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Light bullets in the spatiotemporal nonlinear Schrödinger equation
with a variable negative diffraction coefficient
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We report approximate analytical solutions to the (3+1)-dimensional spatiotemporal nonlinear Schrödinger
equation, with the uniform self-focusing nonlinearity and a variable negative radial diffraction coefficient, in the
form of three-dimensional solitons. The model may be realized in artificial optical media, such as left-handed
materials and photonic crystals, with the anomalous sign of the group-velocity dispersion (GVD). The same setting
may be realized through the interplay of the self-defocusing nonlinearity, normal GVD, and positive variable
diffraction. The Hartree approximation is utilized to achieve a suitable separation of variables in the model.
Then, an inverse procedure is introduced, with the aim to select a suitable profile of the modulated diffraction
coefficient supporting desirable soliton solutions (such as dromions, single- and multilayer rings, and multisoliton
clusters). The validity of the analytical approximation and stability of the solutions is tested by means of direct
simulations.
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I. INTRODUCTION

Light bullets, or optical spatiotemporal solitons [1], in
which both the diffraction and group-velocity dispersion
(GVD) are balanced by the nonlinearity, are challenging
objects in nonlinear optics [2]. In addition to their funda-
mental significance as particle-like waves, light bullets can
find application in long and short-distance communications,
all-optical switching, and digital computing, among others
[3]. Solitons in Kerr-type self-focusing media are governed
by the cubic nonlinear Schrödinger (NLS) equation, and
they are known to be unstable in two and three dimen-
sions (2D and 3D) in homogeneous media, because of the
collapse of the wave function. Various schemes to arrest
the collapse were proposed, such as the use of weaker
saturable [4,5] or quadratic nonlinearities [6–8], the appli-
cation of the nonlinearity and/or GVD management [9],
and the use of tandem structures, which are composed of
periodically alternating linear dispersive and nonlinear layers
[10].

Higher-dimensional NLS equations admit a broader variety
of self-trapping scenarios than their 1D counterparts—in
particular, “accessible” light bullets [11] and spatiotemporal
bullet trains [12] in nonlocal 3D nematic liquid-crystal
systems. However, the study of the multidimensional solitons
is impeded by the lack of the corresponding integrable
systems.

In this paper we find light-bullet solutions in the framework
of the (3+1)D NLS equation with a negative variable diffrac-
tion coefficient, which depends on the transverse radial coor-
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dinate, while the negative GVD and self-focusing nonlinearity
are uniform. The same equation, in its complex conjugate
form, describes a medium with the positive variable diffraction
coefficient, combined with the uniform normal GVD and
self-defocusing cubic nonlinearity. Various optical media
which admit the nonuniform diffraction, including that with
the inverted (negative) sign, are available, such as photonic
crystals [13]. The opposite relative sign of the diffraction
and cubic nonlinearity precludes the collapse in the present
case [14], although the same feature poses a question regarding
how, in principle, self-trapped modes may be supported in
this case, as the existence of bright spatial solitons requires,
usually, identical signs of the nonlinearity and diffraction.
As we argue below, comparison with recent works [15]
suggests that this counterintuitive result of the interplay of the
nonlinearity and diffraction is possible because, essentially,
the nonzero diffraction is bounded (in the present model) to
a finite area; see Figs. 1(d), 2(d), 3(d), and 4(d) below. On
the other hand, the use of the variable transverse diffraction
coefficient makes the model and solitary waves found in it
akin to the nonautonomous solitons which may be supported
by diverse variants of the “management” techniques [16,17].
In particular, the stabilization of 3D solitons by a variant
of the management based on out-of-phase sign-changing
oscillations of the nonlinearity and strength of the external
trap (i.e., alternation of waveguiding and anti-waveguiding
segments of the trap, which is a known setting that can
support spatial solitons [18]) was recently elaborated in
Ref. [19].

