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Subwavelength optical spatial solitons and three-dimensional localization in disordered
ferroelectrics: Toward metamaterials of nonlinear origin
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We predict the existence of a class of multidimensional light localizations in out-of-equilibrium ferroelectric
crystals. In two dimensions, the nondiffracting beams form at an arbitrary low-power level and propagate even
when their width is well below the optical wavelength. In three dimensions, a subwavelength light bullet is found.
The effects emerge when compositionally disordered crystals are brought to their metastable glassy state, and
leading to the suppression of evanescent waves, they can have a profound impact on super-resolved imaging and
ultradense optical storage, resembling metamaterials in many ways.
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I. INTRODUCTION

Out-of-equilibrium materials display remarkable features,
most of them still to be understood. Recent experiments
in supercooled photorefractive crystals have allowed the
observation of “scale-free” optical solitons [1] supported
by an extremely weak diffusive nonlinearity [2–4], which
becomes active through the emergence of a dipolar glass
with anomalously enhanced susceptibility. These nonlinear
beams have a truly remarkable feature: they are independent of
size and intensity. Size independence spurns a very basic and
potentially groundbreaking exploration: Are these scale-free
optical beams capable of propagating even when their size is
noticeably smaller than the optical wavelength?

In this article we predict that glassy photorefractive ferro-
electrics [5–7] support multidimensional light localization at
scales below the optical wavelength. The effect requires a huge
susceptibility that can be harnessed in the out-of-equilibrium,
or nonergodic phase, by acting on the previous history of the
sample [1]. The finding is thus part of a still-infant field of
investigation that focuses on using out-of-equilibrium optical
materials to achieve different and to our knowledge, previously
unexplored effects [8,9]: a nonergodic nonlinear optics that is
rooted in statistical mechanics, material science, and nonlinear
wave propagation. Subwavelength propagation overcomes a
basic limit to optical imaging and microscopy, i.e., that a light
field can only propagate components of its spatial spectrum
within the diffraction limit. High-frequency components that
correspond to details comparable to and smaller than the
wavelength normally form evanescent waves that simply do
not propagate. In stark contrast, in our predictions light
leads to self-trapped beams of arbitrary intensity and widths
for which no diffraction limit holds. These predictions are
based on an intensity-independent nonlinearity which can be
interpreted as the consequence of a widely tunable refractive
index accompanied by a transmission of evanescent fields.
Put differently, a nonlinearity-based metamaterial [10–14].
Indeed, as we show below, the overall effect can be interpreted
as a nonlinearly enhanced refractive neff index, at any intensity
level, such that neff = n0L/λ, where n0 is the bulk index, λ is
the wavelength, and L is a characteristic length of medium that

becomes greater than the wavelength in an out-of-equilibrium
regime.

II. INTENSITY-INDEPENDENT NONLINEARITY

Our model system is a compositionally disordered and
impurity-doped photorefractive relaxor ferroelectric (e.g.,
KLTN (potassium-lithium tantalate niobate) [5]). When it is
rapidly cooled below the characteristic Burns temperature
TB , it exhibits polar nanoregions (PNR). These are highly
polarizable randomly distributed ferroelectric-like regions that
form a dipolar glass and provide an enormous enhancement
of the photorefractive nonlinear optical response but retain
very limited scattering losses [1]. The clue to the whole
matter, originally discussed by Burns [15], is that the optically
induced index of refraction change depends on the spatial
average of the square of the crystal polarization P. When
the crystals display a zero polarization due to disorder (i.e.,
〈P〉 ≈ 0), averaging over disorder leads to a nonvanishing
effect that depends exclusively on the mean square of the
polarization (i.e., 〈|P|2〉). Optical response is thus directly
correlated to the underlying nature of the crystal fluctuations,
which become anomalously large and dependent on the crystal
history in the out-of-equilibrium state. Specifically, averaging
over the randomly oriented PNR [6,7], the index of refraction
perturbation is

�nPNR = −n3
0

2
gε2

0χ
2
PNRE2

DC , (1)

where n0 is the bulk refractive index of the isotropic (disor-
dered) crystals, g is the relevant component of the second-order
electro-optic tensor, and χPNR is the low-frequency electric
response due to the PNR.

