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Critical exponent of a quantum-noise-driven phase transition: The open-system Dicke model
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The quantum phase transition of the Dicke model has been observed recently in a system formed by motional
excitations of a laser-driven Bose-Einstein condensate coupled to an optical cavity [Baumann et al., Nature
(London) 464, 1301 (2010)]. The cavity-based system is intrinsically open: photons leak out of the cavity where
they are detected. Even at zero temperature, the continuous weak measurement of the photon number leads to
an irreversible dynamics toward a steady state. In the framework of a generalized Bogoliubov theory, we show
that the steady state exhibits a dynamical quantum phase transition. We find that the critical point and the mean
field are only slightly modified with respect to the phase transition in the ground state. However, the critical
exponents of the singular quantum correlations are significantly different in the two cases. There is also a drastic
modification of the atom-field entanglement, since the divergence of the logarithmic negativity of the ground
state at the critical point is suppressed and a finite entanglement is found in the steady state.
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I. INTRODUCTION

Experiments with ultracold atomic gases in optical fields
laid down a new path to discover strongly correlated many-
body quantum systems. In particular, the high degree of
control over the interaction parameters allows for using
atomic systems as quantum simulators of generic theoretical
models [2]. Central to these efforts lies the possibility of
observing quantum phase transitions (QPT). At effectively
zero temperature (T = 0), by tuning an external field, the
system can be scanned through a quantum critical point which
separates regions with different symmetries in the ground state.
One celebrated example is the QPT from a superfluid to a Mott
insulator in the Bose-Hubbard model [3] that was realized with
a gas of ultracold atoms in an optical lattice [4]. Additional
quantum phases appear in this system when a dipole-dipole
interaction is present [5].

A fundamental question is how quantum phase transitions
are influenced by nonequilibrium conditions. The ordinary
way to prepare a stationary system out of equilibrium at T = 0
can be illustrated by a BEC in a rotating trap. It undergoes the
vortex formation QPT above a critical angular velocity [6].
External driving can impose that only a certain subset of states
in the Hilbert space, those having a given moment of inertia in
the previous example, be populated. A similar effect has been
described for a spin chain in ring geometry: it can manifest
criticality while being confined into the subspace of energy
current carrying states [7]. In both examples the system is
effectively Hamiltonian.

One can go beyond the effectively Hamiltonian systems
by adding external nonequilibrium noise on critical states.
It was shown that the 1/f noise, ubiquitous in electronic
circuits, preserves the quantum phase transition in the steady
state of a system, moreover, it gives a knob to tune the
critical exponent by the noise strength [8]. This is in sharp
contrast with the well-known effect of thermal fluctuations that
destroy quantum critical correlations. In a more general level,
reservoir engineering is a route toward designing specific noise
sources in a dissipation process which leads to pure many-body
states in the dynamical steady state. An example is a lattice

gas immersed in a BEC of another species of atoms [9],
which serves as a zero-temperature reservoir of Bogoliubov
excitations. The resulting dissipative Bose-Hubbard model
exhibits a dynamical phase transition between a pure superfluid
state and a thermal-like mixed state as the on-site interaction
is increased [10]. Note that this method for the preparation
of strongly correlated quantum states makes dissipation a
resource for quantum simulation [11] and universal quantum
computation [12].

In this paper we will consider the bare electromagnetic
vacuum at T = 0 as a reservoir and its effect on a Dicke-type
Hamiltonian system, which is known to produce a singularity
of the ground state [13]. Placed into a dissipative environment,
the system evolves irreversibly into a steady state which is
a dynamical equilibrium between driving and damping. The
intrinsic noise accompanying the dissipation process is in
accordance with the dissipation-fluctuation theorem. Even in
this very natural case of nonequilibrium, at a certain value
of the parameters, the correlation functions diverge by power
law. That is, the loss does not destroy quantum criticality. But
what is the relation of the criticality expected in the steady
state to that of the ground state in the closed Hamiltonian
system?

