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Artificial gauge field for photons in coupled cavity arrays
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We propose and characterize solid-state photonic structures where light experiences an artificial gauge field.
A nontrivial phase for photons tunneling between adjacent sites of a coupled cavity array can be obtained by
inserting optically active materials in the structure or by inducing a suitable coupling of the propagation and
polarization degrees of freedom. We also discuss the feasibility of observing strong gauge field effects in the
optical spectra of realistic systems, including the Hofstadter butterfly spectrum.
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I. INTRODUCTION

The effect of an external magnetic field on the dynamics of
charged particles underlies a number of intriguing phenomena
in very different contexts, ranging from magnetohydrody-
namics in astro- and geophysics to the fractional quantum
Hall effect in solid-state physics [1]. Upon quantization,
the eigenstates for noninteracting particles in a uniform
magnetic field form a simple equispaced ladder of highly
degenerate Landau levels in free space, while the interplay
with a periodic lattice potential was predicted to give rise to
fractal structures in the energy versus magnetic flux plane,
the so-called Hofstadter butterfly [2]. So far, experimental
observation of such a fascinating structure in ordinary solids
has been hindered by the extremely high value of the required
magnetic field intensity [3].

In recent years, intense theoretical research has investigated
the possibility of generating artificial gauge fields for neutral
atoms by taking advantage of the Berry phase [4] accumulated
by an optically dressed atom which adiabatically performs
a closed loop in real space [5,6]: The nucleation of a few
quantized vortices in a Bose-Einstein condensate under the
effect of an artificial gauge field has been demonstrated in the
pioneering experiment by Lin et al. [7]. The combination of
a gauge field with atom-atom interactions is expected to give
rise to strongly correlated atomic gases that closely remind us
of quantum Hall liquids [8].

In the meantime, experimental advances in the generation
and manipulation of photon gases in semiconductor devices
have opened the way to the study of collective many-body
effects in quantum fluids of light [9]. The first reports of Bose-
Einstein condensation [10] have been recently followed by the
demonstration of superfluid flow around defects [11] and the
hydrodynamic nucleation of vortices and solitons [12].

In this work, we theoretically investigate photonic devices
where the orbital motion of the photon experiences an artificial
gauge field. Previous work in this direction has considered
arrays of coupled optical cavities confining single atoms [13],
topological electromagnetic states in gyromagnetic photonic
crystals [14], and time-reversal symmetry-breaking effects
for microwaves in circuit-QED devices [15]. In contrast to
these works, our scheme can be implemented with standard
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solid-state photonic technology in the visible or infrared
spectral range [16]. In combination with ongoing research on
strongly correlated photon systems [17], it is expected to open
new perspectives in the study of nonequilibrium many-body
physics under strong magnetic fields.

The basic idea of our proposal consists of imposing a
nontrivial tunneling phase to photons by taking advantage
of the polarization degree of freedom: This phase can be
generated by an optically active medium embedded in the
structure or can have a geometric nature. Geometric phases
have been demonstrated in a number of configurations for
propagating light [18,19]. Here, we extend the idea to the case
where photons are confined in a two-dimensional lattice and
the phase is acquired by an evanescent wave while tunneling
between neighboring sites. Two classes of devices, which can
be built using passive dielectric materials with a real refractive
index, are specifically considered.

The first configuration is illustrated in Sec. II and is
based on an array of optical cavities: This scheme is suitable
for observing general gauge field effects on photons in the
noninteracting regime and shows the interesting possibility of
scaling the structure to any wavelength region. The second
configuration is presented in Sec. III and is based on a single
planar microcavity with a periodic lateral patterning. This
scheme appears as most promising in view of combining the
artificial gauge field with strong optical nonlinearities, so as
to enter the regime of strongly correlated photon gases. To
complete the study, Sec. IV is devoted to the discussion of some
observable quantities that can be used to extract the physics of
quantum particles in strong gauge fields from experimentally
accessible optical spectra.