The low-frequency electric field EDC is the space-charge
field expressed in terms of the optical intensity I as [1,2]
EDC = −(kBT /q)|∇I |/I , with T the crystal temperature, kB

the Boltzmann constant, and q the elementary charge. Note
that it is this dependence on I that bestows on all effects their
characteristic intensity independence. Nonergodicity implies
that χPNR will depend on the history of the sample, so that
the same crystal at the same temperature will display radically
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different nonlinear optical responses [1]. Equation (1) holds
because χPNR is several orders of magnitudes greater than the
susceptibility of the crystals in the paraelectric phase χP , so
that the nonlinear effect is mainly due to the PNR. Terms
in the index perturbation that depend on the spontaneous
polarization P0 (i.e., in 〈P 2

0 〉) do not depend on the optical
field, are negligible compared to the effects of the PNR, and are
henceforth dropped. Finally, off-diagonal index modulation
terms, that would amount to polarization rotation effects, are
averaged out by the PNR disorder and hence are negligible.

III. SCALE-FREE SELF-TRAPPED PARAXIAL BEAMS

In the paraxial approximation, for a linearly polarized beam
the slowly-varying optical field A (|A|2 = I is the optical
intensity) obeys the nonlinear equation

2ik
∂A

∂z
+ ∇2

⊥A − L2

4λ2

(∂xI )2 + (∂yI )2

I 2
A = 0, (2)

where we have introduced the characteristic length

L = 4πn2
0ε0

√
gχPNR(kBT /q), (3)

with g > 0 (for commonly adopted ferroelectrics) and k =
ωn0/c. The resulting model admits analytical self-trapped so-
lutions originally found in [2] and experimentally investigated
in [1] if condition L � λ is fulfilled.

We stress that the ratio L/λ measures the relative strength of
nonlinearity and diffraction, as long as L is small, or vanishes,
it corresponds to a negligible nonlinearity and diffraction
prevails. For L � λ self-trapped beams exist at any waist,
even beyond the paraxial approximation (depending on the
beam waist), as detailed below. This is inherently a nonlinear
effect and disappears for L = 0 when the beam is subject to
linear diffraction. In some respects, L plays for the nonlinearity
the same role of λ for diffraction: if L grows the effect of
nonlinearity is stronger. Note, however, that L is not directly
related to the size of the beam w0, which is a free independent
parameter as long as the self-trapped solutions exist (i.e., for
L/λ > 1).

For L = λ one has the exact Gaussian solution A =
a exp(−iβz), with

a = A0 exp

(
−x2 + y2

w2
0

)
, (4)

where β = 2/kw2
0 is the nonlinear correction to the wave

vector k. Remarkably, in Eq. (4) the waist w0 of the soliton
and its amplitude A0 are free independent parameters. When
L > λ a notable effect is that self-trapped solutions are given
by A = ae−iγ 2βz, with

a = A0

[
cosh

(√
2

x

w0

)
cosh

(√
2

y

w0

)]−γ 2

, (5)

and A0 and w0 arbitrary constants (i.e., the “existence curve”
is flat [3]), while

1

γ
=

√(
L

λ

)2

− 1. (6)

FIG. 1. (Color online) Scale-free solutions for various values of
σ = (L2/8λ2). We show the profile in (a) of the Gaussian solution
(σ = 0.125) and in (b, c) of the generalized solution Eq. (5).

Interestingly, as L grows the beam loses its radial symmetry,
developing a squarelike profile. In Fig. 1 we compare the two
solutions.

IV. SUPPRESSION OF EVANESCENT WAVES

We consider scale-free solutions for beam waists compara-
ble to and smaller than the wavelength. We use the Helmholtz
equation, which generalizes the paraxial equation (2). The
only approximation we implement is neglecting coherent
vectorial coupling: this is expected to play a negligible role for
isotropic disordered crystals and for the diffusive nonlinearity,
which only depends on the local intensity profile and not
on the beam polarization [2,3], as also can be verified by
order-of-magnitude arguments on the term ∇∇ · E in the
vectorial wave equation. In the paradigmatic case of L =
λ, we have that χPNR � 105 (see Ref. [1]) so that �n =
−(gn3

0/2)ε2
0 (kBT /q)2/w2

0, is �n � −3.1 × 10−16[m2]/w2
0.