Our specific example is the self-organization phase transi-
tion of laser-driven atoms in an optical resonator [14–19]. The
laser impinges on the atoms from a direction perpendicular
to the resonator axis (see Fig. 1). Below a critical value of
the pump intensity, the spatial distribution of the atoms is
homogeneous along the axis and the mean cavity photon
number is zero, since the photons scattered by the atoms
into the cavity interfere destructively. Above a threshold pump
power, there appears a wavelength-periodic modulation of the
distribution, from which laser photons can be Bragg scattered
into the resonator. Spontaneous symmetry breaking takes place
between two possible solutions for the cavity field phase
and the atomic distribution. This is a nonequilibrium phase
transition, which has an experimentally accessible T = 0
limit if the atomic cloud is represented by a Bose-Einstein
condensate. The phase diagram has been experimentally
mapped by Baumann et al. [1].
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FIG. 1. (Color online) Self-organization phase transition of a
BEC in a cavity. Below a threshold in the transverse driving field
(left) the condensate is quasihomogeneous, and there are no photons
inside the cavity. Above threshold (right), a standing matter wave of
period λ appears that scatters photons into the cavity.

II. OPEN-SYSTEM DESCRIPTION

Consider the dispersive coupling of a one-dimensional
matter wave field �(x) to a single cavity mode a in the
transverse pump geometry shown in Fig. 1. The dispersive
limit appears when the laser pump is far detuned from
the atomic resonance (�A = ω − ωA exceeds the atomic
linewidth γ by orders of magnitude). In the frame rotating
at the pump frequency ω, the many-particle Hamiltonian reads

H/h̄ = −�C a†a +
∫ L

0
�†(x)

[
− h̄

2 m

d2

dx2

+U0 a†a cos2(kx) + iηt cos kx(a† − a)

]
�(x)dx.

(1)

The detuning �C = ω − ωC defines the effective photon
energy in the cavity. Atom-atom s-wave collisions are ne-
glected; the length of the condensate along the cavity axis
is L. The atom-light interaction originates from coherent
photon scattering. The absorption of a cavity photon and
stimulated emission back into the cavity gives rise to the term
proportional to U0 = g2/�A. The coherent redistribution of
photons between the pumping laser and the cavity mode results
in an effective pump with amplitude ηt = �g/�A, where the
dipole coupling of the atoms to the cavity mode and to the
pump laser are characterized by single-photon Rabi frequency
g and Rabi frequency �, respectively. Note that this term
describes the external driving of the system, and the explicit
time dependence in the optical frequency range, due to the
laser field, has been eliminated by the transformation into the
rotating frame. The remaining frequencies are in the kHz range
of the recoil frequency ωR = h̄k2/2m.

The critical behavior can be described in a subspace
spanned by two motional modes, i.e.,

�(x) = 1√
L

c0 +
√

2

L
c1 cos kx, (2a)

with the bosonic annihilation operators c0 and c1. With the
closed subspace constraint

c
†
0c0 + c

†
1c1 = N (2b)

imposed, the Hamiltonian of the system formally reduces to
that of the Dicke model [20]. Originally, it was introduced
to describe the dipole coupling of N two-level atoms to
a single quantized field mode [21]. It has been known for
a long time that the Dicke model can exhibit a thermo-
dynamic phase transition at finite temperature [22], and a
quantum phase transition at zero temperature [13] between
an unexcited normal phase and a superradiant phase, where
both the atoms and the mode are macroscopically excited.
There is a renewed interest in studying the zero-temperature
properties of this system with particular respect to critical
entanglement [23], finite-size scaling [24,25], and quantum
chaos [26]. Dimer et al. proposed a realization of the
Dicke model with photon loss by means of multilevel atoms
coupled to a ring cavity mode via Raman transitions [27].
Another collective spin model exhibiting dynamical QPT, the
Lipkin-Meshkov-Glick model, was constructed in cavity QED
systems [28].