II. THE FIRST SCHEME: ARRAY OF DISTRIBUTED
BRAGG REFLECTOR MICROCAVITIES

This first configuration is sketched in Fig. 1(a) and consists
of a two-dimensional array of optical cavities. Even if a
similar physics can be observed in a wide class of systems,
for concreteness we focus our attention on the specific case
of monolithic distributed Bragg reflector (DBR) cavities [20].
Within each cavity, light propagates along four arms oriented
along the x,y axes, each of which is terminated by a DBR
mirror. A polarization preserving, weakly reflecting mirror
oriented at 45 deg with respect to the x,y axes is located
at the center of each cavity and serves to mix light in the
different arms: In this way, the photonic eigenmodes of each
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FIG. 1. (Color online) Scheme of the coupled DBR microcavity
configuration to generate the artificial magnetic field. (a) Two-
dimensional square lattice of cavities: In the sketch, four cavities
containing an oblique mirror each are connected by phase elements
embedded between DBR mirrors. Within the Landau gauge, the
artificial magnetic field arises from the x dependence of the tunneling
phase in the y direction. (b) Simplest two-cavity setup. (c) For the
two-cavity setup of panel (b), transmission spectrum (blue solid
line) for σ+ incident light; relative phase φ of the field in the two
cavity layers (red dashed line). The outer (inner) DBRs contain 19
(10) periods of alternate layers of refractive index n1 = 3.6 and
n2 = 2.9 and optical thickness λBr/4, where λBr = 2πc/ωBr, ωBr

being the Bragg frequency. The cavity layers are λBr/2 thick and
have ncav = 2.9. They also contain a circularly birefringent medium
of thickness dσ /λBr = 0.21/π with nσ± = 1.2,2. The angle θ between
the optical axes of the half-wave slabs is arbitrarily chosen to be
3π/22. The same effect is observed in the presence of an optically
active slab embedded in between the inner DBRs.

isolated cavity will be linear superpositions of two standing
waves along the x and y axes. In the following, we focus our
attention on a single optical mode per cavity, for example, the
one consisting of a symmetric superposition of two standing
waves along the two axes with a given circular polarization, say
σ+ [21]. In order to suppress unwanted mixing of the circularly
polarized σ± states by the central, oblique mirror, suitable
circularly birefringent layers can be used to lift the degeneracy
of σ± cavity modes [22]. A more detailed discussion on the
structure of the photonic modes within each cavity is given in
the Appendix.

Coupling between neighboring cavities occurs via evanes-
cent wave tunneling across the separating DBR mirrors. In
order to generate the tunneling phase responsible for the
artificial gauge field, two options can be envisaged. The first
one involves inserting a pair of linearly birefringent half-wave
slabs within each DBR mirror separating neighboring cavities.
The optical axes of the two slabs have a relative rotation angle
θ around the propagation direction. Propagation through the
first half-wave slab transforms the incident σ+ light into σ−;
propagation through the second slab brings polarization back
to σ+, yet with an additional Pancharatnam phase factor e2iθ

of geometric nature [19]. On the other hand, σ+ light tunneling
through the mirror in the backward direction will acquire an
opposite phase factor e−2iθ . Unwanted cavitylike resonances
at the linearly birefringent slabs in the spectral vicinity of the
cavity mode of interest can be ruled out by a careful choice of
the slab parameters.

The second choice involves a single slab of optically active
medium in place of the pair of linearly birefringent slabs. The
tunneling phase is in this case generated by the optically active
material, which imposes phases ±ω �nd/2c to circularly
polarized photons traveling across it in opposite directions.
Here, d is the thickness of the optically active slab and �n is
the difference between the refractive indices experienced by
the two helicity states.

To verify the existence of the tunneling phase when either
a pair of linearly birefringent layers or an optically active
layer is embedded within a DBR mirror, we performed
transmission matrix calculations for the simplest two-cavity
configuration, schematically illustrated in Fig. 1(b). As one
can see in Fig. 1(c), transmission is maximum when the
incident frequency is resonant with one of the two eigenmodes
of the coupled cavity system. The presence of the nontrivial
tunneling phase is apparent as a nonvanishing relative phase of
the electric field in the two cavities: In standard configurations
without any phase element, the two eigenmodes correspond to
the symmetric and antisymmetric combinations of the isolated
cavity modes, while now each of the eigenmodes exhibits an
additional φ relative phase between the two cavities.

