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We study the counting statistics of ultracold bosonic atoms that are released from an optical lattice. We show
that the counting probability distribution of the atoms collected at a detector located far away from the optical
lattice can be used to characterize the initially trapped states. We consider trapped superfluid and insulating states
with different occupation patterns. We analyze how the correlations between the modes that develop during the
expansion in the gravitational field appear in the counting distribution and find that the ratio of the detector size
with respect to the expanded wave function determines whether short-range or long-range correlations of the
initial state are reflected in the counting statistics. We find that detectors which are large compared to the size of
the expanded wave function distinguish insulating and superfluid phases irrespective of the occupation pattern.
We show that using detectors that are small compared to the size of the expanded wave function, occupation
patterns in insulating and supersolid states can be distinguished. Finally, we show how the magnetic phase
patterns are dramatically reflected in the number distribution.
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I. INTRODUCTION

Experiments with ultracold particles trapped in optical
lattices aim toward the engineering of exotic many-body
quantum states [1]. Recently, trapping and cooling of dipolar
gases have attracted much attention [2]. The dipole moments
induce long-range interactions between the particles, and new
phases appear [3]. In the strongly correlated regime, it has
been shown that there are many quasidegenerate metastable
insulating states with defined occupation patterns [4–7].
These metastable states could be used for the storage and
processing of quantum information analogously to classical
neural networks, where the information is robustly encoded in
the distributed stable states of a complex system [8,9]. Another
way to induce long-range interactions and thus control the
lattice occupation patterns is via coupling to an external cavity
mode. This has just recently been achieved experimentally and
a checkerboard to a supersolid transition has been observed
[10]. Additionally, the creation of artificial gauge phases in
neutral atoms is an active area of research [11]. Dressing the
lattice with a high-frequency acceleration [12] results in an
effective tunneling rate between lattice sites which can be used
to create states with staggered phase patterns which mimic
magnetic Néel order [13].

The detection of exotic strongly correlated phases requires
novel experimental techniques that give access to high-order
correlation functions. Proposals for detection techniques typi-
cally make use of shot-noise measurements [14] or atom-light
interfaces [15]. Also, the counting statistics of atoms have been
suggested as a technique able to distinguish strongly correlated
[16–19] and fermionic [20,21] Hamiltonians, as well as
systems of interacting Rydberg atoms [22]. The detection of
atoms trapped in the optical lattice with single-site resolution
has become experimentally available only recently [23–26].
Most counting experiments are performed after switching off
the trapping potential and letting the atoms propagate in the
gravitational field. The counting statistics of Rb atoms falling

within a high-finesse cavity has been reported in Ref. [27].
Also, fermionic and bosonic counting probability distributions
have been measured for metastable Helium atoms falling onto
a microchannel plate [28,29].

The theoretical analysis of the counting process has so
far mainly been considered for atoms trapped in the lattice.
Propagation in the gravitational field mixes the initial modes
of the atoms such that the counting statistics in the lattice
and after propagation are not expected to be the same. In this
paper, we study the role of expansion in the counting process.
We show that the mixing of the initial modes during the
expansion becomes evident in the counting distribution when
the detector is small compared to the size of the expanded wave
function. We illustrate the effect by analyzing the counting
statistics for bosons after time-of-flight expansion from the
lattice. We consider initial states with different occupation
patterns in the insulating regime and states with different
density and phase distributions in the superfluid regime. We
calculate both the counting probabilities at a single detector
and the joint probabilities at two detectors as a function of the
horizontal distance between them. We show that superfluid
(SF) and Mott-insulator (MI) phases can be distinguished by
their counting statistics. We further show that a suitable choice
of the detector geometry, or equivalently the distance to the
detector, allows for the characterization of different occupation
patterns in the insulating regime and different supersolid states.
Moreover, we find that phase patterns are also reflected in the
counting statistics.

The paper is organized as follows. In Sec. II we review
the propagation of the atomic wave functions and the atom
counting formalism. In Sec. III we analyze the intensity of par-
ticles arriving at the detector, which consists of autocorrelation
terms and cross correlations between the different expanded
modes. Depending on the distance and size of the detector, the
ratio between the autocorrelations and the cross-correlation
terms changes. In Sec. IV we obtain closed expressions
for the counting distributions for expanded superfluid and
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insulating bosonic states. We consider the counting statistics
when using one detector and the joint counting distribution at
two detectors. In Sec. V, we collect our results and compare
the counting distributions of SF and MI states and the counting
distributions for insulating and supersolid states with different
occupation patterns as well as magnetic phase patterns.