We consider a single dissipation channel which is the
photon leakage through one of the mirrors. The corresponding
dissipation process can be modeled by a Heisenberg-Langevin
equation for the field amplitude a, which includes a loss term
with rate κ and a Gaussian noise operator ξ (t),

d

dt
a = −i[a ,H ] − κa + ξ. (3)

The effect of continuous weak measurement of the photon
number is described by the same equation. The noise operator
ξ has zero mean and its only nonvanishing correlation is
〈ξ (t)ξ †(t ′)〉 = 2κδ(t − t ′) at T = 0. For finite temperature,
other correlations would appear proportional with the thermal
photon number. The given second-order correlation expresses
the fluctuation-dissipation theorem. The noise operator can be
seen as a necessary source for maintaining the commutation
relation and general algebraic properties during the time
evolution.

This equation applies to the decay of a single uncoupled
harmonic oscillator. In the present case, however, the cavity
mode interacts with the matter wave field. As was shown
in [29], when considering the relaxation of a coupled system,
the interacting Hamiltonian has to be diagonalized first, and
then the energy-conserving terms in the interaction with the
environment can be separated and retained in a Markovian
approximation. The actual decay process is photon loss
through one of the cavity mirrors which involves the exchange
of energy quanta between the system and the reservoir in
the optical frequency range. This high-frequency component,
which stems from the laser pump, has been eliminated
formally from the system dynamics by going into a frame
rotating at the pump frequency. The modulation of the system
energies due to coupling between the cavity and the matter
wave field is in the range between kHz and MHz (determined
by the recoil frequency ωR and the detuning �C , this latter
is in the range of κ). Having so many orders of magnitude
difference, the original decay process of the photon mode is
practically unaffected and Eq. (3) holds for the interacting
system. But one must keep in mind that the original problem
is intrinsically time dependent and thus there can be an energy
current from the laser into the reservoir through the system.
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III. STEADY STATE VS GROUND STATE

Taking the N → ∞ limit, the mean-field approach, which
can be adopted both in the lossy and lossless cases of the
Dicke-model, gives an adequate approximation of the true
steady state and the ground state, respectively. The ground
state of the Hamiltonian (1) in the subspace (2a) has been
calculated previously [20]. The calculation of the steady state
in the mean-field approximation is presented in Appendix A. In
contrast to the calculation of the ground state, the steady state
is obtained from the Heisenberg equations of motion including
the damping and the Langevin noise [c.f. the last two terms in
Eq. (3)]. It is interesting to note that, although formally one
can regain the equations of motion of the closed system by
setting κ to zero, the steady-state solution does not tend to the
ground state in the κ → 0 limit. One can understand this by
noting that the time required to reach the steady state diverges
with κ−1, and consequently, the open system description is ill
defined in this limit.

Figure 2 presents a comparison of the quantum critical
behavior in these two cases. The operators are split into their
steady-state expectation values and quantum fluctuations,

a(t) =
√

Nα0 + δa(t), ck(t) = e−iμt [
√

Nγk + δck(t)],

(4)

where α0 corresponds to a coherent state in the cavity, and γ0,γ1

are the condensate wave-function components. The exponen-
tial factor describes the time evolution of the condensate wave
function. The chemical potential μ is the lower eigenvalue of
the Gross-Pitaevskii equation that corresponds to Eqs. (A1b)
and (A1c) coupling the motional modes. We can choose
γ0 =

√
1 − β2

0 and γ1 = β0, where 0 � β0 � 1. The mean-field
amplitudes |α0|2,β2

0 are plotted by thick lines (right scale)
against the pumping strength y = √

2Nηt normalized to the
critical value yc. The critical point separates two phases with
different symmetries. In the normal phase α0 = β0 = 0, and
in the superradiant phase there are two mean-field solutions
corresponding to ±α0 and γ1 = ±β0. The critical point yc

depends on κ [see Eq. (A3) in Appendix A], however, the
mean-field solutions α0 and β for the steady state and for
the ground state, expressed as a function of y/yc, overlap. The
perfect overlap is not a general property, but there is always
a smooth connection so that they coincide for κ → 0. This is
because the mean-field solution is dominated by the identical
Hamiltonian part of the dynamics.