To construct the localized modes, we employ the Hartree
approximation, which yields a factorized solution with sep-
arated variables. We then express the solution in terms of
two arbitrary (but appropriately chosen) functions, which
imply a rich structure of the beam field. In particular,
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FIG. 1. (Color online) Typical localized light-bullet patterns (the top row), and the corresponding diffraction function β (r) (the bottom
row). Intensity isosurfaces of light bullets are displayed for different values of the topological charge, m. Other parameters: a0 = 16,
q = 0.

one can find localized excitations that include “dromions,”
ring solitons, soliton clusters, etc., which are all derived
from the general 3D light bullet solution. The freedom
in the choice of the functions comprising the solution
makes it feasible to formulate an inverse problem: First,
define appropriate expressions for the two arbitrary functions,
which describe the desired localized mode, and then find
the corresponding diffraction coefficient, which produces
such a solution. Following this route, we construct some
interesting approximate analytical solutions for the local-
ized structures. The careful choice of the two arbitrary
functions may lead to realistic models of dispersion and
diffraction in various media. We find that the appropriate
diffraction coefficients, leading to desirable localized solu-
tions, are negative and oscillating. Materials displaying such
effective diffraction include left-handed materials, nematic
liquid crystals, and photonic crystals [13]. The stability of
the so-constructed localized solutions is verified by direct
simulations.

The paper is structured as follows. In Sec. II the solution
method is introduced. Localized solutions are presented in
Sec. III, and results of simulations are displayed in Sec. IV.
Section V concludes the paper.

II. THE SOLUTION METHOD

We begin the analysis from the scaled (3+1)D spatiotem-
poral nonlinear Schrödinger equation [2], [9], [13]:

i
∂u

∂z
+ 1

2

[
β (r) ∇2

⊥u + ∂2u

∂τ 2

]
+ |u|2 u = 0, (1)

which governs the propagation of a slowly varying field
envelope u along coordinate z in the self-focusing Kerr optical
medium, characterized by the variable diffraction coefficient
β (r), while the coefficient of the anomalous GVD is scaled
to be 1. Here ∇2

⊥ is the transverse 2D Laplacian, τ is the
retarded time in the reference frame moving with the pulse, and
r =

√
x2 + y2 is the transverse radial coordinate. Although

the form of Eq. (1) seems non-Lagrangian, it can be made
derivable from the Lagrangian if the equation is divided by
coefficient β (r).

Dealing with the model in the form of Eq. (1), we will
only consider the one with the negative diffraction, β < 0.
However, applying the complex conjugation to Eq. (1), and
making use of the complex-conjugate field variable, u∗, it is
obvious that Eq. (1) is tantamount to a more realistic physical
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FIG. 2. (Color online) [(a)–(c)] Isosurface profiles of the multidromion modes for m = 0 and n = 0,1,2, respectively. (d) The corresponding
diffraction functions.

model, combining the positive diffraction, self-defocusing
nonlinearity, and normal GVD.

Using polar coordinates (r,ϕ), we search for solutions to
Eq. (1) that separate the variables:

u (z,r,φ,τ ) = � (ϕ) U (z,r,τ ), (2)

with the azimuthal part

� (ϕ) = cos (mϕ) + iq sin(mϕ), (3)

where m is a non-negative real topological charge. Under
certain circumstances, the effective topological charge may
be fractional, allowing the possibility of fractional angu-
lar momentum; such a possibility has recently been dis-
cussed theoretically [20,21] and demonstrated experimentally
[22–24].

Parameter q ∈ [0,1] in Eq. (3) determines the depth of
the azimuthal modulation. With this form of the azimuthal
function, the nonlinearity retains the ϕ dependence in |u|2.
Still, we will employ this form of function � (ϕ) to derive an
equation for U in which the influence of ϕ is averaged out, in
the spirit of the mean-field approximation. This approximation
is relevant for the weak nonlinearity and for large q, close
enough to 1.

Substituting expression (2) into Eq. (1) and integrating over
ϕ from 0 to 2π , we obtain the following averaged equation,

for integer or half-integer m:

i
∂U

∂z
+ 1

2
β (r)

(
∂2U

∂r2
+ 1

r

∂U

∂r
− m2U

r2

)
+ 1

2

∂2U

∂τ 2

+ 1

2
(1 + q2)|U |2U = 0. (4)

In the general case, one can represent complex field
U (z,r,τ ) in terms of amplitude A and phase B:

U (z,r,τ ) = A (r,τ ) eiB(r,τ )+ik0z, (5)

where k0 is the propagation constant. The substitution of this
expression into Eq. (4) and separation of the real and imaginary
parts leads to coupled equations for A and B,

−k0A + 1

2
β

[
∂2A

∂r2
− A

(
∂B

∂r

)2

+ 1

r

∂A

∂r
− m2A

r2

]

+ 1

2

[
∂2A

∂τ 2
− A

(
∂B

∂τ

)2
]

+ 1

2
(1 + q2)A3 = 0, (6a)

β

[
2
∂A

∂r

∂B

∂r
+ A

∂2B

∂r2
+ 1

r

∂B

∂r
A

]
+ 2

∂A

∂τ

∂B

∂τ
+ A

∂2B

∂τ 2
= 0.