II. DESCRIPTION OF THE SYSTEM

We consider neutral bosonic atoms trapped in an optical
lattice. The system can be described using the Bose-Hubbard
model [30], which includes the hopping of the particles be-
tween neighboring sites and the on-site two-body interactions.
At zero temperature, there are two limiting states in the phase
diagram. On the one hand, when the hopping term dominates,
SF states with long-range correlations appear. Fast oscillatory
potentials can be used to dress the lattice [12] and produce an
effective tunneling rate. By controlling the parameters of the
driving, one can obtain negative effective tunneling rates which
induce staggered phase patterns which mimic magnetic Néel
order [13]. On the other hand, the opposite limit appears when
the interparticle interactions are dominant, and the ground
states are MI states which lack any long-range correlations.
If, additionally, the interactions between particles are long
range [3,10], the limiting ground states of the system are MI
and SF states with inhomogeneous occupation patterns.

The field operator �(r,t) of the many-body system can be
expanded into the N modes ai

�(r,t) =
∑

i

φi(r,t)ai. (1)

For atoms trapped in an optical lattice, ai describes the
destruction of a particle on site i with a single-particle
wave function φi . The corresponding initial wave functions
are Wannier functions which are Gaussian functions centered
at ri

φi(r,t = 0) = 1

(πω2)3/4
e−(r−ri )2/2ω2

, (2)

where the width ω is chosen such that the initial wave functions
at different sites i have a negligible overlap.

The atoms are released from the optical lattice and expand
in the gravitational field. At finite t , we can apply the single-
particle expansion

φi(r,t) =
∫

dr′K(r,r′,t)φi(r′,0) (3)

where the propagator for the free expansion in the gravitational
field reads [31]

K(r,r′,t) =
(

m

2πih̄t

)3/2

e
im(r−r′ )2

2h̄t
− imgt(z+z′ )

2h̄ − im2g2 t3

24mh̄ . (4)

The full propagated wave function is then written as

φi(r,t) = e− im2g2 t3

24mh̄

π3/4(iωt + ω)3/2
e
− (r−ri )2

2(ω2
t +ω2) e

−i
(r−ri )2ωt

2ω(ω2
t +ω2) , (5)

where and rt = r + zt , with zt = (0,0,gt2/2) and we have
used that |rt − ri | � ω. In the limit of ωt � ω, the expanded
wave function is, up to a phase factor, a Gaussian function
centered around zt with a width ωt = h̄t/(mω).

A. Atom counting

We describe a counting process in which the probability
p(m) of counting m particles within a time interval τ is
measured at a detector located at a distance z0 from the lattice.
The probability of detecting m particles can be expressed
as [32,33]

p(m) = (−1)m

m!

dm

dλm
Q

∣∣∣∣
λ=1

, (6)

where the generating function Q(λ) is given by the expectation
value of a normally ordered exponential of the intensity I,

Q(λ) = Tr(ρ : e−λI :). (7)

For photons, the intensity is proportional to an integral over
the product of the negative-frequency part and the positive-
frequency part of the field. The normal ordering : . . . : reflects
the detection mechanism, in which the photons are absorbed
at the detector, typically a photo multiplier or an avalanche
photodiode. For the detection of atoms using microchannel
plates, the detection process can be treated in an analogous
way.

Since typically not all the particles are counted, the intensity
depends on the efficiency ε of the detector and the detection
time τ . When the dynamics of the measurement are fast in
comparison to the dynamics of the system, the intensity is
proportional to the factor κ ≡ 1 − e−ετ . For typical experi-
mental situations, the dynamics of the system are determined
by the expansion of the atomic cloud in the gravitational
field, given by ωt and the intensity can be described by the
integral over the detector volume � of the positive-frequency
and negative-frequency parts of the quantum fields describing
the particles to be counted, multiplied by the efficiency factor
κ [34],

I = κ

∫
�

dr�†(r,td )�(r,td ), (8)

where td denotes the time at which the instantaneous measure-
ment is performed.

