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Numerical studies of the interaction of an atomic sample with the electromagnetic
field in two dimensions
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We consider the interaction of electromagnetic radiation of arbitrary polarization with multilevel atoms in a
self-consistent manner, taking into account both spatial and temporal dependencies of local fields. This is done by
numerically solving the corresponding system of coupled Maxwell-Liouville equations for various geometries. In
particular, we scrutinize linear optical properties of nanoscale atomic clusters, demonstrating the significant role
played by collective effects and dephasing. It is shown that subwavelength atomic clusters exhibit two resonant
modes, one of which is localized slightly below the atomic transition frequency of an individual atom, while the
other is positioned considerably above it. As an initial exploration of future applications of this approach, the
optical response of core-shell nanostructures, with a core consisting of silver and a shell composed of resonant
atoms, is examined.
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I. INTRODUCTION

Nanoscale optical materials have long been attracting
considerable attention due to many important applications
ranging from optical nanodevices [1], plasmonic circuitry [2],
nanoscale sources of coherent radiation [3], single atom or
molecule manipulation [4], biomedical applications [5,6],
and many others. Among such exciting applications lies
the yet-to-be explored subfield of nanoscale optical atomic
and molecular physics that deals with ensembles of atoms
or molecules interacting with dielectric nanoparticles (NP)
and their assemblies. Such systems are characterized by a
significant spatial dependence of evanescent electromagnetic
(EM) fields on the dielectric environment, providing the
means to control the behavior of molecular systems by the
combination of large EM fields and large field gradients,
exemplified by recent work [7–12] on the EM field associated
with metal NP dimers and their dependence on particle size
and interparticle distance. At their core, these phenomena rely
mostly on the excitations of surface plasmon-polariton (SPP)
resonances [13] in systems comprising metal NPs and their
arrays [14], as well as other nanoscale metal surfaces, such as
subwavelength diffraction gratings, whose optical properties
depend sensitively on their surface topology and material
parameters [15]. Their studies have lead to many applications
such as coherent EM energy transport in space [16], surface-
enhanced Raman spectroscopy (SERS) [17] and tip-enhanced
microscopy [18]. Recent attention has focused on optical
control scenarios, ranging from coupled exciton-plasmon
dynamics in semiconductor nanodots [19–27] and in molecular
aggregates [28–36], where metal NPs affect excitation energy
transfer between molecules, to optical trapping of single atoms
or molecules [37–40]. Such applications are facilitated by
the possibility to control the geometry of nanomaterials (NP
size, their relative arrangement, etc.) with an outstanding
precision [41].
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While theoretical and computational methodologies for
studying these phenomena have advanced considerably, the
consequences of mutual feedback between molecular excita-
tions and metallic SPP resonances are not well understood,
especially when one probes systems comprising both metallic
nanostructures and semiconductor or molecular particles or
layers. A simple and often-used description is based on
assigning a dielectric response function to the semiconductor
or molecular component and solving the electromagnetic
problem for the corresponding composite dielectric. While
such an approach can be useful for describing the effect of
the molecular environment on the metallic plasmon, it cannot
be used to describe energy-transfer, relaxation, and sponta-
neous emission in the excitonic (molecular or semiconductor)
system. It is hence important to develop a self-consistent
description of the electromagnetic response of such systems.
Such an approach has to take into account the electrodynamics
of the radiation field and the quantum dynamics of the
molecular system in a self-consistent manner. This can be
accomplished by solving simultaneously Maxwell’s equations
for the radiation field and the Liouville equation for the
molecular density matrix, including the molecular polarization
current in the former and the molecule-field interaction in the
latter.

First attempts to consider numerically coupled Maxwell-
Bloch equations have been initiated by Ziolkowski et al.
[42,43] for simple two-level atoms in one and two dimensions
utilizing a finite-difference time-domain (FDTD) technique.
Later on, this approach has been extended to three dimensions
[44]. Although these works contain interesting and important
physics, they are limited to ensembles of two-level systems.
Consideration of multilevel systems is critical for modeling
of nanolasing, which has to include at least three levels.
Moreover, the proposed numerical implementation results in
noticeably long execution times. The scheme we propose is
more efficient, as discussed below. Similarly, Neuhauser et al.
proposed another approach [45] where the authors coupled
Maxwell’s equations to the Schrödinger equation describing
a molecule located in the closed proximity of a metal NP.
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These works, however, cannot in their present form include
relaxation and dephasing effects, which, as we demonstrate,
are very important.

In this paper we describe a numerical implementation of
such a model, using the methodology developed by Ziolkowski
et al. [42,43] as our starting point. This model captures
collective effects that play a pivotal role in electrodynamics
of nanosystems, as well as the counterbalancing effect of
dephasing processes. The questions to be addressed are

(1) How does a size of the system affect scattering and
absorption of EM radiation?