In contrast, the correlation functions of quantum fluctua-
tions may signify different kinds of second-order phase tran-
sitions, because the quantum noise source in the open system
is dissipation (or the backaction of the measurement), which
is completely missing from the closed system. For the matter
field we consider the excitation mode δb, which is orthogonal
to the condensate wave function. In the normal phase δb = δc1,
while in the superradiant phase δb = −β0δc0 +

√
1 − β2

0δc1. In
Fig. 2, we compare the number of incoherent photons 〈δa†δa〉
[panel (a), thin red lines] and the condensate depletion 〈δb†δb〉
[panel (b) thin blue lines] in the steady state (solid lines) and
in the ground state (dashed lines). There is a divergence for
both cases, however, the exponent is −0.5 for the ground state
(usual mean-field exponent), whereas it is −1 for the steady
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FIG. 2. (Color online) Comparison of the criticality in the ground
state of the closed, and in the steady state of the open Dicke models.
The mean fields and the incoherent excitation numbers of the photon
(a) and the atom (b) fields are plotted as a function of the coupling
normalized to its critical value yc. With this scaling, the mean-field
amplitudes (thick solid lines) coincide in the two states. There is a
marked difference between the excitation numbers in the steady state
(thin solid lines) and in the ground state (thin dashed lines). The
points show the numerical results for finite atom numbers, which we
obtained using a general quantum simulation framework for cavity
QED systems [30]. The steady state (circles) and the ground state
(squares) are calculated for N = 200 and 400, respectively. The
parameters are �C = −2, U0 = 0, and κ = 2 ωR .

state (see ln-ln scale in Fig. 3). This difference is independent
of κ and is related to the different physical origins of the
divergence.

On the one hand, the ground state is a two-mode squeezed
state with a squeezing parameter which tends to infinity
at the critical point. This results in a singularity of the
entanglement between the cavity and the atomic subsystems.
On the other hand, the steady state is driven by quantum
noise associated with dissipation (or measurement), which
heats up the quasinormal mode population infinitely where
the imaginary part of its eigenvalue vanishes. The steady state
is a mixed state having a regular entanglement at the critical
point, reflected by the logarithmic negativity EN in Fig. 4.

Some final remarks are appropriate about experimental de-
tection. Direct photon counting can discriminate between the
ground state and steady state. Because the mean field vanishes
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FIG. 3. (Color online) Critical exponents for the phase transition
in the ground state and in the steady state. The scaling of the
condensate depletion with the relative deviation from the critical point
is shown in a ln-ln scale on both sides of the critical point. At the
center |1 − y/yc| = e−14. We compare the averages in the steady state
(solid red lines) for κ = 2ωR and in the ground state of the system
(dashed blue lines) without dissipation (κ = 0). The corresponding
exponents are −1.00 and −0.50, respectively. Other parameters are
the same as in Fig. 2.

below threshold (y < yc), any detected photon corresponds to
the fluctuations 〈δa†δa〉. As shown in Fig. 2(a) by solid and
dashed lines, the photon number of the steady state is above that
of the ground state. Therefore a measurement yielding a photon
number above the ground-state level would indicate that the
system has evolved from the initially prepared ground state
toward the steady state due to the quantum noise penetrating
into the cavity. For the finite duration of the experiment the
actual steady state is not necessarily reached, especially close
to the critical point where the damping of the quasinormal
modes tends to vanish (“critical slowing down”).
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FIG. 4. (Color online) Entanglement at the critical point. Loga-
rithmic negativity [defined in Appendix C, in Eq. (C3)] as a function
of the transverse pumping strength y for the steady state (solid red
lines, κ = 2 ωR) and for the ground state (dashed blue lines, κ = 0).
Parameters: δC = −2.