The formalism described above is easily generalized to the
case of detection with multiple detectors [35]. For detection
with M detectors, the generating function reads

QM (λ1,λ2, . . . ,λM ) = Tr(ρ : e− ∑
i λiIi :), (9)

where the single detector intensity Ii for each of the detectors
is given by Eq. (8). For a configuration with two detectors, the
joint probability distribution of counting m atoms at detector
1 and n atoms at detector 2 is given by

p(m,n) = (−1)m+n

m!n!

dm+n

dλm
1 dλn

2

Q2

∣∣∣∣
λ1=1,λ2=1

. (10)

We study the correlations corr(m,n) between the counting
events detected at each detector by observing the ratio between
the covariance and the single detector variances,

corr(m,n) = cov(m,n)

σ 2
mσ 2

n

, (11)

where cov(m,n) = ∑
m,n mnp(m,n) − m̄n̄, m̄ denotes the

mean and σ 2
m the variance of p(m).
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III. DETECTION OF EXPANDING ATOMS

A. Correlations between the expanding modes

Let us now discuss the counting process for the detection of
atoms expanding in the gravitational field. We consider a cubic
detector located at a distance z0 from the lattice center with
edge lengths 
x,
y,
z. For simplicity, all through this paper
we consider td = √

2z0/g which is the time when the center
of the cloud arrives at the detector. The intensity I of atoms
registered at the detector defined in Eq. (8) is thus determined
by the expanded field operator of the atoms at the time td of
detection, �(z0,td ). Using Eqs. (1) and (8), the intensity I
takes the form

I =
∑
ij

Aij a
†
i aj , (12)

where

Aij (z0,�,κ) = κ

∫
�

drφ∗
i (z0,td )φj (z0,td ). (13)

The elements of the correlation matrix Aij defined in Eq. (13)
describe the interference and autocorrelation terms between
different modes registered at the detector. The diagonal terms
represent the on-site correlations, whereas the off-diagonal
terms represent the cross correlations between single-particle
modes initially located at different sites with distance d =
rj − ri .

Before studying the full counting distribution, let us
consider the correlations given by the matrix elements Aij .
Using Eq. (5) and assuming ωtd � ω, the autocorrelation
elements are given by

Aii = κ

∫
�

dr
1

π3/2ω3
td

e
− (r−ri )2

ω2
td . (14)

For expanded wave functions at r � ri , the autocorrelations
become all equal Aii � AD and independent of the original
lattice site i,

AD = κ
∏

l=x,y,z

Erf

(

l

ωtd

)
. (15)

The cross correlations are given by

Aij = κ

∫
�

dr
1

π3/2ω3
t

e
− (r−ri )2

2ω2
t e

− (r−rj )2

2ω2
t e

−i
r(ri−rj )

ωωt . (16)

If, again, we assume far detection, Aij depends only on d =
rj − ri and thus

Aij = κ
∏

l=x,y,z

ie−( dl
4ω

)2

2

[
Erfi

(
dl

2ω
+ i
l

ωtd

)

− Erfi

(
dl

2ω
− i
l

ωtd

)]
, (17)

where a0 is the lattice constant and dl is the l component of
the distance between the two sites, where l = x,y,z.

Both the cross correlations and the autocorrelations depend
crucially on 
l/ωtd which can be manipulated by changing
the distance to the detector z0 or by changing the detector
size. In Fig. 1, we show the autocorrelations and the cross-
correlation terms as a function of the size of the detector. We
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FIG. 1. (Color online) The ratio between the autocorrelations and
cross-correlation terms that contribute to the counting distribution
depend on the size of the detector. For a 1D system, we plot the
following: (a) wide detector limit 
z � ωtd ; (b) narrow detector limit

z � ωtd . We plot |Aii | (blue squares) |Ai,i+1| (green circles), |Ai,i+2|
(red diamonds), and |Ai,i+3| (light blue triangles). Parameters used:
z0 = 1 cm, 
x = 
y = 1 cm, and κ = 1, a0 = 266 nm.