(2) What is a role of dephasing and relaxation effects?
(3) When does one observe a collective response of atoms

to external EM excitation?
These and other closely related questions are not only
important from the fundamental point of view (how optically
induced interatomic or intermolecular interactions depend on
structural and material parameters), but are also essential for a
general understanding of the optics of many-body systems.

In this regard it should be pointed out that, although the
technique we propose in this paper is utilized to capture
collective effects of quantum particles in the linear response
regime, it can easily be applied to nonlinear systems.

The paper is organized as follows: Section II discusses our
computational approach, based on coupled Maxwell-Liouville
equations in the mean-field approximation. In Sec. III we
provide details of the numerical implementation. Section IV
describes and discusses the results of our numerical studies.
Our main conclusions along with the future research outlook
are presented in Sec. V.

II. MODEL

We consider a general problem of a system of quantum
particles (further referred to as atoms) interacting with EM
radiation. We start from the time-domain Maxwell’s equations
for the dynamics of the EM fields, �E and �H :

μ0
∂ �H
∂t

= −∇ × �E, (1a)

ε0
∂ �E
∂t

= ∇ × �H − �J , (1b)

where μ0 and ε0 are the magnetic permeability and dielectric
permittivity of free space, respectively. In spatial regions
occupied by a metal nanostructure (such as a metal NP, for
instance) Eq. (1b) is evaluated in the standard way from
the metal dielectric dispersion [46]. In the present study, the
dispersion of the dielectric constant of metal, ε(ω), is taken in
the form of the Drude model

ε(ω) = εr − ω2
p

ω2 − iγ ω
, (2)

with numerical parameters describing silver for the wave-
lengths of interest: εr = 8.26, ωp = 1.76 × 1016 rad/s, γ =
3.08 × 1014 rad/s. The time evolution of the current density �J
in metal regions is then

∂ �J
∂t

= a �J + b �E, (3)

where a = −γ and b = ε0ω
2
p.

In the spatial regions occupied by atoms, the mutual
interaction between the atomic system and the EM field is
accounted for in a self-consistent manner as follows: First,
the current density in Eq. (1b) is expressed in terms of the
macroscopic polarization of the atomic system, �P (�r,t):

�J = ∂ �P
∂t

. (4)

The latter is given by

�P = na〈 �μ〉, (5)

where

〈 �μ〉 = Tr(ρ̂ �μ) (6)

is the expectation value of the atomic dipole moment and na

is the atomic density. Equations (4)–(6) constitute the main
approximation of the present approach, whereupon the local
polarizability is expressed in terms of the local atomic density
multiplied by the local averaged single atomic dipole. The time
evolution of the latter is obtained from the evolution of the
single-atom density matrix (described below) in the presence
of the EM field, thus providing a self-consistent description of
the field-matter dynamics.

Next, consider the atomic subsystem. While our ultimate
goal is to study realistic three-dimensional systems, the present
study focuses on nanoscale atomic clusters in two dimensions,
which are taken to lie in the XY plane [47]. The incident
radiation field is represented by a transverse-electric (TE)
mode with respect to z axis. It is characterized by two in-plane
electric field components, Ex and Ey , and one out-of-plane
magnetic field component, Hz. To account for the (two-
dimensional) spherical symmetry of the atomic polarization
response, the atoms are described as three-level systems: an
s-type ground state and two degenerate p-type excited states of
px and py character [as depicted in Fig. 1(a)]. In anticipation
of possible generalizations to more complex models involving
multilevel systems we use, in what follows, a basis of
angular momentum wave functions with quantization axis
in the z direction, |1〉 = |s〉, |2〉 = (|px〉 + i|py〉)/

√
2, |3〉 =

(|px〉 − i|py〉)/
√

2, with optical transitions corresponding to
�J = ±1 and �M = ±1 selection rules. The corresponding
Hamiltonian is

Ĥ = Ĥ0 − �μ · �E(t) =

⎛
⎜⎝

0 �−(t) −�+(t)

�+(t) h̄ωa 0

−�−(t) 0 h̄ωa

⎞
⎟⎠ , (7)

where h̄ωa is the atomic energy transition, �± = μsp[Ex(t) ±
iEy(t)]/

√
6, and μsp is the s-p matrix element of the

dipole moment operator, that, in principle, can be taken from
experiment or calculated using standard quantum chemistry
packages. The Cartesian components of the dipole moment
operator are

μ̂x = − ∂Ĥ

∂Ex

= μsp√
6

⎛
⎝ 0 −1 1

−1 0 0
1 0 0

⎞
⎠ , (8a)

μ̂y = − ∂Ĥ

∂Ey

= μsp√
6

⎛
⎝ 0 i i

−i 0 0
−i 0 0

⎞
⎠ . (8b)
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FIG. 1. (Color online) Panel (a) shows the energy level diagram
of a two-level two-dimensional atom with black arrows indicating
optically induced transitions by the TE mode and red arrows
representing spontaneous decay. Panel (b) depicts schematics of the
simulations with the detection point shown as a red diamond (in the
lower-left corner), where the y component of the Poynting vector is
calculated.