IV. DISCUSSION

In this paper we have adapted the famous Dicke model to an
intrinsically nonequilibrium setting and pointed out distinctive
features of this experimentally accessible driven-damped open
system. The underlying Dicke problem, a closed, conservative
system, has been a subject of intensive research for many
decades. It remained an intriguing question, however, what
happens with the critical point under nonequilibrium effects?
While in classical physics the extension from equilibrium to
nonequilibrium systems has been extensively studied, this step
has not been made in quantum theory. On the other hand,
the ongoing experimental work will significantly shape the
research on quantum phase transitions, too. In particular,
we believe that the cavity-QED-based systems given in
several laboratories worldwide raise relevant new aspects for
classifying quantum critical phenomena. In this paper we
revealed nonequilibrium critical effects in the case of the
simplest possible environment. It consists of a single well-
defined dissipation channel (photon leakage out of the cavity),
which is equivalent with the backaction of a weak quantum
measurement on the photon number observable (continuous
photodetection). This innocent looking intrusion in the system
drastically modifies the critical exponent of the singularity at
the phase transition point.

Note added. Recently, we became aware of similar results
by Öztop et al. [34].
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APPENDIX A: MEAN-FIELD SOLUTION OF THE
TWO-MODE MODEL

We solve the steady state of the system within a mean-
field approach, which is consistent with the assumptions that
(i) there is a macroscopically populated BEC wave function,
and (ii) the state of the cavity field is close to a coherent state.
After restricting the atomic dynamics to the spatial modes,
Eqs. (2) (see also Ref. [20]), we proceed by obtaining the equa-
tions of motion of the operators a, c0, and c1. The first equation
is the Heisenberg-Langevin equation given by Eq. (3), while
the Heisenberg equations of motion for the operators ci follow
directly from the Hamiltonian dynamics provided by Eq. (1).

ȧ =
[
i
(
δC − u

N
c
†
1c1

)
− κ

]
a + y

2
√

N
(c†0c1 + c

†
1c0) + ξ,

(A1a)

ċ0 = i
[ωR

2
+ u

2N
a†a

]
c0 + y

2
√

N
(a† − a)c1, (A1b)

ċ1 = −i
[ωR

2
+ u

2N
a†a

]
c1 + y

2
√

N
(a† − a)c0, (A1c)
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where we introduce the parameters δC = �C − 2u, ωR =
h̄k2/(2m), u = NU0/4, and y = √

2Nηt . Note that in the
thermodynamic limit N → ∞ and U0,ηt → 0, while u and
y are kept constant, and they can be expressed with the atom
density. The noise operator ξ has zero mean and its only
nonvanishing correlation is 〈ξ (t)ξ †(t ′)〉 = 2κδ(t − t ′), with 2κ

being the photon loss rate [31,32].
By using the decomposition of the operators to mean part

and fluctuations, given by Eq. (4), in the equations of motion
(A1) and neglecting fluctuations we arrive at the mean-field
equations determining α0, γ0, and γ1. Since the BEC wave
function is normalized to unity, we can choose γ0 =

√
1 − β2

0
and γ1 = β0, where 0 � β0 � 1. By choosing β0 positive,
we select one of the two mean-field solutions, which also
fixes the phase of the cavity field. For the steady state,
we obtain [

i
(
δC − uβ2

0

) − κ
]
α0 = −yβ0

√
1 − β2

0 , (A2a)

(ωR + u|α0|2)β0 = −y Im(α0)
1 − 2β2

0√
1 − β2

0

, (A2b)

and the chemical potential μ = − 1
2 (ωR + u|α0|2)/(1 − 2β2

0 ).
Note that the coherent field amplitude α0 is complex, while

β0 is real. The solution α0 = β0 = 0 always satisfies these
equations, and it corresponds to the normal phase in which the
condensate is homogeneous (γ0 = 1) and there is no photon
inside the cavity. Above the pumping threshold,

y2
c = −ωR

(
δ2
C + κ2)/δC, (A3)

the solution bifurcates, and the normal phase loses stability.
The stable solution becomes