In a tight-binding model, the tunneling phase can be
described in terms of a hopping Hamiltonian of the form
Hc = −Jeiφ b̂

†
R b̂L + H.c., with J being a real and positive

coefficient quantifying the strength of tunneling; b̂L,R are
the cavity mode operators for respectively the left and right
cavities. It is straightforward to see that the eigenmodes of
Hc are indeed linear superpositions of the b̂L,R isolated cavity
modes with a φ phase difference between the two cavities.

The form of this coupling term directly extends to the
full two-dimensional geometry shown in Fig. 1(a), where the
tunneling phase between each pair of neighboring cavities can
be independently tuned by the relative orientation of the two
half-wave slabs. As usual, the hopping phase φij between the
neighboring i,j cavities (equal to φ in the previous example)
can be written in terms of an artificial gauge potential A as
φij = − e

h̄

∫ ri

rj
A · dl, where e is the elementary charge and

the integral is performed along the segment connecting the
cavities. A nonvanishing artificial magnetic field then appears
in the photon dynamics whenever the sum of the tunneling
phases around a closed loop is nonzero (modulo 2π ).
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III. THE SECOND SCHEME: LATERALLY PATTERNED
PLANAR DBR MICROCAVITY

The second scheme is based on a planar DBR microcavity
architecture. Full three-dimensional confinement of the photon
in micron-sized wells has been demonstrated by means of
a lateral patterning of the cavity layer thickness [23]. A
periodic array of photon boxes can be obtained by means of
a two-dimensional periodic repetition of the elementary well.
As usual in Hubbard-like models, a tighter confinement within
each well leads to enhanced photon-photon interactions:
With a submicron confinement, a strongly interacting photon
regime is expected to be accessible using state-of-the-art
semiconductor technology [17,24].

In addition, we assume a position-dependent vector field
to be present that couples to the effective spin- 1

2 system
describing the photon polarization state in the σ± basis (defined
with respect to the cavity growth axis z). The z component of
this field can result from a static magnetic field that splits the
σ± polarization states by inducing a circular birefringence in
the cavity material or by splitting the Zeeman components of
an exciton state to which the photon is coupled [25]. On the
other hand, the x and y components of the vector field (i.e.,
the ones that mix σ± polarization states) can be generated
via a linear birefringence of the cavity material induced, for
example, by a mechanical stress [26] or by a subwavelength
grating imprinted on the cavity [27].

Specifically, we consider the one-dimensional configura-
tion sketched in Fig. 2(a) that gives rise to a Hamiltonian of
the form

H = p2
x

2m
+ Vsc(x) + Vz(x) σ̂z +

∑
j

Vs(x − xj )R−1
ζj

σ̂xRζj
,

(1)

where m is the effective photon mass along the two-
dimensional cavity plane and σ̂ ’s are the Pauli matrices in the
two-dimensional spin space spanned by the σ± polarization
states. Rζ = exp(−iσ̂zζ/2) are the rotation operators around
the z axis.

The scalar potential Vsc(x) [solid line in Fig. 2(a)] stems
from the lateral patterning of the cavity layer thickness and
confines the photons in two square wells; the additional barrier
in the center serves to cancel the localizing effect of the vector
field in the xy plane. The component Vz(x) of the vector field
coupling to the z component of the effective spin is assumed
to be constant in space.

The component of the vector field along the xy plane is
localized in between the two wells and is modeled as a super-
position of several (j = 1,2, . . . ,jmax) localized potentials of
amplitude Vs(x − xj ) centered around neighboring positions
xj and oriented in different directions, making angles ζj

with the x direction gradually varying from 0 to a maximum
value ζmax.

The smooth variation of the angles ζj is intended to ensure
adiabaticity: For sufficiently large amplitudes of the vector
field, the two spin states are energetically split. As a result,
the photon polarization is able to adiabatically follow the local
ground state determined by the direction of the local field and
traces a closed loop on the Poincaré sphere. On general Berry

FIG. 2. (Color online) Laterally patterned planar microcavity
scheme to generate the artificial magnetic field. (a) Spatial depen-
dence of the scalar potential Vsc(x) (solid line) and the amplitude of
the xy component of the vector field (dashed lines); different dashed
lines correspond to the components of amplitude Vs(x − xj ) centered
at xj having different angles ζj with ζmax = 2π/3. Effective photon
mass m was taken to be 5 × 10−5 times the electron mass. The z

component of the vector field is Vz(x) = −1.21 meV. (b) Spatial
dependence of the ground-state expectation value of different spin
components 〈Si〉 = 1

2 〈σ̂i〉. Inset shows the corresponding loop on the
Poincaré sphere.

phase arguments [4], we can anticipate that tunneling between
the wells will involve a geometric phase which is equal to half
the solid angle 
 subtended by the closed loop.