consider a one-dimensional array in the z direction and plot
the correlations at the location of the detector (0,0,z0). We
consider a fixed detector size in the xy plane, 
 = 
x = 
y ,
and vary its width 
z. For z0 = 1 cm, the size of the expanded
single-particle wave function at the detector is ωtd = 0.8 mm.
Depending on the size of the detector, the whole cloud or
a fraction of it is registered. In the limit of large detectors

z/ωt → ∞ we expect from Eq. (15) and (17) that AD

approaches a constant value κ while Aij → 0 for i �= j . In
Fig. 1(a), we show that for a 1D system with the given
parameters, the interference terms are negligible for detectors
of size 
z > 0.2 mm. This is easily understood from Eq.
(14), as the autocorrelations are given by an integral over the
detector volume around the center of a Gaussian function.
For detectors that are large compared to the size of the
cloud, the on-site correlations approach unity. In contrast, the
interference terms Eq. (16) are given by the integral over a
Gaussian function multiplied by a highly oscillating phase such
that they approach zero as the size of the detector increases.
Figure 1(b) shows that for small detector sizes, the interference
terms for sites that are close to each other are of the same order
as the on-site correlations. Note that due to the damping in
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Eq. (17), cross correlations for sites with large distances
become zero for any detector size.

B. Detection of the correlations

We have seen in the previous section that when the detector
is larger than the size of the cloud, only autocorrelations
between the modes are registered at the detector. We see in
Fig. 1(a) that the cross correlations disappear Aij � 0 for large
distances between the sites i and j , while the autocorrelations
approach Aii � κ . Note that on-site detection is a particular
limit of this case. We will show in the next section that the
detection of the autocorrelations between different modes is
sufficient to distinguish the long-range spatial correlations in
the probed system. In particular, we show that in the limit of
large detectors, MI states can be distinguished from SF states.
On the contrary, as the autocorrelation terms for different
sites are equal, distinguishing states with different occupation
patterns cannot be achieved in this limit.

In order to characterize the occupation or phase pattern in a
state, we need to use a detector which is small compared to the
expanded function. In such a case not only autocorrelation
terms but also cross correlations between the modes are
registered at the detector. In particular, in order to distinguish
patterns that differ at a distance d = rj − ri , the optimal
situation to achieve this would be that the registered cross
correlations and autocorrelations are of the same order |Aij | �
|Aii |. This can be achieved by choosing the proper detector
size. For example, in a 1D system, if one wants to distinguish
occupation or phase patterns with differences in the nearest
neighbors, a choice of 
z = 0.2 mm for the parameters used
in Fig. 1 yields |Aij | � |Aii | for j = i + 1 and |Aij | → 0 for
j > i + 1. We will show in Sec. V that in the limit of small
detectors, different occupation and phase patterns are reflected
in the counting distribution.

Note that the key parameter is the ratio between the
expanded wave function ωtd and the detector size and one
can thus either change the detector size 
z or the distance to
the detector z0.

IV. ATOM COUNTING STATISTICS

Let us now consider the counting distributions measured at
the detector after the expansion for different initial states of
the system of atoms trapped in the lattice.

A. Superfluid phases

First, let us focus on SF states, ground states of the
Bose-Hubbard model for very shallow lattices. We derive
the counting distribution using the Gutzwiller ansatz [36] for
the wave function which assumes that it is a product of on-site
coherent states. The initial state of the atoms in the lattice with
N sites then reads:

|ψ〉 =
N∏
i

|αi〉i , (18)

where |αi〉i is the coherent state on site i,

|αi〉i = e−|αi |2/2
∞∑

n=0

αn
i√
n!

|n〉i (19)

and |n〉i = 1√
n!

(a†
i )n|0〉 is a Fock state with n particles. Note

that |ψ〉 is an eigenstate of the annihilation operator �(r,t) of
the expanded atoms,

�(r,t)|ψ〉 =
∑

i

φi(r,t)αi |ψ〉, (20)

where φi is given by Eq. (2). The state |ψ〉 is thus an eigenstate
of the expanded field operator �(r,t) and we can write the
generating function as Q(λ) = e−λ

∑
ij α∗

i αj Aij . Using Eq. (6)
the counting distribution p(m) reads

p(m) =
( ∑

ij α∗
i αjAij

)m

m!
e− ∑

ij α∗
i αj Aij , (21)

where Aij is given by Eq. (13). This corresponds to a
Poissonian distribution with mean (and thus also variance)
m̄ = σ 2 = ∑

ij α∗
i αjAij .