(6b)

In general, this system of equations is difficult to treat
analytically. One approach is to assume specific forms for
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FIG. 3. (Color online) [(a)–(c)] Intensity distributions in the ring-shaped modes, for q = 1,m = 1 and n = 0,1,2, from left to right. (d) The
corresponding dispersion functions.

amplitude A (r,τ ) and the phase B (r,τ ) and then analyze
the resulting equations for the presumed solutions. Another
possibility is to assume a specific form for B in terms of A,
which formally solves Eq. (6b), and then deal with the equation
for A. In this work, we consider the simplest possibility, when
B is a constant; hence Eq. (6b) drops out, and Eq. (6a) becomes

∂2A

∂τ 2
+ β

[
∂2A

∂r2
+ 1

r

∂A

∂r
− m2

r2
A

]
+ (1 + q2)A3 − 2k0A= 0.

(7)

We treat Eq. (7) by means of the Hartree approximation
[25–28], which is based on the product ansatz,

A(r,τ ) = R(r)T (τ ) (8)

that, again, separates the variables. Substituting this into
Eq. (7), we arrive at the equation

R
∂2T

∂τ 2
+ (1 + q2)R3T 3 + β

[
∂2R

∂r2
+ 1

r

∂R

∂r
− m2

r2
R

]
T

−2k0RT = 0. (9)

Similarly to what we encountered above, the nonlinearity
does not allow the rigorous separation of the variables. We
proceed, as before, by deriving the averaged equations for
R and T , following the Hartree approximation. Multiplying

Eq. (9) by R, integrating it over r from 0 to ∞, and dividing
by

∫ ∞
0 R2dr , leads to the following equation for T (τ ):

∂2T

∂τ 2
+ 1

2
(1 + q2)T 3 − T = 0. (10)

Here, the localization is assumed, R (r → ∞) = 0, and
k0 = 1

2 is fixed by scaling. An obvious relevant solution of
Eq. (10), to be utilized here, is the bright solitary wave,
T (τ ) = 2√

1+q2
sech (τ ). Similarly, if Eq. (9) is multiplied by

T , integrated from −∞ to +∞, and divided by
∫ ∞
−∞ T (τ )2 dτ ,

one obtains

3β

(
r2 ∂2R

∂r2
+ r

∂R

∂r
− m2R

)
+ 8r2R3 − 4r2R = 0. (11)

The treatment of Eq. (11) is more difficult. Using the
fact that the function β (r) was not specified yet, we invert
the procedure: Rather than treating Eq. (11) as an equation
for R with given β, we assume that it is an equation for
β with given R. Thus, with R given in a certain form,
β is determined following a procedure which may be fa-
cilitated by the use of the Hirota binary operator [29,30],
Dr (g (r) f (r)) = (

∂
∂r

− ∂
∂r′

)
g (r) f

(
r ′)∣∣

r=r ′ . To this end, we
assume that amplitude R can be presented as a quotient,
R (r) = g

f
, of two arbitrary nonzero real functions g (r) and
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FIG. 4. (Color online) [(a)–(c)] Bound state in the form of clustered Gaussians, and (d) the corresponding diffraction functions, for
m = 0,1,3/2. The corresponding functions g and f and other parameters are defined in the text.

f (r). Then, Eq. (11) yields an expression for the diffraction coefficientβ (r) in terms of the Hirota’s bilinear form:

β (r) = 4gr2(f 2 − 2g2)

3
{
r2

[
f D2

r (gf ) − gD2
r (ff )

] + rf Dr (gf ) − m2gf 2
} . (12)

Hence, by an appropriate choice of functions f and g,
leading to a localized spatial part R of the light-bullet solution,
one can determine the diffraction coefficient β for which such
solutions are allowed.