This expectation has been verified by a numerical calcu-
lation of the ground state of the Hamiltonian (1) by means
of an imaginary time evolution. The ground state is localized
within the potential wells determined by the scalar potential,
and the local expectation value of the effective spin operator
indeed follows a closed loop on the Poincaré sphere as shown
in the inset of Fig. 2(b). As expected, the relative phase of the
ground-state wave function in the two wells is found to be very
close to the value φ = 
/2 predicted by the adiabatic model.

A full two-dimensional lattice of wells can be obtained
by repeating this building block along both directions. With
a suitable tuning of the hopping phase between pairs of
neighboring wells, the photon turns out to experience a
nontrivial artificial gauge potential A.

IV. OBSERVABLES

After having discussed possible methods of creating an
effective magnetic field for photons in a lattice, we now turn
to its observable consequences. For the sake of simplicity,
we concentrate on the case of a uniform magnetic field and
vanishing photon-photon interactions. In our calculations we
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consider a finite-size, two-dimensional square lattice within
the tight-binding limit and we include the pumping and loss
terms describing the coupling of the cavity system with the
outside world in terms of a master equation in the standard
form ∂tρ = i[ρ,H ]/h̄ + L[ρ] [28].

In the case of noninteracting photons, the tight-binding
Hamiltonian of the isolated system has the following single-
particle form:

H =
∑

i

h̄ω◦b̂
†
i b̂i − h̄J

∑
〈i,j〉

b̂
†
i b̂j e

iφij

+
∑

i

[h̄Fi(t) b̂
†
i + H.c.], (2)

where b̂
†
i (b̂i) is the bosonic creation (annihilation) operator for

site i. The hopping phase φij stems from the artificial gauge
field, ω◦ is the natural cavity frequency and J is the tunneling
strength between nearest neighbor sites. We assume the
coherent driving term Fi(t) to be monochromatic at frequency
ωp and to act on the single site n, Fi(t) = F̄ δin e−iωpt . Photon
losses at a rate γ are included via the standard Lindblad term

L[ρ] = γ
∑

i

[b̂iρb̂
†
i − (b̂†i b̂iρ + ρb̂

†
i b̂i)/2]. (3)

As we are considering a noninteracting system, the state of
the field is a product of coherent states on each site with an
amplitude βi = 〈b̂i〉 determined by the corresponding classical
field evolution equations

iβ̇i = (ω◦ − iγ /2) βi − J
∑
〈j〉

eiφij βj + Fi(t), (4)

where the sum over 〈j 〉 is restricted to the nearest neighbors
of site i.

As usual in optical devices, the amplitude of the emitted
light by each site is proportional to the bosonic operator b̂i : In
contrast to the standard paradigm of quantum mechanics, the
phase of the photonic wave function is then an experimentally
accessible quantity, which is sensitive to the gauge potential A
and not only to the magnetic field ∇×A.

As a specific example, we consider the case of a uniform
magnetic field with the number of flux quanta per plaquette
α = (2π )−1 ∑

� φij , where the sum is along a closed loop
surrounding the plaquette. The total number of photons
nT = ∑

i〈b̂†i b̂i〉 present in the system is plotted in Fig. 3(a)
as a function of the pump frequency �ωp = ωp − ω◦ for a
3 × 3 lattice at α = 1

3 with hard-wall boundary conditions,
as is relevant for experiments. In the laterally patterned
microcavity configuration of Fig. 2, nT is proportional to the
total transmitted intensity across the system.