Note that the dipole moment operator (8) differs from the
one used in [43] by the factor of

√
3.

The mean-field approximation Eq. (5) makes it possible to
describe the atomic system in terms of the single-atom density
matrix ρ̂, which satisfies the Liouville equation

ih̄
dρ̂

dt
= [Ĥ ,ρ̂] − ih̄	̂ρ̂. (9)

Equation (9) describes the time evolution of an atom interact-
ing with the radiation field and subject to (assumed Markovian)
relaxation processes described by the 	̂ operator, which is
taken in the Lindblad form [48]. The diagonal elements
of this operator correspond to excited-state lifetimes, while
nondiagonal elements account for dephasing effects.

Equations (1)–(9) describe the time evolution of the atomic
system and radiation field in a self-consistent way. Note that, in
the single-atom Hamiltonian Ĥ given by Eq. (7), interatomic
interactions are absent. Still, the dynamics described by
Eqs. (1)–(9) is not that of independent atoms: the self-
consistent scheme accounts for all interactions between atoms
that are associated with their mutual interaction with the radi-
ation field, including excitonic (energy-transfer) interactions,
which are all important for elucidating the overall system
response. Note that, assuming that the EM field does not
significantly vary within a volume occupied by a single atom,
the spatial dependence of the density matrix in Eq. (9) depends
parametrically on position via the EM field variables.

Equations (8) and (9) lead to the following equations for
the atomic density matrix elements:

dρ11

dt
= iω+(ρ12 + ρ∗

13) − iω−(ρ13 + ρ∗
12) + γ1(ρ22 + ρ33),

(10a)
dρ12

dt
= iωaρ12 − iω−(ρ22 − ρ11) + iω+ρ∗

23 − γ2ρ12, (10b)

dρ13

dt
= iωaρ13 + iω+(ρ33 − ρ11) − iω−ρ23 − γ2ρ13, (10c)

dρ22

dt
= iω−ρ∗

12 − iω+ρ12 − γ1ρ22, (10d)

dρ23

dt
= −iω+(ρ13 + ρ∗

12) − 2γ2ρ23, (10e)

dρ33

dt
= iω−ρ13 − iω+ρ∗

13 − γ1ρ33, (10f)

where ω± = �±/h̄ and γ2 = γp + γ1/2 with γp denoting the
pure dephasing rate due to environmentally induced random
fluctuations in the atomic energy spacing. As noted above, in
Eq. (10) we denoted the ground state as |1〉 and the excited
states |J = 1,M = −1〉 and |J = 1,M = 1〉 as |2〉 and |3〉,
respectively.

Finally, by using Eqs. (8) and (10) we obtain the macro-
scopic polarization current [time derivative of Eq. (5)], which
enters Ampère’s law (1b)

∂ �P
∂t

= na

∂〈 �μ〉
∂t

,
(11a)

where, back in Cartesian coordinates,

∂〈μx〉
∂t

= Eyμ
2
sp

3h̄
(ρ22 − ρ33) − i

μsp√
6

[(ωa + iγ2)(ρ12 − ρ13)

− (ωa − iγ2)(ρ∗
12 − ρ∗

13)], (11b)
∂〈μy〉

∂t
= −Exμ

2
sp

3h̄
(ρ22 − ρ33) + μsp√

6
[(ωa + iγ2)(ρ12 + ρ13)

+ (ωa − iγ2)(ρ∗
12 + ρ∗

13)]. (11c)

We end this section with two comments. First, as already
pointed out, Eqs. (10) constitute a mean-field description
of a system of atoms interacting with the EM field. In
this approximation, a single atom interacts with other atoms
through the electromagnetic field associated with their mean
local density. Obviously, such an approach cannot account for
specific atom-atom correlations, but it can describe collective
effects in a system of atoms resulting from their interaction
with the EM field.

Second, we note that this procedure can be easily gen-
eralized to yield the analogous three-dimensional coupled
Maxwell-Liouville equations. To maintain spherical symmetry
we would need to include an additional atomic level |J = 1,

M = 0〉, which is coupled to the ground atomic state by
Ez [44]. Obviously, it is also possible to expand the atomic
basis and consider an additional excited manifold starting
with |J = 2,M〉. Although the number of equations similar
to Eqs. (10) grows significantly, modern analytical computer
packages such as Mathematica [49] can easily handle the
necessary algebra and subsequent computer coding. For a
molecule without rotational symmetry, an average over the
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angular distribution in the calculation of �P from Eq. (5) may
be used when relevant.