At this point it is relevant to recall the full form of
the approximate light-bullet solution of Eq. (1), as per
substitutions (2), (3), (5), and (8):

u (z,r,ϕ,τ ) = 2 (cos mϕ + iq sin mϕ)√
1 + q2

g

f
sech (τ ) eiB+ i

2 z,

(13)

where B = const and k0 = 1
2 , as fixed above. Selecting relevant

arbitrary functions g (r) and f (r) in Eq. (13), one may
construct various localized structures in the models with the
diffraction coefficient defined by Eq. (12).

A similar inverse problem, i.e., constructing a poten-
tial function which would produce a desired solution to
the equation, was presented in Ref. [31] for 1D and 2D

Gross-Pitaevskii equations. Crucial to this procedure is the
proper choice of boundary conditions, in particular those for
localized solutions. Below we present relevant examples of
so-generated solutions.

III. LOCALIZED MODES

While the choice of functions f and g is arbitrary,
care must be taken to produce physically relevant localized
solutions. Initially, we choose these functions in Eq. (13) as
g = sin(r2 − a0) and f = exp(r2/2), where a0 is an arbitrary
constant. Such a choice leads to the localized excitations
resembling “dromions” [32–34], which decay exponentially
in all directions, as shown in Figs. 1(a)–1(c) for a0 = 16.
For given g and f , the corresponding β (r) is calculated
from Eq. (12). The graphs of β (r) for different m are
shown in Fig. 1(d). It is seen that the diffraction coefficient
vanishes at r = 0, being negative at r > 0. In the limit
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FIG. 5. (Color online) Comparison of the approximate solutions
with their numerical counterparts for q = 1 (left column) and q = 0
(right column). (a) The intensity distribution as predicted by the
analytical expression (13). (b) The respective numerical solution
of Eq. (1), after propagation distance z = 50. The corresponding
functions g and f and the parameters are defined in the text.

of q = 0 and for m 
= 0, the localized modes feature two
radial layers. The modes with integer m are built of 4m

bright spots, while half-integer m gives rise to asymmetric
localized patterns, structured along the azimuthal coordinate
and featuring 2m + 1 bright spots.

It is commonly known that bright spatial solitons exist
under the action of the diffraction and cubic nonlinearity with
identical signs, while, in the present case, β (r) < 0 has the
sign opposite to that of the cubic term in Eq. (11). Actually,
solitons may exist in this setting due to the fact that nonzero
values of β (r) are confined to a finite region, as seen in
Fig. 1(d). To better understand this feature, we refer to recent
works [15], which are dealing with the normal diffraction and
self-defocusing cubic term, the coefficient in front of which
quickly diverges at |x| → ∞:

i
∂u

∂z
+ 1

2

∂2u

∂x2
− e

1
2 x2 |u|2 u = 0. (14)

In spite of the “wrong” relative sign of the diffraction and
nonlinearity, this equation gives rise to stable bright solitons,
including, for instance, an exact solution for the dipole soliton,
u (z,x) = x√

2
exp[− 1

2 (3iz + x2)]. Now, dividing Eq. (14) by

exp(x2/2), and taking into regard that function exp(−x2/2),
practically, differs from zero in a finite region, we conclude
that the stationary version of the so-obtained equation is quite

similar to those considered above with the negative diffraction
coefficient confined to the finite region. This comparison helps
to understand the reason for the existence of bright solitons in
the present model.

Examples of multiple dromion-like [32,33], [34] and
multiple-ring [35] axially symmetric modes are obtained with
other choices of functions g and f . For instance, the light
bullets obtained with

g = rmLm
n (r2), f = e

1
2 r2

, (15)

where Lm
n are the generalized Laguerre polynomials and n is

an integer, are displayed in Figs. 2 and 3. Parameters q, m,
and n control the shape of these modes as per Eq. (13), for
the corresponding β (r) functions, which are calculated from
Eq. (12) and displayed in Figs. 2(d) and 3(d). When m =
0 (q = 1), the multi-dromion (multi-ring) solutions can be
obtained for different values of n. For n = 0, a single-dromion
solution of the instanton type is found, see Fig. 2(a), and
multidromions are obtained for n � 1. Two- and three-layer
dromions are plotted in Figs. 2(b) and 2(c). The multidromion
modes feature n + 1 layers for n � 1.

Modes shaped as thin rings are obtained with m = 1 and
q = 1. Examples of the rings are shown in Fig. 3. For n = 0,
the single-ring mode is shown in the left panel of Fig. 3.
For integer n � 1, these light bullets feature n + 1 layers; see
Fig. 3(b) and 3(c).