β2
0 = δC

u

⎛
⎝1 −

√
1 − u

δC

y2 − y2
c

y2 + uωR

⎞
⎠ , (A4)

which corresponds to the superradiant phase, where the
condensate is modulated (β0 > 0) and the cavity field is finite
(|α0|2 > 0). For u = 0, the expression in Eq. (A4) needs to
be reformulated as β2

0 = (y2 − y2
c )/2y2, and accordingly the

mean-field amplitudes coincide both for the steady state and
for the ground state (κ = 0), if expressed as a function of
y/yc, leaving κ the only role of shifting the critical pumping
strength yc.

The critical behavior is unaffected by u, and the parameters
u and y can be tuned independently, thus for simplicity we set
u = 0.

APPENDIX B: FLUCTUATIONS IN THE STEADY STATE

To go beyond mean field one has to keep the operator-valued
fluctuations δa and δci in Eqs. (A1). We consider quantum
fluctuations up to linear order. Note, that the zeroth-order term
vanishes due to the mean-field equations, and we arrive at a set
of linear, stochastic differential equations for the fluctuations.
There are two types of fluctuations in the atom field (δc0,δc1).
The zero mode fluctuations, δc =

√
1 − β2

0δc0 + β0δc1, give
rise to a phase diffusion of the condensate. The dynamics
of the zero mode decouples from that of the other types
of fluctuations. We are interested in the dynamics of the

nonzero mode δb = −β0δc0 +
√

1 − β2
0δc1, which describe the

condensate depletion δN = 〈δb†δb〉. The coupled equations of
motion read

d

dt
δa = [

i
(
δC − uβ2

0

) − κ
]
δa + ξ

+
[
y

2

(
1 − 2β2

0

) − iuα0β0

√
1 − β2

0

]
(δb† + δb),

(B1a)
d

dt
δb = −i

ωR + u|α0|2
1 − 2β2

0

δb + y

2

(
1 − 2β2

0

)
(δa† − δa)

− iuβ0

√
1 − β2

0 (α0δa
† + α∗

0δa), (B1b)

We solve Eqs. (B1a) and (B1b) by calculating the normal
mode excitations of the system. Arranging the fluctuations
in the vector R̂ = [δa,δa†,δb,δb†], Eqs. (B1a) and (B1b) are
written in the compact form

∂

∂t
R̂ = MR̂ + ξ̂ , (B2)

where M is the linear stability matrix of the mean-field
solution, and the driving term ξ̂ = [ξ̂ ,ξ̂ †,0,0] includes the
quantum noise of the cavity field. The matrix M is non-
normal, therefore it has different left and right eigenvectors
l(k) and r (k), which form a biorthogonal system, i.e., their
scalar product (l(k),r (l)) = δk,l . The quasinormal modes de-
fined by ρ̂k = (l(k),R̂) are decoupled from each other, and
evolve as

ρ̂k(t) = eλkt ρ̂k(0) +
∫ t

0
eλk (t−t ′)Q̂k(t ′)dt ′ . (B3)

Generally, the noise enters into all quasinormal modes via
the projection Q̂k = (l(k),ξ̂ ). Since R̂ contains the fluctu-
ation operators twice (the operators and their Hermitian
adjoint), the operators ρ̂k also form adjoint pairs ρ+,ρ

†
+ with

y/yc
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n
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1.210.80.60.4
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FIG. 5. (Color online) Spectrum of the linear stability matrix
M vs the transverse pump strength y. Solid lines (dashed lines)
correspond to the imaginary (real) part of the eigenvalues. The real
parts are the same for a complex conjugate pair. Parameters: δC = −2,
κ = 2ωR .
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eigenvalues λ+,λ∗
+ and ρ−,ρ