In the limit of big detectors where the diagonal elements of
the matrix Aij are much bigger than the off-diagonal elements,
all Aii = AD . In such case the number distribution reads

p(m) =
(∑

i |αi |2AD

)m

m!
e− ∑

i |αi |2AD , (22)

which does not distinguish different occupation patterns with
the same number of particles.

If one wants to characterize the occupation pattern, one
needs to choose smaller detector sizes such that some cross
correlations Aij are nonzero. In Sec. V we show that in the limit
where the nearest-neighbor cross-correlation contribution is
of the same order than the autocorrelations one can use the
number distribution to characterize supersolid states.

B. Mott-insulating phases

Let us now consider initial states in the Mott-insulating
regime. We first study a Mott-insulator state with one particle
per site, |ψ〉 = |11 . . . 11〉. In this case, the generating function
Eq. (7) reads

Q(λ) = 〈11 . . . 11| : e−λκ
∫
�

dr�†(r,td )�(r,td ) : |11 . . . 11〉
= 1 − λ

∑
i

Aii + λ2
∑
i<j

(AiiAjj + |Aij |2) − . . . . (23)

We can rewrite Eq. (23) using the minors of the matrix A,

Q(λ) = 1 +
N∑

k=1

(−1)kλkM+(A,k), (24)

where M+(A,m) denotes the permanent perm(A) =∑
σεSn

�n
i=1Ai,σ (i) of the corner blocks of size m of the matrix

A. Note that M+(A,k) is closely related to the principal minors
of the matrix, which are defined as the determinant of the
respective block matrices. The counting distribution p(m) can
then be calculated using Eqs. (6) and (24).
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In an experimental situation where the detector is located
far away from the lattice and much bigger than the cloud, the
generating function Q in Eq. (23) reduces to

Q(λ) =
N∑

k=0

(
N

k

)
(−λAD)k = (1 − ADλ)N, (25)

where AD denotes any of the (equal) diagonal elements. The
counting distribution p(m) is then given by

p(m) =
(

N

m

)
Am

D(1 − AD)N−m. (26)

This corresponds to the distribution of a Fock state. The mean
m̄ and variance σ 2 of the distribution are given by

m̄ = NAD, σ 2 = NAD(1 − AD). (27)

Let us now consider the different occupation patterns that
arise in the strongly correlated regime. In particular, we focus
on such states where at most one particle occupies each site.
The generating function is then calculated by Eq. (24), with
a correlation matrix A′, composed of the elements of the
correlation matrix A in Eq. (13) multiplied by the occupation
numbers ni and nj of the involved sites,

A′ = ninjAij . (28)

Note that in the limit when the detector is large only
the autocorrelations are nonzero and the number probability
distributions for all the Mott-insulating states discussed in this
section are same as in Eq. (26) with N equal to the number of
particles.

C. Counting at two detectors

In this section, we consider the detection of MI and SF
phases using two detectors and analyzing the correlations
between the counting events. For detectors that are located
symmetrically with respect to the origin in the xy plane, and
in an experimental situation such that only the autocorrelation
terms are non-negligible, we obtain joint probability distri-
butions for MI and SF states which are independent of the
occupation patterns.

For the MI state, the joint counting distribution p(m,n) of
counting m particles at one detector and n particles at the
other is given by Eq. (10), where the generating function for
two detectors is given by

Q2 =
N∑

k=1

(−1)kM+(λ1A
(1) + λ2A

(2),k). (29)

For large detectors that are located symmetrically with
respect to the origin in the xy plane, the diagonal elements
AD are all equal, A

(1)
D = A

(2)
D = AD . The generating function

thus simplifies to

Q2(λ1,λ2) =
N∑

k=0

(
N

k

)
(−AD)k(λ1 + λ2)k

= [1 − AD(λ1 + λ2)]N, (30)

and the counting distribution is given by

p(m,n) = (−1)n+m(1 − 2AD)N−m−n

× (−AD)m+n N !

m!n!(N − m − n)!
. (31)

For the SF phases, the joint counting distribution pSF(m,n)
is the product of the two single detector distributions p1(m)
and p2(n) given by Eq. (21). The counting events at the two
detectors are thus not correlated.