As said above, the �n is dependent on w0, something that
does not occur for local nonlinearities such as the optical
Kerr effect. Now, in order to drop the vector-coupling term
in the Maxwell solution leading to the Helmholtz equation,
we must have that w2

0/λ
2 	 �n/n0 = 3.1 × 10−16[m2]/w2

0.
In our most extreme case of λ = 10−6m (ε = 0.05, see below),
w0 = 0.22λ, so that 0.05 	 3.1 × 10−16/(0.22 × 10−6)2, i.e.,
0.05 	 0.0064. This allows us to neglect vectorial effects
even in the extreme case of ε = 0.05 (see below). Moreover,
the nature of the nonlinearity is polarization insensitive, so
that even those small parts of the propagating beam that
suffer polarization conversion will not, in general, produce
a qualitative change in predicted phenomena.

The Helmholtz model reads as (n = n0 + �n)

∇2E +
(

ωn

c

)2

E = 0, (7)

whose propagation-invariant solution is written as E =
a exp(ikzz), where kz is the overall wave vector in the z

direction (different from its nonlinear perturbation β in the
paraxial model above). Equation (4) is also a solution of
Eq. (7), with arbitrary amplitude A0 and waist w0, with

kz =
√(

2πn0

λ

)2

− 4

w2
0

(8)

when the condition L = λ is satisfied. Note that this solution
exists (i.e., kz is real) as long as

w0 >
λ

πn0
, (9)
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that is, for a beam waist that is (within multiplicative constants)
greater than the wavelength λ/n0.

The key point is that Eq. (5) is still the solution for L > λ,
as occurs in the paraxial case, with wave vector

kz =
√(

2πn0

λ

)2

− 4γ 2

w2
0

. (10)

The corresponding lower limit for the waist is hence

w0 > γ
λ

πn0
. (11)

The factor γ plays a role similar to a Lorentz contraction term
in special relativity. For L >

√
2λ the lower limit for the waist

is scaled by a factor γ < 1. Note that a part of the evanescent
waves (present in a beam of the same waist when L = 0)
is now absent, so that arbitrarily low power beams with size
below the wavelength can propagate. This can be described by
an enhanced refractive index neff , as discussed below.

V. NONPARAXIAL REGIME

To investigate the formation of the nonparaxial
two-dimensional (2D) beams, we consider the forward
projection of the Helmholtz equation:

i∂zE + k

√
1 + ∇2

⊥
k2

0

+ 2
�n

n0
E = 0. (12)

Equation (12) reduces, under suitable limits, to the well-
known unidirectional propagation equations (see [16,17] and
references therein) for the description of nonlinear optics
beyond the paraxial model. The basic difference here is that the
nonlinear refractive index �n is retained under the square root,
since our nonlinearity is intensity-independent and hence of the
same order of the Laplacian, even in the low-intensity regions
of the beam. After introducing the optical carrier with E =
A exp(ikz) and the diffusive nonlinearity, the normalized di-
mensionless model reads as the nonparaxial normalized model,

i∂ζψ + 1

ε

[ − 1 +
√

1 + ε∇2
ξ,η − 2εσ (v · v)

]
ψ = 0,

(13)
v|ψ |2 + ∇ξη|ψ |2 = 0,

where we introduce the dimensionless variables ξ = x/w0,
η = y/w0, and ζ = z/z0 with z0 = kw2

0 the Rayleigh length.
ψ = A/A0 is the normalized optical field with A0 an
arbitrary constant, and v = EDC/(kBT /q) is the normalized
space-charge field. In Eq. (2) only two parameters appear: the
degree of nonparaxiality ε = 1/(kw0)2, which vanishes in the
paraxial limit, and the strength of the scale-free nonlinearity
σ (σ = 1/8 as L = λ).

Equation (2) can be numerically solved by Taylor expand-
ing the square root, giving

∂ζ ψ = i

N∑
n=1

( 1
2

n

)
εn−1

[∇2
ξ,η − 2σ (v · v)

]n
ψ, (14)

where N is the order of approximation selected (for a fixed ε)
in order to a have a given precision.

To assess the existence of self-trapped scale-free solitons
beyond the paraxial regime, we start by considering the linear

FIG. 2. (a) Beam waist versus propagation for ε = 0.05 for vari-
ous orders of approximation of the nonparaxial equations (black line
corresponds to standard paraxial models). As σ = 0 the nonparaxial
terms lead to a more pronounced spreading; for σ = 0.125 an
invariant propagation is attained at any nonparaxial order. (b) 2D + 1
comparison between the case σ = 0 and σ = 0.125 for N = 3.

diffraction regime (σ = 0; L 
 λ) in Fig. 2(a), which shows
the spreading of the waist of a Gaussian beam for an increasing
order in the the solution of Eq. (14). For ε > 0 nonparaxial
terms provide a more pronounced spreading if compared to
the paraxial model (i.e., to N = 1), and it is shown that for
the case of ε = 0.05 corrections become inconsequential for
N > 3.