In Fig. 3(a), the differently colored curves nT,(n) correspond
to localized driving on different sites n. All curves exhibit
peaks at frequencies corresponding to the eigenmodes of the
system. For each eigenmode, the peak strength is proportional
to the weight of the eigenmode on the driven site n. This
physics is summarized by the explicit expression

nT,(n) =
∑

i

〈b̂†i b̂i〉(n) = |F̄ |2
∑

l

∣∣ψ (l)
n

∣∣2

(�ωp − El)2 + γ 2/4
, (5)

FIG. 3. (Color online) (a) Average total number nT of transmitted
photons as a function of �ωp = ωp − ω◦. The system considered is
a 3 × 3 lattice with flux quanta per plaquette α = 1

3 and γ /J =
0.05. Different (green solid, blue dashed, red dot-dashed) curves
correspond to a driving of amplitude F̄ /J = 0.005 localized on
different (2,3,5) sites according to the enumeration given in the inset.
Solid black line shows the sum over all nine sites. (b) Real-space
profile |ψ (l)(r)|2 of eigenmodes |El〉, where Gaussian real-space basis
functions were assumed at each site for illustrative purposes.

where ψ (l)
n is the component on site n of the wave function

corresponding to the eigenmode l of the hopping Hamiltonian
[i.e., the second term in Eq. (2)] and El is the corresponding
eigenfrequency. Examples of the wave functions ψ (l) of
different eigenmodes are shown in Fig. 3(b).

Analogously, the local field on site i under a localized drive
on site n is given by

βi,(n) = F̄
∑

l

ψ
(l)
i ψ (l)∗

n

�ωp + iγ /2 − El

, (6)

which can be recognized as F̄ times the Green’s function
G(i,n,�ωp + iγ /2) of the nonlossy system, measured at
frequency �ωp + iγ /2 and positions i,n. Green’s function
methods have been widely used in the literature to study,
for example, the effects of disorder on the Hofstadter
spectrum [29].

To clearly illustrate the Hofstadter butterly, it is useful
to plot the sum of transmission spectra over all possible
experimental realizations in which only one site is pumped at
a time, as shown by the black line in Fig. 3(a). It can be shown
that in the limit of vanishing losses this quantity

∑
n nT,(n) is

proportional to the density of states of the Hofstadter spectrum
(modified by finite-size effects), so it is natural to expect
that the main features of the spectrum will be retained in the
presence of weak but finite losses. In Fig. 4(a), this quantity
is plotted as a function of both �ωp and α for a 10 × 10
lattice. In addition to the clearly visible butterfly structure that
closely resembles the infinite-size case, one can also recognize
a series of low-intensity lines appearing within the largest
energy gap. Direct inspection of the eigenstates shows that
these lines correspond to edge states. From Fig. 4(b), it is
apparent that the separation between neighboring lines has an
almost constant value �α approximately equal to 1/A, where
A = (L − 1)2 is the area enclosed by the outermost sites of
an L × L lattice. This value of �α corresponds to a change
of magnetic flux across the whole lattice by one flux quantum
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FIG. 4. (Color online) (a) Color plot of the total transmission nT

as a function of flux quanta per plaquette α and pump frequency
�ωp/J for a 10 × 10 lattice with F̄ /J = 0.005 and γ /J = 0.05.
(b) Cut of the color plot along the constant �ωp line indicated in (a)
as a black line. (c) Photon occupation number 〈b̂†

i b̂i〉 pattern for a
pump resonant with the ground state and localized on a single site at
the lattice center (21 × 21 lattice, magnetic flux quanta per plaquette
α = 1

3 , γ /J = 0.01).

and can be interpreted by the Středa formula for the quantized
Hall conductance [30].

Another interesting feature of the Hofstadter physics is the
spatially periodic structure of the ground-state wave function
for rational values of α [31]. In our photonic system, this
can be experimentally studied by tuning the pump frequency
on resonance with the lowest frequency peak and collecting
transmitted light from each site in a spatially selective way. As
an example, we show in Fig. 4(c) that for α = 1

3 the pattern
exhibits a simple periodicity of three sites.

V. CONCLUSIONS

In this work, we have proposed two configurations where
the photon experiences an artificial gauge potential in a
solid-state photonic device. While the first scheme appears
suitable for a first experimental demonstration of artificial
gauge fields for noninteracting photons, the second one is
promising in view of combining the gauge field with strong
photon-photon interactions. We have pointed out observable
consequences of the artificial gauge field in the experimentally
accessible optical spectra of the device and have identified
clear signatures of the Hofstadter physics at strong magnetic
fields. Future theoretical work will aim at extending this study
to the interacting regime where interesting nonequilibrium
features of strongly correlated quantum Hall fluids of light
are expected to appear.
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FIG. 5. Schematic arrangement of mirrors forming the cavity.
Central mirror is located at 45 deg with respect to x and y axes, its
center being at a distance L from the external mirrors.