III. NUMERICAL APPROACH

To solve the system (1), (10), (11) of the coupled Maxwell-
Liouville equations, we employ a generalized FDTD technique
[50]. Within the FDTD, both the electric �E and magnetic �H
fields are propagated in time and space by directly discretizing
Maxwell’s equations (1). This approach has several attractive
technical features, including its numerical stability and the
explicit description of the magnetic field. The latter is espe-
cially important if one considers structures with sharp corners,
at which the tangential components of �H have singularities.
For our purpose, the main advantage of the FDTD approach
is that the boundary conditions (i.e., the continuity of the
tangential �H and �E components) are automatically maintained
at all grid points owing to the use of the Yee cell [51].
This allows straightforward programming of the complex
geometries.

For simulations of open systems, one needs to impose
artificial absorbing boundaries in order to avoid numerical
reflection of outgoing EM waves back to the simulation
domain. Among the various approaches that address this
numerical issue, the perfectly matched layers (PML) technique
is considered to be the most powerful [52]. It reduces the
reflection coefficient of outgoing waves at the simulation
region boundary to ∼10−8. In essence, the PML approach
surrounds the simulation domain by thin layers of nonphysical
material that efficiently absorbs outgoing waves incident at
any angle. We have implemented the most efficient and least
memory variant of the method; the convolutional perfectly
matched layers (CPML) absorbing boundaries [53]. Through
extensive numerical experimentation, we have empirically
determined the optimal parameters for the CPML boundaries
that lead to almost no reflection of the outgoing EM waves at
all incident angles.

In the calculations reported below we consider structures
with a characteristic size much smaller than the incident
wavelength. Hence it is a good approximation to excite such
systems using a plane wave. The latter is accomplished via
implementation of the total-field–scattered-field approach [50]
within the FDTD.

We partition the FDTD scheme onto an array of parallel grid
slices by dividing the cubic simulation cell into M xy slices,
where M is the number of available processors. Point-to-point
message passing interface (MPI) communication subroutines
[54] are implemented at the boundaries between slices. The
number of xy planes in each slice usually varies in the range
from 15 to 20. All simulations are performed on the home-
built 128-core AMD Opteron-based cluster at Arizona State
University [55].

The numerical implementation of the proposed scheme is
as follows:

(1) In the spatial regions occupied by atoms, the Maxwell
equations are solved utilizing the standard FDTD algorithm.
First, the magnetic field is updated according to Faraday’s law,
Eq. (1a). Next, using Ampère’s law, Eq. (1b), we update the
electric field with the macroscopic polarization current density

Eqs. (11), which is calculated using the density matrix of the
previous time step. The EM fields in the regions occupied
by metal are updated according to the auxiliary differential
equation method [50], Eq. (3).

(2) With knowledge of local electric field components
(stored in memory at two previous time steps) we update the
density matrix at each spatial point on the grid according to
Eqs. (10) using the fourth-order Runge-Kutta scheme [56].

(3) Finally, with knowledge of the electric field components
and the updated density matrix we calculate the macroscopic
polarization current ∂ �P

∂t
at each grid point according to (11).

We have verified this scheme using several test cases. A
most important test of numerical stability is to check that
the condition Tr(ρ̂) = 1 is maintained at each time step. In all
simulations this condition was perfectly satisfied with almost
no dependence on incident field amplitude or other physical
parameters. Another interesting test was to demonstrate the ab-
sence of self-interactions in our calculation. Such interactions
often appear spuriously in mean-field calculations, whereupon
a particle interacts with its own contribution to the mean den-
sity. In the present situation, however, the field produced by the
oscillating dipole of a given atom propagates away from this
atom and can affect it only through the polarization induced
in other atoms or (in different setups) through reflection from
the boundaries; both physically valid phenomena. We have
verified that direct self-interaction is indeed absent in our
calculation by solving Eqs. (1) and (10) for the case where
the system occupies a single grid point. The same solution
is obtained whether or not the polarization source term is
included in Eq. (1b). Finally, we have compared our results
and execution time of the proposed integration scheme with
those obtained by Ziolkowski et al. [43]. We have implemented
the numerical approach based on the predict-corrector method
and atomic basis as used in [43] and compared it with ours
(keeping in mind that μsp has to be renormalized by the factor
of

√
3). The simulation data obtained using both approaches

were in excellent agreement. However, execution times for the
codes employing our approach were noticeably smaller.