In Fig. 2(b) we show the propagation of the beam for
σ = 1/8 (L = λ), including higher order diffraction. In such a
nonlinear case, diffractionless propagation is achieved at any
order and for any intensity. Note that the resulting beam is
propagation invariant at any order N independently on the
scale w0 and on the intensity level, thus showing the fact that
the proposed scale-free solutions are indeed stable and exist
for ultrathin beams.

VI. ENHANCED VISIBILITY

We consider the propagation of two parallel beams for
ε = 0.01 (order N = 3) for various values of the ratio L/λ. For
a given input pattern we find that there exists an optimal value
corresponding to minimal input intensity distribution (i.e.,
image) distortion. In Fig. 3 we consider two parallel beams
for different σ . We compare the [Fig. 3(b)] linear propagation
regime (σ = L/λ = 0) and the case σ = 0.15 [Fig. 3(c)]; for
σ > 0 (high cooling rates see [1]) the visibility increases.

FIG. 3. (Color online) Intensity-independent super-resolution:
(a,b) Propagation in the linear regime (L = σ = 0) of a double spot
(panel a) in the nonparaxial model Eq. (14) at the third order (N = 3)
with ε = 0.01; (c, d) as in (a, b) with σ = 0.2; (e) calculated contrast
and visibility versus σ . The initial image in panels (a, c) is the same
and is included for the sake of comparison. Propagation distance
z = 1.
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We stress that these dynamics are attained at any intensity
level and hence represent a different regime in optical
propagation.

In Fig. 3(d) we show the fringe contrast and visibility versus
σ , the former being the ratio between the intensity peak Imax

and that at the center Imin, the latter being (Imax − Imin)/(Imax +
Imin). Following the Rayleigh criterion, fringes are resolved as
the visibility is greater than 0.5. Figure 3(b) shows that even
for nonparaxial beams, super-resolution is possible (visibility
>0.5 as σ > 0.16) by also inhibiting the loss of information
due to evanescent waves.

VII. THREE-DIMENSIONAL SUBWAVELENGTH
LOCALIZATION

A notable property is the existence of three-dimensional
(3D) localized light bullets. Specifically, a 3D Helmholtz
equation for the diffusive nonlinearity can be cast as a
“nonlinear” eigenvalue problem:

−∇2E

E
+

(
L

λ

)2 (∇|E|2
2|E|2

)2

= k2. (15)

Equation (15) admits an exact 3D Gaussian solution A =
A0 exp[−(x2 + y2 + z2)/w2

0] when L = λ, for any A0 and
when w0 = √

3/2πλ/n0. In distinction from previous results,
these solutions are not spatially scale-free and may only have
a fixed waist, comparable with the wavelength. For L > λ a
solution exists (more general ones will be reported elsewhere)
and is given by

A=A0

[
cosh

(√
2x

w0

)
cosh

(√
2y

w0

)
cosh

(√
2z

w0

)]−γ 2

, (16)

with γ as in Eq. (6) and the waist w0 = γ
√

3/2πλ/2πn0.
These 3D localized solutions have a waist smaller that the
wavelength when γ < 1 (L >

√
2λ). They represent a unique

form of light localization at any intensity level. We are not
aware of other known light localizations than can be described

by an exact solution; it is a different kind of bound state
between the photoinduced charges and light which may be
used to store information.

VIII. METAMATERIALS OF NONLINEAR ORIGIN

In standard optics, a Gaussian beam with waist w0 has a
spectral bandwidth of the order of 1/w0 and the minimum waist
such that the spectrum is contained in the Ewald circle (i.e.,
without evanescent waves) is given by λ/n0. In the scale-free
regime here considered, due to the nonergodic phase of glassy
ferroelectrics, such a minimum waist is given by γ λ/n0. The
medium hence exhibits (for L 	 λ) an effective refractive
index

neff = n0

γ
= n0

√(
L

λ

)2

− 1 ∼= n0
L

λ
	 n0. (17)

The PNR effect is therefore equivalent to an (intensity
independent) refractive index, which can be largely tuned
and increased, such that beams propagate without evanescent
waves and without relevant scattering and absorption losses.
This shows that the specific nonlinearity considered here
is able to provide features that are the building blocks for
modern research on metamaterials from a completely different
perspective.