APPENDIX: STRUCTURE OF THE PHOTONIC MODES
WITHIN EACH CAVITY

In this appendix, we provide more details on the structure
of the photonic eigenmodes within each cavity of the two-
dimensional array considered in Sec. II. In particular, we
analyze the mechanism of the coupling between light beams
propagating along the x and y directions. The element that
couples the two directions is a partially reflecting mirror
inserted inside the cavity, making an angle of 45 deg with
the x and y axes as shown in Fig. 5.

We expand the electric field along each of the four arms
inside the cavity as two counterpropagating plane waves and
use the appropriate scattering matrices to match the incoming
and outgoing field amplitudes at the central and external
mirrors. This matching yields the following matrix equations:(

t r

r t

) (
Ei

E2

)
=

(
E1

Er

)
, (A1)

(
t r

r t

) (
0
E3

)
=

(
E4

Et1

)
, (A2)

(
t r

r t

) (
0
E5

)
=

(
E6

Et2

)
, (A3)

(
t r

r t

) (
0
E7

)
=

(
E8

Et3

)
, (A4)

(
t◦ r◦
r◦ t◦

) (
E1e

iϕ

E8e
iϕ

)
=

(
E5e

−iϕ

E3e
−iϕ

)
, (A5)

(
t◦ r◦
r◦ t◦

) (
E4e

iϕ

E6e
iϕ

)
=

(
E7e

−iϕ

E2e
−iϕ

)
, (A6)

where t (r) is the transmissivity (reflectivity) of the external
mirrors defined as the ratio of the transmitted (reflected)
amplitude to the incident amplitude, t◦ (r◦) is the transmissivity
(reflectivity) of the central mirror embedded in the cavity,
and ϕ = ωLn/c is the phase that a wave gets after it travels
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a distance L in the cavity, n being the refractive index of
the cavity material. The field amplitudes are defined in the
immediate vicinity of the external mirrors. Here, for simplicity,
we assumed that the media inside and outside of the cavity are
the same and took all mirrors to be symmetric. This condition,
together with the unitarity of scattering matrices (dictated by
flux conservation), is satisfied by choosing r and r◦ to be purely
imaginary and t and t◦ to be real.

So, the mirrors can now be characterized by only one
parameter, as transmissivities and reflectivities are related
through r = i

√
1 − t2 and r◦ = i

√
1 − t2◦ . The i factor in

the reflectivities means that upon reflection from the mirrors
the fields acquire a phase factor of eiπ/2. The six matrix
equations (A1)–(A6) written above provide us with twelve
linear equations for the twelve unknown fields, all scaled by
the incident field Ei . In what follows we adopt the convention
that Ei = 1.

Let us first suppose that the central mirror is perfectly
transmitting, that is, t◦ = 1,r◦ = 0. It is obvious in this
case that no field will develop along the x direction (i.e.,
E3,4,7,8 = 0) as the incident field is propagating along y.
Solving the equations, one finds the transmitted field intensity
to be |Et2 |2 = |t |4/(1 + |r|4 + 2|r|2 cos 4ϕ). In order for this
quantity to be maximum so that we could say a cavity
mode develops, the condition cos 4ϕ = −1 should be satisfied,
yielding

ω = π (2N + 1)c

4nL
, (A7)

where N is an integer. This relation can also be understood
simply in terms of the round-trip condition in a cavity. For
constructive interference to occur, the phase accumulated by
the electric field in a round-trip [in this case 2(2Lωn/c) + π ,
with π being the extra phase due to reflection from the two
external mirrors] must be an integer multiple of 2π . When
|Et2 |2 is plotted as a function of ω, it will then exhibit peaks
with magnitude one at ω values given by Eq. (A7). The line
width of these peaks is determined by the reflectivity of the
external mirrors: as the reflectivity becomes higher, the peaks
become narrower.