With the solution of Eqs. (1), (10), and (11) obtained in this
way, the following observables can be calculated:

(1) The scattered radiation can be computed as the dif-
ference between the total and the incident EM fields. At
any detection point [e.g., that depicted as a red diamond
in Fig. 1(b)], we can calculate the Poynting vector com-
ponents associated with the scattered EM field. This may
be integrated over a spherical boundary surrounding the
atomic system to yield the total scattered radiation. These
calculations can be accomplished in a transient mode to give
the time-dependent response to an incident EM pulse, or in
a steady state mode that yields the long time steady state
response to cw incident radiation of a given frequency, ωin.
In the latter case we need to propagate the Maxwell-Liouville
equations under the incident cw radiation until steady state is
reached.

(2) Generally, for a given incident frequency ωin, the
outgoing field may exhibit different frequencies ωout (with
amplitudes obtained by Fourier transforming the scattered
signal), making it possible to obtain the outgoing steady state
flux (Poynting vector) in a given direction at any ωout for a
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given incident frequency. Integrating the outgoing flux over
ωout and displaying the result as a function of ωin yields the
absorption spectrum of the atomic cluster.

(3) A much easier way to calculate the steady state absorp-
tion lineshape is by calculating the steady state relaxation flux
of the excited state populations according to

−dE

dt
≈ h̄ωaγ1

∫
d3r[ρ22(�r) + ρ33(�r)], (12)

where the integral is taken over cluster volume [57].
Equation (12) expresses, for any given incoming frequency,
the rate of energy dissipation by the molecular system, which
at steady state should be equal to the rate of energy absorption
at that frequency.

(4) For some applications the short-pulse method (SPM)
[46] can save substantial computing effort. In this approach
we use an ultrashort incident pulse with a wide bandwidth,
which is almost flat in the spectral region of interest (in our
simulations the incident pulse duration was set at 0.36 fs,
which corresponds to a flat spectrum throughout the frequency
domain considered in this paper). Such a pulse can be repre-
sented as a coherent linear superposition of cw plane waves
with different ωin. We then propagate the Maxwell-Liouville
equations for several picoseconds (the total propagation time
has to be significantly longer than the lifetime of the excited
states of an atom, 1/γ1) and take the Fourier transform of the
calculated field. Under conditions of linear response and elastic
scattering (i.e., when ωout = ωin), the Fourier component at
frequency ω contains all the information relevant to a cw
process at frequency ω.

When applicable, the SPM can save substantially on
computation time, since it yields the system response at many
frequencies from one short-time computation. It is important
to understand its shortcomings. Two limitations, mentioned
above, are obvious: this method is applicable only for a linear
response and only when the light scattering process is elastic.
Both limitations are associated with the requirement that a
given incident frequency can give rise to a response only at the
same frequency. A third limitation is important in the present
context, because Eqs. (10c) and (10d) are inherently nonlinear.
Linearity is obtained when ρ22 and ρ33 may be neglected and
ρ11 taken as constant in these equations. In this case, the steady
state solutions for ρ12 and ρ13 and, therefore, the polarization
Eq. (5) oscillate with the incident frequency, as required. Care
has to be exercised if one attempts to calculate the steady state
excitation, ρ22 + ρ33, in this method. An approximation may
be obtained if the incident frequency is close to the atomic
transition frequency ωa by taking the Fourier transform at
ω = 0 (i.e., the time average) of the resulting time-dependent
signal.

The method, as described, cannot describe spontaneous
emission (i.e., fluorescence) since the latter is a quantum effect
associated with the quantum nature of the radiation field. It
has been demonstrated [58] that the effect of spontaneous
emission can be partially accounted for by imposing a
classical stochastic field on the system. Obviously, classical
EM noise cannot mimic vacuum fluctuations; in particular, it
can induce excitation of ground-state molecules while vacuum
fluctuations can lead only to radiative damping of excited
molecules. One can use this trick to study time evolution in

a system which is initially inverted; that is, all molecules are
in the excited state. In this case, the induction of emission by
the EM noise will soon lead to a dominant signal of induced
emission that does not depend much on the nature of that
noise, provided the latter is weak enough. This method has
been successfully used to simulate superradiance [58,59] and
gain [60] within the FDTD approach. However, this method
cannot be used to generate fluorescence in a system of mostly
ground-state molecules (ρ22 + ρ33 	 ρ11), where the main
effect of such noise will be to induce unphysical molecular
excitation.