The corresponding diffraction coefficient is presented in
Fig. 3(d) for m = 1 and different values of n. In this case, too,
β is negative, being zero at the center. As mentioned, possible
materials for the observation of such light bullets might be
nematic liquid crystals (NLCs), photonic crystals, and left-
handed materials. The self-focusing of the light beam in bulk
NLC was reported in Ref. [36]. It is relevant to mention that
the field-induced complex refractive index changes in nano-
dispersed NLCs, exhibiting negative and positive refractive
indices, are achieved at different values of the strength of the
applied field and different anchoring conditions, over a broad
spectral regime. Partially incoherent spatial solitons have been
observed in undoped E7 NLC cells [37,38]. These incoherent
solitons (“nematicons”) were generated at milliwatt power
levels in voltage-biased planar cells.

It is also possible to construct bound states of an arbitrary
number of localized modes. For this purpose, we introduce f

and g as Gaussian functions, g = a0 + ∑N
n=1 bne

−(�r−�rn)2
and

f = d0 + ∑J
j=1 cj e

−(�r−�rj )2
, where a0( 
= 0), bn, d0( 
= 0), cj ,

�rn, and �rj are arbitrary constants. The analytical solution given
by Eq. (13) in this case, and the corresponding function β(r)
given by Eq. (12), can be easily written down. The number
of localized modes in the bound state is controlled by N

and J , and the amplitude and the location of each mode are
determined by parameters a0, bn, d0, cj , and �rn, �rj , respectively.
This type of clustered solutions, generated by Eq. (13),
can generate sundry profiles. For example, choosing N =
5, J = 1, a0 = b2 = b3 = b4 = b5 = d0 = c1 = 1, b1 = 2

√
e

and �r1 = (0,0), �r2 = (2,2), �r3 = (−2, − 2), �r4 = (2, − 2),
�r5 = (−2,2), we obtain the patterns shown in Fig. 4.

In Fig. 4(a), m = 0 gives rise to a complex built of five
localized modes, with the one located at the center having a
smaller amplitude than the other four. For m = 1, the pattern
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is formed by six local modes, with two of them, that have the
lower amplitude, set close to the center; see Fig. 4(b). Half-
integer m gives rise to an asymmetric pattern; see Fig. 4(c).
As seen in Fig. 4(d), the diffraction coefficient supporting the
clustered patterns must again be negative.

IV. COMPARISON WITH DIRECT SIMULATIONS

The expression given by Eq. (13) is an approximate solution
of Eq. (1). Therefore, it is necessary to verify the existence
and stability of the so-predicted states by means of a direct
numerical solution of Eq. (13), which was done with the help of
the split-step beam propagation method [28,39] for the initial
configuration taken as per Eq. (13) at z = 0,

u (0,r,ϕ,τ ) = 2 (cos mϕ + iq sin mϕ)√
1 + q2

g

f
sech (τ ) eiB,

the same functions g(r) and f (r) as in Eq. (15), and the
corresponding diffraction-coefficient function; see Eq. (12).
Setting m = 3/2 and n = 1, the corresponding plot of the
intensity distribution, |u(z,r,ϕ,τ )|2, as produced by the nu-
merical solution, is compared to the respective approximate
solution, given by Eq. (13), for q = 0 and q = 1. The
numerical solution does not give to any visible instability,
and good agreement with the approximate analytical solution
is observed (see Fig. 5). Similar behavior was seen for other
initial conditions.

V. CONCLUSIONS

In this work, we have studied localized modes in the
(3+1)D spatiotemporal nonlinear Schrödinger equation with
the self-focusing nonlinearity, anomalous GVD, and a variable
negative diffraction coefficient, which is effectively confined to
a finite region. The same model applies to the medium combin-
ing the positive diffraction, self-defocusing nonlinearity, and
normal GVD. Using the Hirota’s bilinear method and Hartree
approximation, we have determined a variety of profiles of the
modulated diffraction coefficient that can maintain light-bullet
modes with different desired shapes. Specific features of the
localized patterns supported by such engineered profiles of
the diffraction coefficient were discussed. The existence of
the spatially localized modes, despite the negative relative
sign of the cubic nonlinearity and diffraction, was explained
qualitatively, a key property being the fact that the diffraction
coefficient differs from zero in a finite region. The validity of
the analytical approximation was verified by direct simulations
of the underlying NLS equation.
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