ACKNOWLEDGMENTS

We acknowledge support from the CINECA-ISCRA paral-
lel computing initiative. The research leading to these results
has received funding from the European Research Council
under the European Community’s Seventh Framework Pro-
gram, FP7/2007-2013/ERC grant agreement No. 201766, and
from the Italian Ministry of Research (MIUR) through the
“Futuro in Ricerca,” (FIRB), Grant PHOCOS-RBFR08E7VA,
and PRIN 2009P3K72Z. Partial funding was received through
the SMARTCONFOCAL Project of the Regione Lazio. C.C.
acknowledges support from the Humboldt Foundation.

[1] E. DelRe, E. Spinozzi, R. Agranat, and C. Conti, Nature Photon.
5, 39 (2010).

[2] B. Crosignani, A. Degasperis, E. DelRe, P. Di Porto, and A. J.
Agranat, Phys. Rev. Lett. 82, 1664 (1999).

[3] E. DelRe, B. Crosignani, and P. Di Porto, Prog. Opt. 53, 153
(2009).

[4] E. DelRe and M. Segev, Self-Focusing and Solitons in Photore-
fractive Media, Vol. 114 of Topics in Applied Physics (Springer,
Berlin, 2009), pp. 547–572.

[5] A. Agranat, R. Hofmeister, and A. Yariv, Opt. Lett. 17, 713
(1992).

[6] A. A. Bokov and Z.-G. Ye, J. Mater. Sci. 41, 31 (2006).
[7] G. Samara, J. Phys. Condens. Matter 15, R367 (2003).
[8] N. Ghofraniha, C. Conti, G. Ruocco, and F. Zamponi, Phys. Rev.

Lett. 102, 038303 (2009).

[9] C. Conti and E. DelRe, Phys. Rev. Lett. 105, 118301 (2010).
[10] V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
[11] N. Engheta and Ziolkowski, Metamaterials: Physics and

Engineering Explorations (IEEE Press/Wiley-Interscience,
Hoboken, NJ, 2006).

[12] J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[13] D. A. Powell, I. V. Shadrivov, and Y. Kivshar, Appl. Phys. Lett.

95, 084102 (2009).
[14] B. A. Munk, Metamaterials: Critique and Alternatives

(Wiley, New York, 2008).
[15] G. Burns and F. H. Dacol, Phys. Rev. B 28, 2527 (1983).
[16] M. Kolesik, J. V. Moloney, and M. Mlejnek, Phys. Rev. Lett. 89,

283902 (2002).
[17] C. Conti, G. Ruocco, and S. Trillo, Phys. Rev. Lett. 95, 183902

(2005).

043809-4

http://dx.doi.org/10.1038/nphoton.2010.285
http://dx.doi.org/10.1038/nphoton.2010.285
http://dx.doi.org/10.1103/PhysRevLett.82.1664
http://dx.doi.org/10.1016/S0079-6638(08)00203-5
http://dx.doi.org/10.1016/S0079-6638(08)00203-5
http://dx.doi.org/10.1364/OL.17.000713
http://dx.doi.org/10.1364/OL.17.000713
http://dx.doi.org/10.1007/s10853-005-5915-7
http://dx.doi.org/10.1088/0953-8984/15/9/202
http://dx.doi.org/10.1103/PhysRevLett.102.038303
http://dx.doi.org/10.1103/PhysRevLett.102.038303
http://dx.doi.org/10.1103/PhysRevLett.105.118301
http://dx.doi.org/10.1070/PU1968v010n04ABEH003699
http://dx.doi.org/10.1103/PhysRevLett.85.3966
http://dx.doi.org/10.1063/1.3212726
http://dx.doi.org/10.1063/1.3212726
http://dx.doi.org/10.1103/PhysRevB.28.2527
http://dx.doi.org/10.1103/PhysRevLett.89.283902
http://dx.doi.org/10.1103/PhysRevLett.89.283902
http://dx.doi.org/10.1103/PhysRevLett.95.183902
http://dx.doi.org/10.1103/PhysRevLett.95.183902