†
− with eigenvalues λ−,λ∗

−. Each
pair corresponds to a quasinormal mode excitation of the
system. Figure 5 shows the spectrum of the linear stability
matrix M as a function of the pumping strength y. Solid lines
correspond to the imaginary parts, and dashed lines to the real
parts of the complex conjugate pairs of eigenvalues λk,λ

∗
k . (The

real parts are the same for each pair.) The conservative BEC
and the lossy cavity modes form two dissipative quasinormal
excitation modes; both are subjected to quantum noise and
damping. One of them is a photonlike mode, with eigenvalues
λ+,λ∗

+ starting from −κ ± iδC at y = 0, with a slightly
increasing frequency and decreasing decay rate as y → yc.
The other quasinormal mode dominantly corresponds to the
BEC mode. Its eigenvalues λ−,λ∗

− are purely imaginary, ±iωR

at y = 0, however, with increasing y its decay rate increases
and its frequency decreases down to zero. Interestingly, there
is a finite interval where the imaginary part of λ− vanishes.
At the lower and upper limits of this interval, the matrix
M becomes defective, i.e., it has only three independent
eigenvectors and three eigenvalues with λ− = λ∗

− becoming
a multiple eigenvalue. The critical point is reached, where the
smallest decay rate becomes zero. At this point, the quantum
noise is not balanced by damping, therefore the steady-state
excitation numbers diverge.

The second-order correlations of the original fluctuation
operators can be derived from the correlations 〈ρ̂k(t)ρ̂l(t)〉. In
the regime of cavity cooling, where δC − uβ2

0 < 0, the real
parts of the eigenvalues λk are negative, thus the first term of
Eq. (B3) dies out with time. The steady-state correlations are
then obtained from the second term,

〈ρ̂k(t)ρ̂l(t)〉 −→ − 2κ

λk + λl

l
(k)
1

∗
l
(l)
2

∗
. (B4)

This result is in contrast to the normal mode expectation values
of zero-temperature systems. For such an equilibrium situation
the expectation values are simply 〈ρ̂kρ̂l〉 = 1, provided that ρ̂k

is the annihilation, and ρ̂l is the creation operator of the same
normal mode, i.e., 0 � Im(λl) = − Im(λk).

The correlations of the original system operators can be
calculated using their expansion with the quasinormal modes,
R̂ = ∑

k ρ̂kr
(k), that leads to

〈R̂iR̂j 〉 =
∑
k,l

〈ρ̂kρ̂l〉 r
(k)
i r

(l)
j . (B5)

For example, the condensate depletion is given by δN =
〈δb†δb〉 = 〈R̂4R̂3〉, while the number of incoherent cavity
photons is expressed by 〈δa†δa〉 = 〈R̂2R̂1〉.

APPENDIX C: ATOM-FIELD ENTANGLEMENT

We quantify the entanglement between the BEC and cavity
subsystems by calculating the logarithmic negativity from
the steady-state correlation matrix. To this end, we introduce
the quadrature operators δx = (δa + δa†)/

√
2, δy = −i(δa −

δa†)/
√

2, δX = (δb + δb†)/
√

2, and δY = −i(δb − δb†)/
√

2
and group them in the vector u = (δx,δy,δX,δY )T . As these
quadratures are Hermitian, one can construct a real correlation
matrix

Cij = 1
2 〈uiuj + ujui〉, (C1)

which has the following block form:

C =
[

P X

XT A

]
, (C2)

where P and A describe the correlations within the photon
and atom fields, while X accounts for the cross correlations
between the two. The logarithmic negativity can be expressed
[33] by the symplectic invariants (det P, det A, det X) of the
covariance matrix (C1) as

EN = max(0, − ln 2ν̃−), (C3)

and

ν̃− = 2−1/2
√

�(C) −
√

�(C)2 − 4 det C, (C4)

where � = det P + det A − 2 det X. The state is separable,
thus the entanglement is zero if ν̃− � 1

2 . The logarithmic
negativity quantifies the amount by which this separability
criterion is violated.
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