What we have described up to this point is just a standard
Fabry-Perot cavity. If we now increase the reflectivity of
the central mirror slightly, that is, for |r◦| � 1, an electric
field propagating along the x direction will also build up.
To understand the physics of this system, one can think of

(b)(a)

FIG. 6. (Color online) Solid and dashed double-headed arrows
symbolize two different modes that are weakly coupled by the central
mirror. (a) |r◦| � 1 and (b) t◦ � 1.
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FIG. 7. (Color online) Total transmission |Et |2 = |Et1 |2 +
|Et2 |2 + |Et3 |2 as a function of ω/ωr with t = 0.1 and L = πc/4nωr.
The red dashed line shows the case for |r◦| = 0 and the blue solid
line is for |r◦| = 0.05.

the x and y propagating modes being weakly coupled by
the central mirror. Then the eigenmodes will be symmetric
and antisymmetric superpositions of these two modes, one
along x and one along y as depicted in Fig. 6(a). The
frequency separation between symmetric and antisymmetric
combinations is proportional to the amplitude of the small
reflectivity |r◦|, which can now be thought as the coupling
coefficient.

The preceding ideas were exemplified by a numerical
calculation for which the total transmitted intensity |Et1 |2 +
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FIG. 8. (Color online) Magnitude and phase of the complex
valued electric fields inside the cavity as a function of ω/ωr for
t = 0.1, |r◦| = 0.05, and L = πc/4nωr. Phases are defined in the
range [−π,π ). The y axis can also be used to read off |E|. Vertical
dashed lines correspond to peak positions in the total transmission of
Fig. 7. (a) Arguments of E1, E2, E5, and E6 are shown. Only |E1| is
depicted as other magnitudes behave very similarly. (b) Arguments
of E3, E4, E7, and E8 along with |E3| are shown.
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|Et2 |2 + |Et3 |2 as a function of ω is plotted in Fig. 7
with L = πc/4nωr, where ωr is a convenient reference
frequency. If r◦ were identically zero, transmission would show
peaks at frequencies which are odd integer multiples of ωr

[cf. Eq. (A7)]. For a small reflectivity, however, two peaks
occur around each of these frequencies. To verify that these
two peaks correspond to the symmetric and antisymmetric
superpositions of the two modes of Fig. 6(a), we inspected
the region around ω/ωr = 1 more closely and plotted the
magnitude and phase of the electric fields inside the cavity
in Fig. 8.

One observation is that the peak positions and magnitudes at
these peaks are nearly the same for all electric field amplitudes.
Nevertheless, one can identify two groups of fields by their
behavior as ω varies. The first group consists of E1, E2, E5, and
E6, contributing to the y mode of Fig. 6, and the second group is
composed of E3, E4, E7, and E8, building up the x mode. One
can notice from Fig. 8 that while the phases of a field in the first
group are nearly the same at both peaks, the phase of a field in
the second group at the higher frequency peak is shifted almost
by π with respect to its value at the lower frequency peak. This
shows that the higher (lower) frequency peak corresponds to
an antisymmetric (symmetric) combination of the x, y modes.

Similar arguments can be advanced for the case t◦ � 1,
that is, when the central mirror is weakly transmitting. We can

again describe the system in a two-mode approximation and
regard t◦ as the coupling coefficient. As shown in Fig. 6(b),
in this case the modes are confined in the lower and upper
triangular regions of the cavity separated by the central mirror.
This time peaks will appear around ω = πNc/2nL as opposed
to the value given by Eq. (A7). This change is due to the phase
acquired upon reflection from the central mirror.

Two final remarks are in order.
(i) As our scheme depends on the preservation of the type of

circular polarization (defined in terms of angular momentum)
inside the cavities, the central mirror should be chosen in
a way that it reflects the two linear transverse electric and
transverse magnetic polarizations almost equally and without
introducing any appreciable relative phase: This condition
may be nontrivial to obtain for light at an oblique incidence.
Still, any residual mixing of the σ± polarized eigenmodes
of the cavity can be suppressed by lifting their degeneracy,
for example, by introducing a slab of circularly birefringent
medium in the cavity.

(ii) Although we have restricted ourselves to a single-cavity
case in this Appendix, the same formalism can be generalized
to several coupled cavities. As shown in [16], this leads to
an alternative way of characterizing the optical response of
a many-cavity system which does not rely on a tight-binding
Hamiltonian such as (2).
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