IV. RESULTS AND DISCUSSION

The simulation setup is shown in Fig. 1(b): an atomic
cluster is excited with an x-polarized low-intensity plane wave
propagating in the y direction. We use low-intensity incoming
fields (our incident electric field was fixed at 1 V/m) in order
to ensure linearity of the system response [61]. Equations (1),
(10), and (11) are then evolved to yield the electric and
magnetic fields as functions of time and position. In the current
studies we focus on the y component of the Poynting vector,
Sy ∼ ExHz, as the observable of interest.

Figure 2 presents a direct comparison of two methods: the
SPM approach and the cw scheme. The scattering signals
obtained from the two methods are in excellent agreement.
Also shown is the absorption spectrum from the cw calculation
using Eq. (12). The absorption lineshape (normalized so that it
matches the scattering signals at the peak) also leads to a nearly
identical lineshape, except that it exhibits a more pronounced
resonance near the atomic transition frequency.

It is not surprising, but still providing a consistency
check, that at the very low densities (na < 1024 m−3) and
zero dephasing, our simulations are in the perfect agreement
with the Clausius-Mossotti approximation described below.
Moreover, calculations in which the polarization current term
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FIG. 2. Scattering intensity as a function of the incoming fre-
quency ωin calculated within the SPM approach (solid line) and cw
scheme (circles). Normalized absorption [see Eq. (12)] is shown as
squares. Simulations are performed for the cluster with the following
parameters: ωa = 3.1 eV, R = 25 nm, na = 7 × 1025 m−3, γ1 = 1012

s−1, γp = 1013 s−1, μsp = 25 Debye.
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FIG. 3. (Color online) Linear optics of atomic clusters with ωa = 3.1 eV, γ1 = 1012 s−1. Panel (a) shows the scattering intensity as a
function of the incident frequency for three atomic densities, na . Black solid line: na = 2.5 × 1025 m−3 (ideal gas at atmospheric pressure
and room temperature), red dashed line: na = 7 × 1025 m−3, blue dash-dotted line: na = 1026 m−3. Other parameters are R = 25 nm, γp =
1013 s−1, and μsp = 25 Debye. Panel (b) shows the same as in panel (a) for the radii R of three clusters. Black (solid), red (dashed), and
blue (dash-dotted) lines show scattering intensity results for R = 15, 25, and 35 nm, respectively. Other parameters are na = 1026 m−3, γp =
1013 s−1, and μsp = 25 Debye. Panel (c) shows the same as in panels (a) and (b) (now shown in logarithmic scale), but for four pure dephasing
rates γp . Black (solid) line: γp = 2 × 1013 s−1, red (dashed) line: γp = 1013 s−1, blue (dash-dotted) line γp = 2 × 1012 s−1, green (dotted)
line shows the data without pure dephasing γp = 0 s−1. Other parameters are R = 25 nm, na = 1026 m−3, and μsp = 25 Debye. Panel
(d) shows the same as in panels (a)–(c), but for three values of the matrix element of the dipole moment μsp . Black (solid), red (dashed),
and blue (dash-dotted) lines correspond to atomic systems characterized by μsp = 10, μsp = 25, and μsp = 40 Debye, respectively. Other
parameters are R = 25 nm, na = 1026 m−3, γ1 = 1012 s−1, and γp = 1013 s−1.

in (1b) was neglected (i.e., the atoms are not coupled to each
other through their mutual interaction with the radiation field
but rather are driven only by external incident radiation),
were in perfect agreement with the data produced by the full
self-consistent computations in the limit of low densities.

Figure 3 summarizes the main results of our SPM calcu-
lations (note that we performed a direct comparison of the
SPM data with that obtained via the cw scheme for every set
of parameters discussed below). First, the dependence of the
scattering intensity on the density of atoms in the cluster is
depicted in Fig. 3(a). The atomic transition frequency is fixed
at ωa = 3.1 eV (see figure caption for the rest of the simulation
parameters). The scattering radiation clearly exhibits two
resonances: The first is a relatively weak response close to
(slightly below) the atomic transition frequency. The second
is a strong and broad peak at a higher frequency that moves
to the blue at larger atomic densities. Additional simulations
presented in Fig. 4 show that the intensity of the high-frequency
mode (unlike the low-frequency mode) scales as n2

a for the low

density of atoms, suggesting a possible collective nature of the
peak. It should be noted that this collective mode is noticeably
wider than the atomic transition resonance.

The dependence of the scattering intensity on the cluster’s
size is shown in Fig. 3(b). The low-energy resonance exhibits
a redshift, when a radius of the cluster increases, while the
resonant frequency of the high-energy mode does not change
with cluster size. However, it becomes significantly wider for
larger clusters, which has been observed experimentally [62].