V. RESULTS

A. Counting distribution of Mott-insulating and
superfluid phases

We consider the counting distributions of a SF and a MI
state of bosons with the same average number of particles
released from a three-dimensional optical lattice. We assume
the limit of a large detector, where the counting distribution
is determined by the on-site correlation terms. In Fig. 2, we
plot the counting distributions for an SF and an MI state at
different distances between the detector and the lattice. With
increasing distance from the detector, a smaller fraction of the
expanded wave function is registered. The difference between
the MI and the SF becomes less visible, and the mean of the
counting distribution decreases. In Fig. 3, we plot the mean and
the variance of the counting distributions, both normalized by
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FIG. 2. MI vs. SF as a function of distance from detector.
Probability distribution for MI (black bars) and superfluid (white
bars) states in a 3 × 3 × 3 lattice. The counting distribution of the
SF state is Poissonian, whereas the counting distribution of the MI
state is sub-Poissonian. For increasing distance between the detector,
the difference between the states is no longer visible. 
x = 
y =
2 mm; 
z = 2 cm; κ = 1. (a) z0 = 1 cm; (b) z0 = 3 cm;
(c) z0 = 5 cm.
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FIG. 3. (Color online) Variance σ 2/N of the counting distribution
for a MI (blue squares) and SF (green circles) state in a 3 × 3 × 3
lattice with respect to the distance from the detector z0. 
x = 
y = 2
mm; 
z = 2 cm; κ = 1.

dividing by N , for the superfluid and the Mott-insulator state
for a detector with fixed size at different distances z0 from the
lattice.

Let us now consider two detectors of the same size that
are placed symmetrically at a distance x1 = (xd,0,z0) and
x2 = (−xd,0,z0) from the lattice center. In the limit of large
detectors, we study the joint counting distribution of the SF
and MI states for different distances between the detectors.
Figure 4 shows the counting distributions for two overlapping
detectors (left column) and for two detectors separated by
2xd = 1 cm (right column). For the SF state, shown in the lower
row in Figs 4, the joint counting distribution is a Gaussian
function for both cases. This is expected, as the joint counting
distribution Eq. (21) is a product of the single detector counting
distributions. This is analogous to the detection of coherent
states of light. For the MI state shown in the upper row in
Fig. 4, we observe a squeezed distribution, indicating the
correlations of the atoms counted at the two detectors. As
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FIG. 4. Joint probability distribution of an expanded MI (upper
row) and a SF (lower row) in a 4 × 4 lattice in the xy plane with two
symmetrically placed detectors. In (a) and (c) xd = 0. In (b) and (d)
xd = 1 cm. Parameters used: z0 = 1 cm; 
z = 2 mm; 
x = 
y =
2 cm; κ = 0.5.
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FIG. 5. (Color online) Correlations of the joint probability dis-
tribution for an expanded MI state in a 4 × 4 lattice in the xy plane
registered at two symmetrically placed detectors. For short distances
an antibunching of the particles is observed. As the distance between
the detectors increases, the counting events at the two detectors
are no longer correlated. Parameters used: z0 = 1 cm; 
z = 2 mm;

x = 
y = 2 cm; κ = 0.5.

the distance between the detectors increases, the squeezing
of the distribution is less pronounced. The correlations between
the counting events at the two detectors can be seen more
clearly when looking at the correlation function Eq. (11). For
the superfluid state, there is no difference between the joint
counting distribution and the product of the single particle
distributions. For the Mott state, we study the correlations
for varying distance between the two detectors xd . In Fig. 5,
we show how the correlations decrease when increasing
the distance between detectors xd . For detectors that are
close together, an antibunching of the MI state is observed.
The distance xd denotes the distance between the center of
the two detectors. For xd = 0, the detectors fully overlap,
and for xd > 
 the detectors are completely separated. Time-
of-flight expansion images readily distinguish between the
MI and the SF regime [30]. Particle counting complements
the characterization of the states by giving access to the full
statistics.

All the results in this section are independent of the
occupation pattern and are thus valid for any SF or MI state
with up to unit filling. In order to characterize occupation
patterns and short-range correlations in the initial states, one
needs to use detectors of smaller sizes as we show in the next
sections.

