψ0 is found from the implicit equation

tan(2ψ0) =
√

�(1 + ε2)

(1 − �)ε
. (33)

The squeezing spectrum plotted in Fig. 8 for � = 0.8 and
ε = 0.8 shows a nonoptimal choice of the angle ψ (narrower
curve) and an optimal one (broader curve). From this figure it
is evident that by operating at the optimal choice of the angle
ψ one obtains an improvement in the squeezing level.

V. QUANTUM ENTANGLEMENT

In order to claim state inseparability and consequently en-
tanglement for the signal-idler state we apply the separability
criterion of Simon [23] and Duan et al. [24]. According to this
criterion a sufficient condition for state inseparability is that
the quantity

S = 〈[
Xs

θ − Xi
φ

]2〉 + 〈[
Xs

θ+π/2 + Xi
φ+π/2

]2〉
(34)

is such that

S < 2. (35)

We have calculated S = 0.024 for the case where ε = 0.8
and � = 1; S = 0.67 for ε = 0.8, � = 0.8, and ψ = π/4; and
finally, S = 0.5 for � = 0.8, ε = 0.8, and ψ = ψ0. Hence we
conclude that the signal and idler beams are in an entangled
state for wide ranges of parameter values and different
configurations of operation on a SROPO. The dependence
of the amount of entanglement on the normalized pump value
is shown in Fig. 9 where the decibel scale is evaluated with
respect to the value 2 which sets the limit of state separability
in Eq. (34).

VI. CONCLUSIONS

We have applied the input-output theory of [16] to study
the quantum fluctuations of singly resonant optical parametric
oscillators. The model has been used to calculate intensity and
quadrature squeezing spectra. We have shown that below the
threshold of oscillation the fluctuations in the light outside
the cavity at the frequencies of the signal and the idler fields
are squeezed below the shot noise as much as in the doubly
resonant case. We have also shown that signal and idler fields
are entangled over a wide range of pump parameter values in
the SROPO by using the Simon–Duan et al. criterion of state
separability.

One major difference of the SROPO from the doubly
resonant case is that we observe an unexpected dependence
of the intensity-difference spectrum on the pump parameter,
leading to a narrowing of the spectral line as the threshold
of oscillation is approached. An analogous dependence of the
quadrature spectrum on the pump parameter is also found. A
peculiar feature of singly resonant configurations is that the
narrowing of the spectral lines does not affect the squeezing
minimum, which can reach values similar to those of the dou-
bly resonant case as threshold is approached. Since the singly
resonant cavity is one of the simplest OPO configurations
to realize, and since there is no difference in the squeezing
properties of the light coming from this device with respect
to the doubly resonant cavity, we conclude that the singly
resonant configuration could be an ideal candidate for the re-
alization of two-color entangled light in quantum information
processes.
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