One of the advantages of the present calculations over the
standard approach based on a dielectric model is the ability
to examine the influence of the dephasing rate on optical
properties. Figure 3(c) shows simulation results obtained at
three pure dephasing rates γp, including the case without
pure dephasing. We should note that, at small γp numerical
simulations tend to become hard to converge at frequencies
near the collective resonance (in our case this occurs for
γp < 4 × 1012 s−1). While for relatively high dephasing rates
regular simulations require spatial steps δx on the order of
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FIG. 4. (Color online) Scattering intensity (shown in double
logarithmic scale) at the high-frequency resonance, ωres, as a function
of the atomic density na for three pure dephasing rates γp Blue circles:
γp = 2 × 1013 s−1, black rectangles: γp = 1013 s−1, red triangles:
γp = 2 × 1012 s−1. Other parameters are ωa = 3.1 eV, γ1 = 1012 s−1,
R = 25 nm, na = 1026 m−3, and μsp = 25 Debye. The straight dashed
lines represent fitting for each set of data, demonstrating nearly ideal
quadratic dependence on na at low densities.

1 nm, the case without pure dephasing should be explored at
δx < 0.2 nm. It is interesting to note that the collective mode,
while decreasing its width with the decrease of the dephasing
rate, is still significantly wider than the atomic transition peak.
In contrast, the low-frequency peak becomes narrower with
decreasing dephasing rate, with its width approaching γ1. Note
that the scattering actually shows a dip at the atomic frequency,
with the low-frequency peak slightly below it.

Figure 3(d) explores how the scattering is affected by the
matrix element of the atomic dipole moment μsp. Not sur-
prisingly, the result for increasing μsp is qualitatively similar
to that obtained with increasing atomic density. It is seen
that larger μsp results in a blueshift of the higher-frequency
collective mode and in a redshift of the lower-frequency mode.
The former shows a quadratic dependence of the resonant
frequency on the dipole moment, which has been theoretically
discussed for the case of a sphere with uniformly distributed
linear quantum dipoles [63].

It is useful, for the sake of comparison, to consider the
simplest theoretical description for the optical response of our
system, by modeling it as a dielectric particle with a dielectric
response function taken from the Clausius-Mossotti expression

ε = 1 + 2x

1 − x
, (13)

where x ≡ 4π
3 nα, n is the number density of atoms, and α is

the atomic polarizability. The absorption lineshape can be cal-
culated [64] as the ratio between the dissipated power, Pdiss =
1
2

∫
d3rσ |E|2 and the incident flux, Jin = c|Ein|2/(8π ), where

σ = ωin
4π

Im(ε) is the conductivity, ε is the dielectric response
function, E is the electric field in the particle, Ein is the incident

electric field, and c is the speed of light. For a small spherical
particle [65],

E = 3

ε + 2
Ein. (14)

Using these expressions we obtain the absorption cross-section
of a small spherical particle of volume � in the form

σa = Pdiss

Jin
= �

ωin

c

∣∣∣∣ 3

ε + 2

∣∣∣∣
2

Im(ε) = 16π

3
n� Im(α). (15)

The imaginary part of the molecular optical polarizability
is essentially a Lorentzian resonance peaked at the atomic
transition frequency ωa . We see that the absorption cross
section in the Clausius-Mossotti approximation is proportional
to the number of particles and to the absorption of a single
particle, as would be predicted for a system of noninteracting
particles. On the same level of theory, the dipole induced on
the particle is [65]

�μ = ε − 1

ε + 2

3�

4π
�Ein = n�α �Ein, (16)

and, since the scattered light is proportional to |μ|2, it is
predicted to go like the square of the number of particles
and to have a similar resonant behavior as a function of
the incident frequency. Equations (15) and (16) describe
essentially a system of noninteracting particles occupying a
volume with linear dimensions much smaller than the radiation
wavelength that respond coherently to the incident radiation.
This approximation is valid at low atomic density. We
will see below how dephasing and through-field interatomic
interactions at higher densities affect this behavior.

While the calculation procedure applied here provides
a route to explore the effect of dephasing on the optical
response of atomic and molecular clusters, further studies
will be needed in order to determine how much of this effect
was indeed captured in our simulations. The destruction of
phase is affected within our calculations on the mean-field
evolution of a single atom, feeling the effects of others
through their mutual interaction with the radiation field. It
is not obvious that this mean-field implementation can capture
the full physics of atoms going out of phase from each
other. We leave this important technical question to a future
study.