B. Counting statistics of insulating states with different
occupation patterns

Let us now focus on the characterization of insulating states
with different occupation patterns by particle counting. As
discussed above, in order to detect the different patterns, the
cross correlations have to be of the order of the autocorrela-
tions. This is clear as away from the lattice, all the on-site
correlation terms become equal. Let us discuss the example of
a checkerboard state, where every second site is occupied, and
a state with stripes, where every second line is occupied. For
the striped state, the leading cross-correlation terms Eq. (16)
are the ones that correspond to the nearest neighbors. For the
checkerboard state, where neighboring sites are not occupied,
the leading terms are the ones that correspond to diagonally
adjacent sites. In order to distinguish the different patterns, it
is, thus, essential that these two leading cross-correlation terms
differ sufficiently and, at the same time, are comparable to the
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FIG. 6. The counting distributions of an expanded 1D checker-
board state, where every second site is occupied (black bars),
and striped insulating pattern, where the first half of the sites is
occupied and the remaining sites are empty (white bars), are clearly
distinguishable. Parameters used: z0 = 1 cm; 
 = 0.1 cm; 
z =
0.02 mm; κ = 1, N = 12.

on-site correlations. From Fig. 1, we see that this implies that
the limit of small detectors has to be considered. However,
if the detector is very small, all the terms are equal and the
patterns are not distinguishable. One should thus consider an
intermediate detector size.

In Fig. 6, we illustrate the effect for a 1D system of
N = 12 particles. We compare the counting distributions of a
checkerboard-like state, where every second site is occupied,
and a state where a block of six sites is occupied and a block of
six sites is empty. In order to distinguish the two states, from
Fig. 1, we choose a detector size of 
 = 0.02 mm such that the
ratio of the cross-correlation terms between neighboring sites
and the autocorrelations is 0.6. Figure 6 shows that the different
occupation patterns are reflected in the counting distribution.

C. Counting distribution of supersolid states

In the weakly interacting regime, and in the case of
long-range interactions, supersolid states with inhomogeneous
occupation patterns αi in Eq. (18) appear [37,38]. As for
the states with different occupation patterns in the insulating
regime, the characterization of supersolid states requires the
limit where the cross-correlation terms for neighboring sites
are comparable to the autocorrelation terms. We consider a
supersolid state with N sites and mean density α2i = β and
α2i−1 = γ . As discussed in Sec. III B, the intensity of particles
that is registered at the detector contains autocorrelations and
cross-correlation terms. Depending on the detector position
and size, the first dmax leading cross correlations have to be
considered. For the limit where the cross-correlation terms
for neighboring sites are the only non-negligible interference
terms, the counting distribution Eq. (21) is given by a
Poissonian distribution with mean

m̄ = N

2
AD(β2 + γ 2) + 2NRe(ANN )βγ, (32)

where AD denotes the diagonal elements corresponding to
the on-site correlations and ANN denotes the nearest-neighbor
cross-correlation terms. Let us compare this to a superfluid
state with a homogeneous density per site, |αi |2 = |β|2+|γ 2|

2 ,
for all i. The counting distribution Eq. (21) is thus given by a
Poissonian distribution with mean

m̄ = N

2
AD(β2 + γ 2) + NRe(ANN )(β2 + γ 2). (33)
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FIG. 7. The counting distributions of an expanded 1D super-
solid state with |β|2 = 0.5 and |γ |2 = 1.5 (black bars) and a
superfluid state |α|2 = 1 (white bars) are clearly distinguishable.
Parameters used: z0 = 1 cm; 
 = 1 cm; 
z = 0.02 mm; κ = 1,
N = 40.

From Eqs. (32) and (33) it is clear that a supersolid state can be
distinguished from a superfluid state by particle counting when
comparing the mean of the counting distributions of the two
different states (Fig. 7). The mean of the counting distribution
decreases as the supersolid structure appears in the state.

D. Characterization of phase patterns

The creation of artificial gauge fields in neutral atoms to
mimic the dynamics of a charged particle in a magnetic field
has attracted much attention [11]. Recently, magnetic Néel
order has been simulated dressing an optical lattice with a fast
oscillation [13] such that states of the form

|ψ〉 =
∏

i

|αie
iφi 〉 (34)

can be created. The rapid oscillatory potential results in
an effective tunneling rate between lattice sites which for
certain values of the parameters can be tuned to negative
values [12]. When the effective tunneling rate is negative,
the energy is minimized when the phase between neighboring
sites alternates. In this section, we show that the counting
statistics allow for the characterization of the magnetic local
phases in the states of Eq. (34). For illustration, let us consider
possible phase patterns of Néel SF states appearing in square
and triangular lattices [13]. The number distribution of a state
described in Eq. (34) is Poissonian with mean value

m̄ = Nα2AD + α2
∑
i,j

Ai,j cos(φi − φj ), (35)

where j = i + d and we take into account the leading corre-
lations up to a term dmax. It is clear from this expression that
phase patterns will dramatically affect the number distribution.
For the square lattice, we consider a phase difference of φi −
φi+1 = ±π between neighboring sites. The sign of the tunnel-
ing is clearly reflected in the counting distribution (Fig. 8),
as the mean decreases for states with phase patterns. For
the triangular lattice, we consider a phase difference between
neighboring sites of φi − φi+1 = ±{−2π/3,2π/3,4π/3}. As
in the case of the square lattice, the change of the sign is clearly
visible in the counting distribution (Fig. 9).

VI. SUMMARY

We have studied the counting distributions of atoms falling
from an optical lattice and propagating in the gravitational
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FIG. 8. The counting distribution of the particles released from
a 2D square lattice in the xy plane with positive tunneling rate
(black bars) and negative tunneling rate (white bars). As the
sign in the tunneling rate changes, the mean of the counting
distribution decreases significantly. Parameters used: 
x = 
y =
1 cm; 
z = 0.1 mm; z0 = 1 cm; a0 = 415 nm; N = 100; dmax = 5.

field. The atom number distribution gives access to high-order
correlation functions and can thus be used to characterize
the spatial correlations of the initial states. The intensity of
atoms recorded at a detector located far from an optical lattice
can be decomposed into autocorrelation and cross correlations
between the expanding modes. The ratio between these terms
depends crucially on the geometry of the detector.

In the limit when the detector is large compared to the
expanded modes, the cross-correlation terms are negligible
and only autocorrelations between the expanded modes are
recorded in the detector. In this case only long-range corre-
lations in the initially trapped states can be distinguished. In
this situation, an SF state has a Poissonian number distribution
while the counting distribution for an MI is sub-Poissonian.
These two phases can also be readily distinguished from the
joint probability distribution of counting the particles at two
detectors. In the SF regime, the joint probability distribution is
a product of the two independent number distributions while
in the MI regime, the distributions are highly correlated. Also,
the antibunching of bosons in the insulating regime is reflected
in the correlation of the joint probability distribution. All
these results are valid for SF and MI states irrespective of
the occupation patterns.

When the detector is small compared to the expanded wave
function, autocorrelations and cross correlations are recorded
in the detector. We have shown that by choosing the size of the
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FIG. 9. The counting distribution of the particles released from
a 2D triangular lattice in the xy plane with positive tunneling rate
(black bars) and negative tunneling rate (white bars). As the sign
in the tunneling rate changes, the mean of the counting distribution
decreases significantly. Parameters used: 
x = 
y = 1 cm; 
z =
0.1 mm; z0 = 1 cm; a0 = 415 nm; N = 100; dmax = 5.

detector in an appropriate way, these contributions can be of the
same order. In this case, different occupation patterns can be
distinguished by particle counting after expansion both in the
insulating as well as in the superfluid regime. Additionally,
phase patterns in the SF regime are reflected in the number
probability distribution. All the cases considered here show
that superfluid phases with local phase or occupation patterns
yield a Poissonian distribution with smaller mean compared
to a homogeneous SF. In summary, we have shown that by
choosing the detector size or, equivalently, the position of
the detector with respect to the trapping lattice, one can
characterize both the short- and long-range spatial correlations
in the initial states.
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[23] T. Gericke, P. Würtz, D. Reitz, T. Langen, and H. Ott, Nat. Phys.
4, 949 (2008).

[24] N. Gemelke, X. Zhang, C.-L. Hung, and C. Chin, Nature 460,
995 (2009).

[25] W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen,
S. Fölling, L. Pollet, and M. Greiner, Science 329, 547 (2010).

[26] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch,
and S. Kuhr, Nature 467, 68 (2010).
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