It is informative to explore the spatial dependence of EM
intensity, I ∼ E2

x + E2
y , at resonant conditions. Figure 5 shows

intensity distributions calculated using steady state solutions
of Maxwell-Liouville equations for the two resonance modes.
Clearly the EM intensity at the lower resonant frequency is
mainly localized on the surface of the cluster exhibiting a
dipole radiation pattern similar to the EM intensity distri-
butions seen at the plasmon resonance for a single metal
nanoparticle [13]. The collective high-frequency mode is
distributed over the entire volume of the particle, where all
atoms coherently participate in the radiation process. This
suggests that the high-frequency mode is more collective
in nature than the low-frequency one, consistent with its
large density-dependent shift from the atomic frequency and
its n2

a scaling at low densities. The low-frequency mode,
involving fewer surface atoms, may be more atomic in nature.
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FIG. 5. (Color online) Spatial distributions of EM intensity (normalized to the incident intensity) in logarithmic scale at the low-frequency
resonance (left panel) and the high-frequency resonance (right panel). Cluster’s parameters are ωa = 3.1 eV, γ1 = 1012 s−1, γp = 1013 s−1,
R = 25 nm, na = 1026 m−3, and μsp = 25 Debye.

It is important to note, however, that this is not a single-
atom response since it clearly shifts with increasing atomic
density.

Optical properties of molecular aggregates resonantly cou-
pled to plasmonic materials have been a subject of extensive
research for the past several years. Sugawara et al. [66]
demonstrated significant modification of transmission and
reflection spectra of a gold film with deposited J aggregates. It
has been shown experimentally that SPP resonances notably
affect molecular electronic structure leading to resonance
splitting [33]. The latter was proposed to be used for
controlling optics of such hybrid material using femtosecond
laser pulses [67]. Moreover, core-shell metal NPs with a shell
comprised of optically active molecules have been recently

FIG. 6. (Color online) Scattering intensity as a function of the
incident frequency for the core-shell particle shown in the inset. Black
solid line shows the data for the silver nanoparticle without atomic
shell, red dashed line presents simulations for the hollow atomic
shell, and blue dash-dotted line demonstrates results obtained for
atomic shell with a silver core. Parameters of the simulations are
na = 2.5 × 1025 m−3, ωa = 3.61 eV, γ1 = 1012 s−1, γp = 1013 s−1,
and μsp = 25 Debye.

studied experimentally [68]. To demonstrate the generality
of our approach we present simulations of the core-shell
particle schematically depicted in the inset of Fig. 6. Here,
a silver nanoparticle is shelled by a resonant atomic layer,
with atomic transition frequency equal to the SPP resonance
of silver, ωa = 3.61 eV. The optical properties of silver are
described within the Drude model with parameters as in
[18]. The hollow atomic shell exhibits a doubled collective
mode (red dashed line in Fig. 6), which corresponds to
the symmetry of the problem and can be understood within
the plasmon hybridization model proposed for noble-metal
core-shell particles [69]. The important observation is a clear
splitting of the SPP mode with an additional strong peak
centered near the atomic transition frequency (blue dash-dotted
line in Fig. 6). The observed splitting as indicated in [33]
is due to the strong optical coupling of atoms with the SPP
mode.

V. CONCLUSION

We have presented a self-consistent electrodynamical
model based on coupled Maxwell-Liouville equations that
takes into account arbitrary polarization of the incident field.
The proposed model is applied to investigate the linear optical
response of nanoscale atomic clusters in two dimensions,
merging classical electrodynamics with a quantum mechanical
description of atoms. The calculations can capture collective
effects that play pivotal roles in the electrodynamics of
nanosystems and, within the limitations discussed below,
include the effect of dephasing on the optical response of these
systems.

We have found that spherical atomic clusters exhibit
two well-distinguished resonances. The low-energy resonance
is close to the atomic transition frequency of individual
atoms. The EM intensity distribution at this resonance is
localized near the surface of a cluster. The high-energy mode,
where all atoms in the cluster coherently participate in the
scattering, has a clear collective nature. The dependence
of the scattering intensity on various parameters was con-
sidered. It was demonstrated that pure dephasing plays an
important role in the scattering and absorption. Moreover,
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we successfully applied our formalism to more complex
systems, which comprise a resonant atomic shell and a silver
core.

Applications of the proposed scheme are many and vast.
They range from complete three-dimensional descriptions of
nanoparticles resonantly coupled to ensembles of quantum
particles to nonlinear optical phenomena at the nanoscale. We
note that our scheme can be extended to molecular systems,
where one may investigate Raman processes. At the same
time, we have indicated physically significant open technical
issues. One is the limited ability of an approach based on
classical electrodynamics to describe spontaneous emission
and hence fluorescence. To account for such phenomena we
need to modify the Maxwell-Liouville equations (1), (10),
and (11), so as to take into account the quantum nature of

the radiation field, possibly using the quantization schemes
described in Refs. [70–72] or [73,74] (which were shown
to be equivalent [75]). Another is the need to examine the
adequacy of mean-field calculations of dephasing. All these
will be subjects of our continuing studies.
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